
Robot Design

Summer course 2007

BEST@LTH

Jacek Malec

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

2

Acknowledgements

Jacek Malec has prepared his lectures basing, among other material, on:

the collection of eight lectures prepared for the Autumn 2000 EE462 class, “Principles of

Mobile Robots,” at the University of Washington using Fred Martin’s pre-publication text,

Robotic Explorations: A Hands-on Introduction to Engineering, Prentice Hall, 2001.

The PowerPoint slides were created by Dr. Linda Bushnell, bushnell@ee.washington.edu

Please see the EE462 course web site for more information on the syllabus, laboratory

assignments, homework assignments, and links:

http://www.ee.washington.edu/class/462/bushnell/

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

3

Outline

• Technology: LEGO (mechanics), RCX

(hardware), NQC (software)

• Simple reactivity - feedback loop

• reactivity vs. deliberation - algorithmic control,

world modelling, knowledge-based control

• Agent architectures, subsumption

• Software for embedded systems

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

4

•Neuro-biologist Valentino Braitenberg, Vehicles: Experiments into Synthetic Psychology

(1984). “how sentient creatures might have evolved from simpler organisms”

•Vehicle 1: 1 Motor/1 Sensor

–Wire connects sensor to motor

–Sensor generates a signal proportional to the strength of light

–When it “sees” a light source, it starts moving in straight line

Braitenberg Vehicles

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

5

Braitenberg Vehicles

•Vehicle 2b: 2 Motors/2 Sensors

–Turns towards light source

–Reduces difference between heading and brightest source of light (negative

feedback)

Feedback

Automatic control

Cybernetics

Early example:

James Watt’s governor

for steam engine speed regulation

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

7

Direct Current (DC) Motors:

• Small, cheap, reasonably efficient, easy to use, ideal

for small robotic applications

• Converts electrical energy into mechanical energy

• How do they work?

– By running electrical current through loops of wires

mounted on rotating shaft (armature)

– When current is flowing, loops of wire generate a

magnetic field, which reacts against the magnetic

fields of permanent magnets positioned around the

wire loops

– These magnetic fields push against one another and

the armature turns

DC Motors

• Efficiency

– Various limitations, including

mechanical friction, cause some

electrical energy to be wasted as heat

– Toy motors: efficiencies of 50%

– Industrial-grade motors: 90%

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

8

DC Motors

Properties:

• Operating Voltage

– Recommended voltage for powering the motor

– Most motors will run fine at lower voltages, though they will be less powerful

– Can operate at higher voltages at expense of operating life

• Operating Current

– When provided with a constant voltage, a motor draws current proportional to how

much work it is doing

– When there is no resistance to its motion, the motor draws the least amount of

current; when there is so much resistance as to cause the motor to stall, it draws the

maximal amount of current

– Stall current: the maximum amount of operating current that a motor can draw at its

specified voltage

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

9

DC Motors

Properties:

• Torque

– Rotational force that a motor can deliver at a certain distance from the shaft

• The more current through a motor, the more torque at the motor’s shaft

– Direct consequence of the electromagnetic reaction between the loops of wire in the

motor’s armature and the permanent magnets surrounding them

– Strength of magnetic field generated in loops of wire is directly proportional to amount

of current flowing through them; torque produced on motor’s shaft is a result of interaction

between these two magnetic fields

– Often a motor will be rated by its stall torque, the amount of rotational force produced

when the motor is stalled at its recommended operating voltage, drawing the maximal stall

current at this voltage

– Typical torque units: kilogram-meter; e.g., 0.01 kgm. torque means motor can pull

weight of 1 kg up through a pulley 1cm away from the shaft.

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

10

DC Motors

Properties:

• Power

– Product of the output shaft’s rotational velocity and torque

– Output Power Zero

• Case 1: Torque is zero

• Motor is spinning freely with no load on the shaft

• Rotational velocity is at its highest, but the torque is zero—it’s not driving any

mechanism (Actually, the motor is doing some work to overcome internal

friction, but that is of no value as output power)

• Case 2: Rotational Velocity is zero

• Motor is stalled, it is producing its maximal torque

• Rotational velocity is zero

– In between two extremes, output power has a characteristic parabolic relationship

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

11

DC Motors

Motor Speed vs. Torque, Power:
• Solid line shows the relationship between

motor speed and torque

– At the right of the graph, the speed is

greatest (100%) and the torque is zero; this

represents the case where the motor shaft is

spinning freely but doing no actual work

– At the left of the graph, the speed is zero

but the torque is at its maximum; this

represents the case where the shaft is stalled

because of too much load

• Dashed line shows the power output, which is

the product of speed and torque

– It is the highest in the middle of the

motor’s performance range, when both speed

and torque are produced
Idealized Graph

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

12

DC Motors

Measuring Motor’s Top Speed in

RPM:

• Opaque disk (light-weight) is mounted directly on the

motor shaft

• Break-beam opto-sensor is positioned such that as the disk

rotates, it interrupts the sensor’s light beam once per

revolution

• For counting the transitions on the sensor, use pulse

accumulator input (PAI = sensor input #9), which counts

pulses on a particular digital input pin with hardware

ancillary to the 6811 core (allows very fast rate, transparent

to the rest of the processor’s functioning)

• Most DC motors have unloaded speeds in the range of

3,000 to 9,000 revolutions per minute (RPM), which

translates to between 50 and 150 revolutions per second. This

is slow enough that a regular 68HC11 analog input could be

used, but it is possible that Interactive C would not be able to

keep up with this rate.

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

13

Gearing

• DC motors are high-speed, low-torque devices

• All mechanisms in robots, including drive

trains and actuators, require more torque and

less speed

• Gears are used to trade-off high speed of the

motor for more torque

• Torque, or rotational force, generated at the

center of a gear:

T = F x r

Downward force is equal to weight times their distance

from the fulcrum. Lighter people can displace heavier

people simply by increasing their distance from the

fulcrum.

The torque t—or, turning force—is the product of

a force F applied perpendicularly at a radius r.

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

14

Gearing

 Meshing Gears

• When two gears of unequal sizes are meshed

together, their respective radii determine the

translation of torque from the driving gear to the

driven one

• This mechanical advantage is easiest understood

from a “conservation of work” point of view

W = F x d

W = T x !

• Neglecting losses due to friction, no work is lost or

gained when one gear turns another

• Example: Gear 1’s radius is one-third that of Gear 2.

Their circumferences are also in a 3:1 ratio, so it take

three turns of the small gear to produce one turn of the

larger gear. Ratio of resulting torques is also 3:1.

Gear 1 with radius r1 turns an angular distance

of !1 while Gear 2 with radius

r2 turns an angular distance of !2.

Ratio of gear sizes determines ratio of

resulting torques

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

15

Gearing

Gear Reduction

• Small gear driving a larger one:

– torque increases

– speed decreases

• 3 to 1 Gear Reduction

– Power applied to 8-tooth gear results in 1/3 reduction

in speed an 3 times increase in torque at 24-tooth gear

• 9 to 1 Gear Reduction

– By putting two 3:1 gear reductions in series—or

“ganging” them—a 9:1 gear reduction is created

– The effect of each pair of reductions is multiplied to

achieve the overall reduction

– Key to achieving useful power from a DC motor

– With this gear reduction, the high speed and low

torque is transformed into usable speeds and powerful

torques

3 turns of left gear (8 teeth) to cause 1 turn

of right gear (24 teeth)

8-tooth gear on left; 24-tooth gear on right

Exercise: calculate effective gear

ratio of HandyBug’s drive train

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

16

LEGO Design

Structure

Unit LEGO brick

i is a conversion factor between

“LEGO lengths” and standard

units

6/5 height full-size brick

Stack of Five LEGO Bricks =

Six-Long LEGO Beam

Three of the thin LEGO plates

are equal in height to the unit brick

2/5 height thin plate Two-Unit and Four-Unit

Vertical LEGO Spacings

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

17

LEGO Design

Structure

Sturdy LEGO

construction Black peg is slightly larger;

fits snugly

Gray peg rotates freely

Square Corners: use 2x plates

rather than 1x ones

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

18

LEGO Design

Gearing

The 8–tooth, 24–tooth, and 40– tooth round

gears all mesh properly along a horizontal beam

because they have “half unit” radii. The 8–

and 24– tooth gears are meshed horizontally at

two units, and vertically.

The 16–tooth gear has a radius of 1 LEGO unit, so

two of them mesh properly together at a spacing of

two units. Since an 8– and 24– tooth gear also mesh

at two-unit spacing, these respective pairs of gears

can be swapped for one another in an existing

geartrain.

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

19

LEGO Design

Gearing

A five-stage reduction using 8– and 24–tooth gears

creates a 243-to-1 reduction in this sample LEGO

geartrain. Note the need for three parallel planes of

motion to prevent the gears from interfering with one

another. Four 2x3 LEGO plates are used to hold the

beams square and keep the axles from binding.

• Standard 1-LEGO-long stop bush (upper axle,

front) is not the only part that can act as a bushing

(axle holder)

• Small pulley wheel (middle axle) acts as a half-

sized spacer—it also grabs tighter than the full bush

• Bevel gear (upper axle, back) makes a great

bushing

• Nut-and-bolt parts (lower axle) can be used to

make a tight connection

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

20

LEGO Design

Chain Links and Pulleys

Chain links can be an effective way to deliver large

amounts of torque to a final drive, while

providing a gear reduction if needed. Chain link

works best at the slower stages of gearing, and with a

somewhat slack link-age. Use the larger gears—the

8–tooth one won’t work very well.

There are three sizes of pulley wheels:

• Tiny one, which doubles as a stop bush

• Medium-sized one, which doubles as a tire hub

• Large-sized one, which is sometimes used as a

steering wheel in official LEGO plans

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

21

LEGO Design

Crown and Bevel Gears

The 8–tooth gear, in conjunction with the

24-tooth crown gear, is used to change the

axis of rotation in a gear train. In this

instance, the configuration provides for a

vertical shaft output. Horizontal output

also possible.

The bevel gears are used to change

the angle of rotation of shafts in a

gear train with a 1:1

ratio. In this case, they are used to

effect a change in the horizontal

plane.

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

22

LEGO Design

Worm Gear

The worm gear is valuable because it acts

as a gear with one tooth: each revolution

of the worm gear advances the round gear

it’s driving by just one tooth. So the worm

gear meshed with a 24-tooth gear yields a

24:1 reduction. The worm gear, however,

loses a lot of power to friction, so it may not

be suitable for high performance, main

drive applications.

• Bottom is the basic worm gear, two

horizontal LEGO units in length

• Top is an unsuccessful attempt to put

two worm gears on the same shaft

• Middle is the successful attempt

When placing multiple worm gears on a

shaft, the trick is to try all four possible

orientations to find the one that works.

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

23

LEGO Design

Gear Rack

The gear driving the gear rack is often referred to as

the “pinion,” as in “rack-and-pinion steering,” which

uses the transverse motion of the gear rack to orient

wheels. The 8–tooth gear is a good candidate to drive

the rack be-cause of the gear reduction it achieves—one

revolution of the gear moves the rack by eight teeth.

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

24

LEGO Design

Geartrain Design Tips

• Work backward from the final drive, rather than forward from the motor

– Usually there is a fair bit of flexibility about where the motor is ultimately mounted, but much less in the

placement of drive wheels or leg joints

– Start by mounting the axle shaft that will carry the final drive, put a wheel and gear on it, and start working

backward, adding gearing until there is enough, and finally mount the motor in a convenient spot

• Do not forget about the role of the tire in determining the relationship between the rotational speed of the

final drive axle and the linear speed that is achieved

– Small tires act as gear reductions with respect to large tires, and this may have an effect on how much gear

reduction is necessary

• If geartrain performing badly

– Make sure the stop bushes are not squeezing too hard—there should be some room for the axles to shift back and

forth in their mounts

– Check that all beams holding the axles are squarely locked together

• To test a geartrain, try driving it backward

– If your geartrain can be readily back-driven, it is performing well

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

25

LEGO Design

LEGO Clichés (from Fred Martin)

On occasion it is necessary to

lock a beam to an axle. This

figure shows how to use a

medium pulley wheel, which

rigidly locks to an axle, to hold

the beam in place.

The special “gear

mounter” piece is an axle

on one side and a loose

connector peg on the other.

It can be used to mount

gears used as

idlers in a gear train —

used simply to transmit

motion or to reverse the

direction of rotation.

This configuration of

parts can be used as a

compact axle joiner.

LEGO now produces a

part designed for this

purpose, but in lieu of

that part, this is a useful

trick.

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

26

LEGO Design

LEGO Clichés (from Fred Martin)

In order to build outward

from a vertical wall of axle

holes, a smaller beam may be

mounted with its top studs in

the holes of the beam wall.

The recommended way to

build outward from

a beam wall is to use the

connector-peg-with-stud

piece, which is a loose-

style connector

peg on one end and a top

stud on the other.

The full-size stop bush

can be used in one

orientation to hold an

axle through a plate

hole so that the axle can

freely rotate.

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

27

LEGO Design

LEGO Clichés (from Fred Martin)

By using the stop bush to hold

an axle in place between two

plates, a vertical axle mount

can easily be created. Depending

on the orientation of the stop

bush, it can be made to either

lock the axle in place or allow it

to rotate freely.

In the other orientation, the

stop bush locks between

four top studs, perfectly

centered over

the axle holes in flat plates.

This allows the

stop bush to lock a plate to

an axle.

The “toggle joint” can be

used to lock two axles at a

variety of odd angles. The

short axle running through

the two toggle joints is

equipped with stop bushes

on either end to hold the

joint together.

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

28

LEGO Design

LEGO Clichés (from Fred Martin)

Here the toggle joint is used to

connect two axles at right

angles. The small pulley wheel

is deployed on the axle that runs

through the toggle joint to either

lock the axle or allow it to

rotate.

Several clichés are used to

construct this caster wheel.
The “piston rod” part is used twice

in each mechanism to create a LEGO leg.

By using a chain drive or gear linkage to

lock legs in sync, a multi-legged creature

can be designed.

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

29

LEGO Design

LEGO Clichés (from Fred Martin)

Robot Gripper Using Gear Rack Robot Gripper Using Worm Gear

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

30

Switch Sensors

• Contact (touch) Sensing

– Switch sensors can be used to indicate when a

mechanism has made physical contact with another object

–e.g., it can trigger when a robot’s body runs into a wall,

or when a robot’s gripper closes around a cube

• Limit Sensing

– Related to simple contact sensing, a limit sensor detects

when a mechanism has moved to the end of its range of

travel, signaling to the control program that the motor

should be turned off

• Shaft Encoding

– As with past instances of shaft encoding, an axle may be

fitted with a contact switch that clicks once per revolution.

Software that counts the clicks can then determine the

amount and speed of the axle’s rotation.

Various Switches

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

31

Switch Sensors

Microswitches typically have three terminals:

• “NO” (normally open)

• “NC” (normally closed)

• “C” (common)

Common terminal may connect to either of the other two

terminals, depending on whether or not the switch is

pressed. In the relaxed, un-pressed state, the common

terminal is connected to the normally closed contact;

when pressed, the common terminal moves to the

normally open contact.

A pushbutton switch is simpler:

• Normally open pushbutton: when the

switch is pressed, the two contacts are

connected.

• Normally closed pushbuttons also exist,

but these are less common.

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

32

Switch Sensors

Switch Sensor Applications

Left- and Right-Hand Switch Construction

Design for a Simple Touch Bumper

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

33

Switch Sensors

Switch Sensor Applications

HandyBug Bumper Design

• rotational and sliding pivot points allow the

bumper to react to pressure from any forward

direction

Design for Bi-Directional Touch Bumper
• can detect pressure from front or behind

• movement in either direction pushes levered arm away from

contact sensor

• rubber bands pull arm back onto switch when pressure is released

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

34

Light Sensor Circuits

Single Photocell Circuit

Photocell Voltage Divider Circuit

• Photocell element is connected to the circuit ground

and the HB’s sensor input line via a voltage divider

circuit

• Vsens , resulting sensor voltage, varies as to the ratio
between 47K" and Rphoto

– When the photocell resistance is small (brightly

illuminated), the Vsens ~= 0v

– When the photocell resistance is large (dark),

Vsens ~= +5 v

– Continuously varying range between extremes

• Sensor will report small values when brightly

illuminated and large values in the dark

• May invert the sense of the readings from the HB’s

analog ports:

int light(int port) {return 255 -

analog(port);}

“dark

sensor”

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

35

Reflective Optosensors

• Active Sensor - includes own source of

quantity being detected

• Commercial ones use infrared light; include

filter to pass infrared wavelengths while

blocking visible light

• Reflective optosensor includes a source of

light (emitter LED) and a light detector

(photodiode or phototransistor)

– Arranged in a package so that light from

emitter LED bounces off of an external object

(e.g., the black line on a surface) and is reflected

into the detector

– Depending on the reflectivity of the surface,

more or less of the transmitted light is reflected

into the detector

– Quantity of light is reported by the sensor

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

36

Reflective Optosensors

Applications

Object detection. Reflectance sensors may be used to measure the presence of an object in the

sensor’s field of view. In addition to simply detecting the presence of the object, the data from a

reflectance sensor may be used to indicate the object’s distance from the sensor. These reading are

dependent on the reflectivity of the object, among other things—a highly reflective object that is farther

away may yield a signal as strong as a less reflective object that is closer.

Surface feature detection. Reflective optosensors are great for detecting features painted, taped, or

otherwise marked onto the floor. Line-following using a reflective sensor is a typical robot activity.

Wall tracking. Related the object detection category, this application treats the wall as a continuous

obstacle and uses the reflective sensor to indicate distance from the wall.

Rotational shaft encoding. Using a pie-shaped encoder wheel, the reflectance sensor can measure

the rotation of a shaft (angular position and velocity).

Barcode decoding. Reflectance sensors can be used to decode information from barcode markers

placed in the robot’s environment.

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

37

Shaft Encoding

• Use Break-Beam Sensors

• Shaft encoder measures the angular

rotation of an axle, reporting position and/or

velocity information

• Example: speedometer, which reports

how fast the wheels are turning; odometer,

which keeps track of the number of total

rotations Single-Disk Shaft Encoder

A perforated disk is mounted on the shaft and

placed between the emitter–detector pair. As

the shaft rotates, the holes in the disk chop

the light beam. Hardware and software

connected to the detector keeps track of these

light pulses, thereby monitoring the rotation

of the shaft.

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

38

Shaft Encoding

Measuring Velocity

• Driver routines measure rotational velocity as well as position

– Subtract difference in the position readings after an interval of time has elapsed

• Velocity readings can be useful for a variety of purposes

– Robot that has an un-powered trailer wheel with a shaft encoder can easily tell whether it is

moving or not by looking at encoder activity on the trailer wheel. If the robot is moving, the trailer

wheel will be dragged along and will have a non-zero velocity. If the robot is stuck, whether or not

its main drive wheels are turning, the trailer wheel will be still.

• Velocity information can be combined with position information to perform tasks like causing a

robot to drive in the straight line, or rotate a certain number of degrees. These tasks are inherently

unreliable because of mechanical factors like slippage of robot wheels on the floor and backlash in

geartrains, but to a limited extent they can be performed with appropriate feedback from shaft encoders.

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

39

Shaft Encoding

Reflective Optosensors as Shaft Encoders

• It’s possible to build shaft

encoders by using a reflective

optosensor to detect black and white

markings on an encoder wheel

• Wheels can be used with any of

the reflective optosensor devices, as

long as the beam of light they

generate is small enough to fit

within the black and white pie-

shaped markings

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

40

Infrared Sensing

• Simple IR sensing:

– Reflectivity sensing or break-beam sensing

– Exactly analogous to using a light bulb,

candle flame, or other constant light source

with a visible-light photocell sensor

– Sensor simply reports the amount of overall

illumination, including both ambient lighting

and the light from light source

• Advantage over resistive photocells:

– Quicker to respond to light changes, so they

are well-suited to the break-beam shaft

encoding application

– More sensitive, so with proper shielding

from ambient light sources, can detect small

changes in lighting levels.

Sharp Demodulators ($3)

More powerful way to use infrared sensing:

• By rapidly turning on and off the source of

light, the source of light can be easily picked up

from varying background illumination—even if

the actual amount of modulated light is very

small

• Great insensitivity to background ambient

lighting can be accomplished

• This is how tv remote controls work; infrared

LEDs in the remote control transmit rapid flashes

of light, which are decoded by a device in the tv

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

41

Infrared Sensing

• Basic principle: by flashing a light source at

a particular frequency (modulation), the

flashes of light at that same frequency can

be detected (demodulation), even if they

are very weak with respect to overall

lighting conditions

• Demodulator is tuned to a specific

frequency of light flashes

– Commercial IR demodulators range

32 - 45 KHz; high enough to avoid

interference effects from common

indoor lighting sources, like florescent

lights

• Note negative true logic

• In practice, it takes 5-10 cycles for

demodulation

Modulation and Demodulation

Idealized Response of Infrared Demodulator

The upper graph indicates an infrared LED being turned on in

two successive bursts. Each burst consists of a number of very

rapid on-off pulses of light. The lower graph shows the output

from the IR detector. During the rapid on-off bursts, the

demodulator indicates “detection”; in between the bursts, the

demodulator sees no IR activity, and indicates “no detection.”

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

42

Infrared Sensing

Proximity Sensing

• Using the simple modulated output of an IR LED and an IR

demodulator, it’s possible to build an effective proximity sensor

• Light from the IR emitter is reflected back into detector by a

nearby object, indicating whether an object is present (just like the

simple (not modulated) reflectance sensors)

• LED emitter and detector are pointed in the same direction, so that

when an object enters the proximity of the emitter-detector pair,

light from the emitter is reflected off of the object and into the

detector

• This kind of simple true-false proximity sensing is an ideal

application for modulated/demodulated IR light sensing

• Compared to simple reflected light magnitude sensing, modulated

light is far less susceptible to environmental variables like amount

of ambient light and the reflectivity of different objects

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

43

Infrared Communications

Bit Frames:
• Each bit takes the same amount of time to transmit

• Synchronization is based on the falling edge of the

Start bit; after that, following bits are determined by

sampling the signal in the middle of the time period

when the bit is valid (i.e., the bit frame)

• Method is good when the waveform can be

reliably transmitted across a wire or other

communications medium

• Used for standard computer/modem

communication

Serial Data Transmission Methods

Bit Intervals:
• Amount of time between falling edges determines

whether a bit is 0/1

– 0 represented by short interval

– 1 represented by longer interval

• There is a short interval at the beginning to act as a start

of frame, and a transition at the end to allow the last bit

to be specified

• This method is good when it is difficult to control the

exact shape of the waveform across the

communications path

• Ideal for IR modulation/demodulation

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

44

Sensor Data Processing

• A big part of getting robot programs to function as

intended lies in the interpretation of sensor data.

• If a robot’s sensors not are performing or

responding to the world as expected, it will be very

difficult to have the robot react properly.

• In this section, we will explore a set of issues

relating to the interpretation of sensor data, including

– sensor calibration techniques

– sensor data filtering techniques
void line_follow() {

 while (1) {

 waddle_left();

 waituntil_on_the_line();

 waituntil_off_the_line();

 waddle_right();

 waituntil_on_the_line();

 waituntil_off_the_line();

 }

}

Reference Activity: Line Following

• HandyBug with one downward-facing

reflectance sensor

• Robot waddles back and forth across line,

switching direction each time it has

completely crossed over

• How do sensor functions work?

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

45

Sensor Data Processing

• Simplest, effective way to interpret sensor values is

with fixed thresholding

• Sensor reading is compared with a setpoint value. If

the reading is less than the setpoint, then the robot is

assumed to be in “state A” (e.g., “on the line”); if the

reading is greater than the setpoint, then the robot is in

“state B” (“off the line”).

• Process converts a continuous sensor reading—like

a light level—to a digital state, much like a touch

sensor is either pressed or not.

• Line-following: suppose the downward-facing

reflective light sensor yields a reading of about 10

when aimed at the floor, and 50 when aimed at the

line. It would then make sense to choose the midpoint

value of 30 as the setpoint for determining if the robot

is on the line or not.

• What if the setpoint value needs to change

under different operating conditions?

• Line Following: setpoint value is hard-coded

into two different routines—an approach that

clearly does not scale as the program complexity

increases.

• Better way: break out threshold setpoints as

named variables or constants, and then refer to

them by name in the actual routines

• When the setpoint needs to be changed, there is

one clearly specified point in the program for

this to be done

Fixed Thresholding Parameterized Fixed Thresholding

int LINE_SETPOINT= 30;

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

46

Sensor Data Processing

• Sensor data is not extremely reliable

• Line-following: variances in ambient lighting

and surface texture of the floor can easily create

unexpected and undesired glitches in sensor

readings.

– Bump on floor may spike the readings

– Shiny spots on line may reflect as well

as the floor, dropping the sensor readings

up into the range of the floor

• Solution: two setpoints can be used

– Imposes hysteresis on the interpretation

of sensor values, i.e., prior state of

system(on/off line) affects system’s

movement into a new state

Thresholding with Hysteresis Line Following performance run :

Setpoint =20

int LINE_SETPOINT= 35;

int FLOOR_SETPOINT= 10;

void waituntil_on_the_line() {

 while (line_sensor() < LINE_SETPOINT);

}

void waituntil_off_the_line() {

 while (line_sensor() > FLOOR_SETPOINT);

}

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

47

Sensor Data Processing

• Install manual calibration

routines

• Robot is physically positioned

over the line and floor and a

threshold setpoint is captured

• Calibrate () guides process of

setting threshold setpoints for

line/floor

• Huge improvement over fixed

and hard-coded calibration

methods

• Declare setpoint variables as

persistent and use calibration

routine

Calibration by Demonstration
int LINE_SETPOINT= 100;

int FLOOR_SETPOINT= 100;

void main() {

 calibrate();

 line_follow();

}

void calibrate() {

 int new;

 while (!start_button()) {

 new= line_sensor();

 printf("Line: old=%d new=%d\n", LINE_SETPOINT,new);

 msleep(50L);

 }

 LINE_SETPOINT= new; /* accept new value */

 beep(); while (start_button()); // debounce button press

while (!start_button()) {

 new= line_sensor();

 printf("Floor: old=%d new=%d\n",FLOOR_SETPOINT,new);

 msleep(50L);

 }

 FLOOR_SETPOINT= new; /* accept new value */

 beep(); while (start_button()); // debounce button press

}

2007.07.15 Based on Fred Martin's book, Copyright

Prentice Hall 2001

48

Sensor Data Processing

• Technique whereby sensor thresholds may be determined automatically, and can dynamically

adjust to changing operating conditions. This and related methods have the opportunity to make

robot behavior much more robust in the face of the variability and uncertainty of the real world.

• Line Following: Add code to automatically calculate a midpoint between the on-going

maximum and minimum values, and use this midpoint as the line threshold.

– Does not work well in practice: maximum values recorded as robot passes over line are

much higher than typical line values. Robot does not see line. Routine fails.

• Problem: just having minimum and maximum sensor values is not enough to effectively

calculate a good threshold.

• Solution: What is needed is a whole history of past sensor values, allowing the calculation of

(for instance) the average sensor reading.

• Driver code available: install an interrupt routine that periodically samples the sensor values

and stores them in a buffer. Other functions, such as the current maximum or current average

functions, iterate through the stored values to calculate their results.

Sensor Histories

