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ABSTRACT
Usage profiles and component reliability are two important
factors in software system reliability estimation. To assess
the sensitivity of a system’s reliability to the usage profile
and to the reliability of its components, a Markov based sys-
tem model is used. With the help of this model, the maxi-
mum sensitivity to one change or the statistical sensitivity
to many independent changes can be estimated. Advantages
and limitations to this approach are discussed and finally the
theory is applied to an example to show its validity.
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1. INTRODUCTION
Software plays an increasingly important role in today’s soci-
ety. Reliable software is a prerequisite for most functions in
our daily life. Power supply, banking, transportation, med-
ical care etc. depend on reliable software. Extreme events,
like bad weather conditions, terror threats or diseases, may
stress the society, and hence the software systems. The cur-
rent status of software reliability assessments is far from
good [16]; the control over the software reliability under ex-
treme conditions is even worse. To our knowledge, the issue
of assessing the software reliability for extreme conditions,
is not explored to any larger extent.

The software reliability depends not only on the defects, re-
siding in the software systems, but also on how the software
is used, i.e. the usage profile [10]. E.g. a contributing factor
to the power blackout in North America, August 2003, was
a software failure in an alarm system [15]. The “bug was
triggered by a unique combination of events and alarm con-
ditions on the equipment it was monitoring”. As software
reliability assessments primarily are based on the normal
usage profile, extreme events are not taken into account.

In this paper, we present an initial quantitative study on the
sensitivity of the reliability estimate to changes in the usage
profile. The long term goal is to assess software reliability
risks with respect to extreme usage conditions.

The paper is outlined as follows: after the discussion of some
related work in Section 2, Section 3 discusses the theory and
in Section 4 the theory is applied and checked to an example
from [14].

2. RELATED WORK

2.1 Usage Profiles and Reliability
The usage profile, or the operational profile, is the charac-
terization of the users’ operative utilization of a software
system. The usage is characterized in terms of the user-
initiated events and the probability for these events [9]. The
usage profile is mirrored in the utilization of the software and
its components. Thus, a state-based model of the software
may be developed, with the probabilities from the usage
profile, determining the transition probabilities of the sys-
tem model. The states in the model may represent either
important states in the operation of the system or system
components between which controlled is passed. This ap-
proach is proposed by Cheung [2], later refined by Siegrist
[17] and used by Poore et al [14].

In order to use the system model for reliability estimation,
an explicit failure state has to be added. The direct unrelia-
bility is then expressed as the probability for a failure event
in each system model state or system component. The re-
liability of the entire system, for a given usage profile, can
then be calculated from the system model [2].

This model can be used to model all kind of systems were
a failure and a success state are present, and where the re-
liability can be defined as the probability to terminate in
the success state. An example of such a system could be
a server where users log in for a session to execute a num-
ber of transactions and to finally conclude with a successful
termination of the session.

Systems without a terminal success state where the reliabil-
ity is measured as the mean time to failure (such as most
monitoring systems), are discussed in [18], and a sensitivity
analysis of these systems will be the topic of future work.



2.2 Sensitivity Analysis
As the software reliability depends on the usage profile, the
question arises how sensitive the reliability estimate is to
changes or uncertainties in the usage profile. The question
has been addressed from two different perspectives; 1) based
on software reliability growth models (SRGM), and 2) based
on Markov models.

In the first approach, the estimated parameters of the SRGM
are adjusted, based on random changes in the operational
profile. Musa analyses the relative error in failure intensity
and the relative error in the operational profile for a single
operation [11]. Chen et al. investigate the sensitivity of the
reliability estimates to errors in the operational profile with
simulation [1]. A single error is injected in the operational
profile and the effects in the reliability estimates are investi-
gated. Crespo, Matrella and Pasquini analyse the predicted
reliability growth for different operational profiles [3, 13].
The real reliability growth is calculated with the Nelson re-
liability model [12, 4]. Wesslén, Runeson and Regnell model
the usage with a Markov model and simulates the impact
on the Nelson reliability estimate, based on multiple random
changes in the usage profile [19].

The second approach uses a Markov chain to model the sys-
tem and its usage. Thus, Poore et al analyze the sensitivity
of a system’s reliability to the reliability of its components
[14]. This approach is extended by Yacoub et al. [20]. Lo
et al present an analytic approach, also based on a compo-
nent model, which identifies the most sensitive parameter,
component reliability and transition flow [8].

In [5] and [6] Goševa-Popstojanova et al discuss two differ-
ent methods for sensitivity analysis based on Markov mod-
els: the method of moments and Monte Carlo simulation.
Though both methods give very good results for small sys-
tems, they require a huge amount of calculation and don’t
scale up well for large systems. They also don’t provide a
good way to get a quick estimate without lengthy calcula-
tions or simulations.

3. SENSITIVITY ANALYSIS
In this section we will first shortly repeat some theoretical
basics from [17] in Subsection 3.1, then the maximal theo-
retical sensitivity of the reliability estimate to one change in
the operational profile is discussed in Subsection 3.2. Next
the statistical sensitivity to many random changes is dis-
cussed in Subsection 3.3 and finally some limitations of the
theory are further examined in Subsection 3.4.

3.1 Definitions
In this paper we will use the Markov model as proposed in
[17] to model a system’s usage, behaviour and reliability.
The states of the model can either represent system states
or system components between which control is passed, the
following analysis can be used in both cases.

In the model used here, there are two main assumptions.
First, the Markov property means that the future behaviour
of the system is determined only by the current state of the
system and not by the history of the system. Secondly,
this model assumes that the system contains exactly two
terminal states: a success state t and a failure state f . This

means that a run of the system will always terminate in one
of these two states. Next to the two terminal states, the
system also contains n transient states 1, 2, . . . , n. State 1
represents the initial state.

The dynamics of the faultless system, without the failure
state, are described by a Markov chain with state space
1, 2, . . . , n, t, and with transition matrix P , where pij is the
probability to go from state i directly to state j.

In the imperfect system, every state has a designated relia-
bility ri, which means it has a probability 1 − ri of failing
and entering the failure state f . The dynamics of the faulty
system are described by a Markov chain with state space
1, 2, . . . , n, t, f and with transition matrix P̂ , given as fol-
lows:

p̂ij = pij × ri

for i = 1, . . . , n and
for j = 1, . . . , n, t

p̂if = 1 − ri

for i = 1, . . . , n

p̂tt = p̂ff = 1

p̂ti = 0 for j = 1, . . . , n, f

p̂fi = 0 for j = 1, . . . , n, t

The method for computing system reliability from these
transition probabilities is based on standard Markov chain
theory [7].

Let Q̂ denote the restriction of the transition matrix P̂ to
the transient states 1, 2, . . . , n, so the transition matrix P̂
without the last two rows and without the last two columns.
Then the matrix

V =
∞X

k=0

Q̂k = (I − Q̂)−1 (1)

is called the potential matrix of the system. Each value vij

gives the number of expected visits to state j before termi-
nating when the system is currently in state i. Since state
1 is the starting state of the system, the system’s expected
number of transition periods before terminating is the sum
of the elements of the first row of the matrix V .

expected # of periods = sum(V1) =

nX
j=0

V1j (2)

This expected number of periods can also be seen as the ex-
pected number of events causing a state change in the system
during one run of the system from start to either successful
termination or failure. The events can be either user actions
or internal system events and are defined together with the
states in the system model.

Let



T =

0B� t1
...
tn

1CA =

0B� p̂1t

...
p̂nt

1CA and

F =

0B� f1

...
fn

1CA =

0B� p̂1f

...
p̂nf

1CA
be the column vectors containing the probabilities to go di-
rectly from a given state to state t or f respectively. Then
the probability si to finally end up in terminal state t given
that the systems is currently in state i, or in other words
the overall chance on success starting from state i, can be
calculated as follows:

S =

0B� s1

...
sn

1CA = V × T = (I − Q̂)−1 × T (3)

In a similar way the chance xi to finally end up in terminal
state f given that the systems is currently in state i, can be
calculated as follows:

X =

0B� x1

...
xn

1CA = V × F = (I − Q̂)−1 × F (4)

Since the system must always terminate in one of the two
terminal states

si = 1 − xi for i = 1, . . . , n (5)

Because we assume that state 1 is the initial state of the
system, the reliability of the whole system is simply

s1 =
nX

i=1

v1i × ti = V1 × T (6)

with V1 the first row of the matrix V . In [17] it is also
shown that the sensitivity of the system’s reliability to the
reliability ri of a state i is bounded by the expected number
of visits to state i in the faultless system starting from state
1, which can also be written as

(I − Q)−1

1i

where Q denotes the restriction of the transition matrix P
of the faultless system to the transient states 1, 2, . . . , n.

In the following sections we will build further upon the the-
ory from [17] to investigate much further how changes in

the transition matrix P̂ influence the total reliability of the
system.

3.2 Maximum Sensitivity
In the previous section we saw how we can calculate the
reliability of a system from its state transition matrix P̂ .
For some systems, small changes in the matrix P̂ can cause
relatively big changes in the reliability of the whole system.
In this section we will look at how to calculate the maximum
effect of one or more small changes.

To make a distinction between the old system without the
small changes and the new system with the small changes,
we will use an accent to indicate the variables of the new
system. So we investigate the difference between the reli-
ability s1 of the system with transition matrix P̂ and the
reliability s′1 of the system with transition matrix P̂ ′

Let δij = p̂′

ij − p̂ij denote the change to p̂ij and let δRel =
s′1 − s1 denote the resulting change in the total reliability of
the system.

First of all, it’s important to notice that it is impossible to
change only one probability p̂ij in the matrix since the sum
of the probabilities of one row has to equal 1.

Therefore, the most simple change we can make to the sys-
tem is to only change one p̂kt and the corresponding p̂kf , or
in other words, to only change the probabilities of immedi-
ate success and failure. This does not change the dynamic
properties of the system, only the terminating probabilities.

δkt = t′k − tk = fk − f ′

k = −δkf (7)

With this change, we do not change the total probability to
terminate from any state, just the probability to terminate
to the two terminal states. Since this change has no effect on
the matrix Q̂ and therefore also not on V as defined in equa-
tion (1). From the equations (6) and (7) it is immediately
clear then that

δRel = vk1 × δkt . (8)

This means that the reliability changes linearly with the size
of the initial change, where the slope is determined by vi1,
the expected number of visits to state i. This result is very
logical, since because of the change we made, for every visit
to the state i we have an extra δit more chance to terminate
to state t.

The situation is more complex when we make changes to the
matrix Q̂. Let’s first assume that we only make a change
to the transition probabilities p̂kl and p̂kf . This means we

only change the matrix Q̂ in one location.

δkl = p̂′

kl − p̂kl = fk − f ′

k = −δkf (9)

It can be easily checked that the matrix V will then change
in the following way:

v′

ij − vij =
δkl × vik × vlj

1 − δkl × vlk

(10)

Therefore the change in the reliability of the whole system
is exactly

δRel =

nX
j=1

δkl × v1k × vlj × tj

1 − δkl × vlk

= δkl × v′

1k × sl (11)

In a similar way we can deduce that when we change the
transition probabilities p̂kl and p̂kt, the reliability of the en-
tire system is affected by an amount.

δRel = −δkl × v′

1k × (1 − sl) (12)



For small changes these results can be approximated and
simplified by replacing v′

1k by the old value v1k.

This last change discussed does no longer represent a simple
change in the reliability of one state or of one transition but
a real change in the usage profile of the system. An even
more interesting change in the usage profile occurs when we
make two changes within the matrix Q̂, to the transition
probabilities p̂kl and p̂km,

δkl = p̂′

kl − p̂kl = p̂km − p̂′

km = −δkm (13)

then the formulas become even longer, but for small delta
the resulting change in system reliability can be very well
approximated by

δRel = δkl × v1k × (sl − sm) (14)

Or in other words, when changing the transition probabil-
ities from a state k to the states l and m, the resulting
change in reliability can be approximated by the product
of the size of the original change to the transition probabil-
ities, multiplied by the number of expected visits to state
k, multiplied by the difference between the chance of overall
success starting from the states l and m. This is equal to the
results found in formulas (11) and (12), when we consider
that the chance of overall success starting from the states f
and t is respectively 0 and 1.

This also means that the reliability is most sensitive to
changes in the transition probability p̂kl, from the state k
that has the higher number of expected visits, to the state
l with the highest total chance of leading to success.

3.3 Statistical Sensitivity
In this section we look for the effect of a large number of
small changes or uncertainties in the usage profile on the
system’s overall reliability. To model these changes we will
assume that every transition probability p̂ij in the system
changes with a δij . Further we will assume that all the δij

have the same distribution with mean 0 and variation Varδ.

E(δij) = 0 Var(δij) = Varδ (15)

Because we can not change one transition probability alone,
for every change δij we will select a random transition prob-
ability p̂ik on row i that will undergo the opposite change
δik = −δij . This will guarantee us that the sum of the
transition probabilities from each state is always equal to 1.

From formula 14 we know that the resulting change in reli-
ability will have a distribution with the following mean and
variance:

E(δRel) = E(δij) × v1i × (sj − sk) = 0 (16)

Var(δRel) = Var(Rel) = Varδ × v2

1i × (sj − sk)2 (17)

Let VardifS be the variation of the difference between the
total chance to reach terminal state t for two randomly se-
lected states

VardifS = Var(si − sj), i, j = 1, . . . , n (18)

Then the total change in system reliability resulting from
randomly changing all the elements p̂ij as described above,
will be the sum of all the changes resulting from n changes
on each of the n rows. And therefore the total change in re-
liability will have a distribution with the following variance:

Var(Rel) =
nX

i=1

n × Varδ × VardifS × v2

1i

= n × Varδ × VardifS × ‖V1‖
2

(19)

Because the total change in reliability is the sum of a large
number independent changes, the distribution will be close
to a normal distribution with mean 0 and a variance as de-
fined in equation (19). Thus, for the standard deviation
σ(Rel) of the reliability the following holds:X

V1 ≤
σ(Rel)

σδ × σdifS

≤ n × max(V1) (20)

In other words, the standard deviation of the total system
reliability under small changes divided by the size of the
changes and divided by the standard deviation of the dif-
ference between the total chance of success between two
random states, lies between the total number of expected
periods of the system and n times the maximal number of
expected visits to any state.

Equation 19 also shows that to decrease the sensitivity of
the reliability to usage profile changes, it is important to
decrease the differences between the overall success rates of
the different states.

When we also want to account for random changes in the
transition probabilities in the vectors T and F , equation (18)
for VardifS can simply be extended to include the states t
and f (in either the index i or j, but not in both) with st = 1
and sf = 0. This will of course seriously increase VardifS

and therefore also the variation on the reliability.

3.4 Limitations
It is important to understand that equation (19) only holds
under a number of assumptions. First of all the changes to
the system’s transition probabilities have to be sufficiently
small, for equation 14 to be a good approximation of their
effect on the system’s reliability. When the changes become
too large the structural changes in the system model will
become more important and influence the reliability of the
system.

Secondly this model also assumes that positive and negative
changes are equally likely for each of the transition proba-
bilities. In practical examples this is rarely true. For exam-
ple, most systems will contain a large number of transition
probabilities equal to zero to indicate impossible transitions.
The error on this transition probability can only be negative
or zero. When we apply random changes to a system with
many zeroes in its transition matrix, but without altering
the zeroes, then the expected change of the reliability will
no longer be zero but be biased towards a negative or posi-
tive change depending on the structure of the system. And
also the estimate of the variation from equation (19) will be
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Figure 1: Example system. Each directed arc, la-

belled with its transition probability, indicates that
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direction of the arrow.

less exact. However, in most cases, it will still be a good
approximation of the variation of the reliability or at least a
good indication of the magnitude of the expected reliability
change.

4. EXAMPLE SYSTEM
In this section we will apply the theory from Section 3 to an
example system from Poore et al. [14]. The transition graph
of the faultless system can be seen in Figure 1. The tran-
sition matrix and different statistics of the different states
can be found in Tables 1 and 2.

The reliability of the whole system is s(1) = 0.9899 and the
expected number of periods is

P
v1i = 67.056.

4.1 Maximum sensitivity
From Table 2 we can see that the state with the most ex-
pected visits is state 5, closely followed by the states 2 and
4, the least visited state is state 7. This means the system
is most sensitive to changes to the transition probabilities
from these states. The state with the highest overall chance
on success is state 1, the state with the lowest overall chance
on success is state 3.

In Table 3 we can see the real effect of some transition prob-
ability changes to the overall reliability. We see that the pre-
dicted value corresponds well to the real value in all cases.
For the first example the predicted value is exact, since there
are no changes to the dynamic properties of the system. For
the second example we see a very large change with also an
error on the prediction of about 10%. This can be explained
because the large change to the dynamics of the system that
this change causes. A change of 0.01 is a big change for a
value of p̂51 = 0.10.

Overall we can see that the maximum change in reliabil-
ity is about 9 times bigger than the original change to the
transition probabilities. But when we do not change the val-
ues r(i) and only make changes inside the matrix Q̂, then
the resulting change in reliability is only 2% of the original
change to the transition probabilities because of the small

differences between the overall success rates of the different
states. And in that case the difference between the predicted
and the real value is a lot smaller, only for very big changes
the predicted value deviates a little from the real value.

4.2 Statistical Sensitivity
To check the statistical sensitivity of the system’s reliability
to many small changes in the transition probabilities, we will
conduct a Monte Carlo simulation where we make a small
random change to each of the 144 transition probabilities in
the matrix Q̂, as described in Section 3.3. To predict the
effect on the system’s reliability we first calculate

VardifS = Var(si − sj) = 5.8610−4

and

‖V1‖ = 22.10 .

With equation (19) we can now predict the standard devia-
tion of the systems reliability for 144 random changes with
σδ = 0.005:

σ(Rel) = 2, 24 × 10−4.

The resulting reliability change from 1000 random simula-
tions, plotted on normal probability paper, can be seen in
Figure 2. As you can see the results of the experiments
fit extremely well with the predicted changes indicated by
the dashed line. The measured standard deviation equals
2.32 × 10−4 while the measure average equals 1.09 × 10−6,
which is very close to the predicted 0.

4.3 Limitations
As we discussed in Section 3.4, the formulas that predict
the statistical change in reliability become less precise when
the σδ increases. For example in Figure 3 we can see what
happens when we increase σδ to 0.01. For 90% of the exper-
iments, our predictions are still quite accurate, but we also
notice a large group of outliers where the random changes
have a large influence on the systems dynamic behaviour
with a large change in the reliability as a consequence. Of
course the number of outliers will increase even more as σδ

increases.

Also, it is important to notice that in the simulation in Fig-
ure 1 both positive and negative changes were allowed to
all transition probabilities. This means that the changed
transition probability matrix P̂ ′ will contain some slightly
negative elements which is practically impossible. When we
change the simulation and only allow positive changes to
the zeros in the transition probability matrix we get the re-
sults shown in Figure 4. It is immediately clear that the
average change in reliability is no longer 0, almost in all the
experiments the change in reliability is negative. From 1000
random experiments, we find that the average change in re-
liability is −5.76×10−4. This is due to the fact that forcing
positive changes onto the zeros causes automatic negative
changes to the positive values already present in the transi-
tion probability matrix. Column 1 of this matrix contains
the most non-zero elements and will therefore be the most
affected by these negative changes. Unfortunately state 1
is the state with the highest overall success rate. Therefore
those negative changes in column 1 will have a negative ef-
fect on the reliability. From the data in Figure 4 we find an



1 2 3 4 5 6 7 8 9 10 11 12 t
1 0 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0.2
2 0.1 0 0 0 0 0.9 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0.9 0.1 0 0 0 0 0
4 0.1 0 0 0 0 0 0 0 0.5 0.4 0 0 0
5 0.1 0 0 0 0 0 0 0 0 0 0.5 0.4 0
6 0 1.0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 1.0 0 0 0 0 0
8 0.5 0 0.5 0 0 0 0 0 0 0 0 0 0
9 0 0 0 1.0 0 0 0 0 0 0 0 0 0

10 0 0 0 1.0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 1.0 0 0 0 0 0 0 0 0
12 0 0 0 0 1.0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 1: The transition matrix P of the faultless example system

i Reliability ri Expected number of visits v1i Overall chance on success si (s1 − si)/10−3

1 0.9990 4.9546 0.9899 0
2 0.9999 9.8895 0.9888 1.0779
3 0.9990 1.9778 0.9879 2.0154
4 0.9999 9.8899 0.9889 1.0384
5 0.9999 9.8903 0.9889 0.9890
6 1 8.8996 0.9888 1.0878
7 1 1.7783 0.9889 1.0275
8 1 1.9758 0.9889 1.0176
9 1 4.9444 0.9889 1.0483

10 1 3.9555 0.9889 1.0384
11 1 4.9447 0.9889 0.9890
12 1 3.9557 0.9889 0.9890

Table 2: Values of the state reliability ri, the number of expected visits v1i, the overall chance of success si

and the difference between the overall chances of success (s1 − si)/10−3 for the different states

p̂kl
−δkl=δkm→ p̂km real δRel/10−3 predicted δRel/10−3

p̂1t
0.01
→ p̂1f -49.5 -49.5

p̂51

0.01
→ p̂5f -89.1 -97.9

p̂13

0.01
→ p̂11 0.100 0.100

p̂78

0.01
→ p̂73 -0.018 -0.018

p̂51

0.01
→ p̂53 -0.199 -0.199

p̂51

0.05
→ p̂53 -0.996 -0.997

p̂51

0.001
→ p̂53 -0.020 -0.020

Table 3: Some real values compared with some calculated values for the change in reliability for different

changes in the transition probabilities
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sensitivity to 144 random changes with σδ = 0.005 from 1000 experiments, where negative changes to the

zeros in P̂ are not allowed. Although the estimate of the variation is still quite accurate, the average is

clearly no longer 0, but significantly negative.

experimental standard deviation of 2.27×10−4, which is still
very close to the predicted standard deviation of 2.24×10−4.

When we would simply not allow any changes to the zeros
in the transition probability matrix, considering those tran-
sitions as absolutely impossible, then the variation of the
system’s reliability would of course be lower than the pre-
dicted value, since there are a lot less changes made to the
transition probability matrix which is usually quite sparse.
But at least then the average change in reliability would
of course still be zero, since for every change the opposite
change is equally likely again.

5. SUMMARY AND FUTURE WORK
In this paper we have made a first quantitative study of the
sensitivity of the reliability estimate to changes in the usage
profile with the help of Markov models. With the theory
described here, it is possible to make a good estimate of the
effect of one or many small changes in the usage profile on
the reliability of a system. Further the theory also makes
it possible to easily find the transitions and states to which
the reliability is most sensitive and to identify measures that
can be taken to reduce this sensitivity.

When comparing the theory with some experimental results,
the results are very good, taking into account a number of
limitations described at the end of the paper.

Further work will be done on finding similar results for the
alternative Markov model used in [18], and on improving
the theory to take into account the limitations posed by
system’s with sparse transition probability matrices. Also
we will be looking more into the exact nature of the changes

and uncertainties in the usage profile of different systems,
with a special focus on crisis situations. A very important
goal is also to apply this sensitivity analysis to a real indus-
trial system to further investigate the applicability of these
results.
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