
Team Chaos 2004

K. LeBlanc1, S. Johansson2, J. Malec3, H. Mart́ınez4, and A. Saffiotti1

1 Center for Applied Autonomous Sensor Systems
Örebro University, S-70182 Örebro, Sweden

2 Department of Software Eng. and Computer Science
Blekinge Institute of Technology, S-37225 Ronneby, Sweden

3 Department of Computing Science
Lund University, S-22100 Lund, Sweden

4 Department of Information and Communication Engineering
University of Murcia, E-30100 Murcia, Spain

Abstract. “Team Chaos” (formerly Team Sweden) is a multi-university
team which has been competing in the 4-legged robot league of RoboCup
since 1999. This paper shortly describes the Team Chaos entry for RoboCup
2004. The most distinctive points of our team are: (i) a general, prin-
cipled architecture for autonomous systems, (ii) hierarchical fuzzy be-
haviors for fast incremental development of robust behaviors, (iii) fuzzy
landmark-based localization for efficient, fault-tolerant self-localization.
The main improvements for 2004 are: (i) improved vision-based percep-
tion, (ii) natural landmarks (corners on field) for self-localization, and
(iii) improved cooperative perception and behavior.

1 Introduction

“Team Chaos” is a cooperative effort which involves universities in Sweden and
abroad. In 2004, the sites of activity are: Örebro University (coordinating node),
Lund University, the Blekinge Institute of Technology, and the University of
Murcia in Spain. Team Chaos is a follow-up of Team Sweden, which was created
in 1999 and has participated in the 4-legged league of RoboCup ever since. The
distributed nature of the team has made the project organization demanding
but has resulted in a rewarding scientific and human cooperation experience.

We had two main requirements in mind when we started to work on RoboCup.
First, we wanted our entry should effectively address the challenges of uncer-
tainty in this domain, where perception and execution are affected by errors and
imprecision. Second, it should illustrate our research in autonomous robotics, by
incorporating general techniques that can be reused on different robots and in
different domains.

While the first requirement could have been met by writing ad hoc compe-
tition software, the second one led us to develop principled solutions that drew
upon our current research in robotics, and pushed it further ahead.

Team Leader: Kevin LeBlanc (kevin.leblanc@aass.oru.se)
Web (includes publications): http://www.aass.oru.se/Agora/RoboCup/



Commander

lo
w

er
 la

ye
r

m
id

dl
e 

la
ye

r
hi

gh
er

 la
ye

r

Other robots Other robots

Team Communication Module

Perceptual
Anchoring
Module

Global
Map

Situation
Assessment
Module

Hierarchical
Behavior
Module

intentionspositions

status

locomotion
commands

head
commands odometry

global
state

state
local

perceptual
needs

rolelandmarks

AIBO robot
motor commandssensor data

ball

Fig. 1. The variant of the Thinking Cap architecture used by Team Chaos.

2 Architecture

Each robot uses the layered architecture shown in Fig. 1. This is a variant of
the Thinking Cap architecture. 5 The lower layer (implemented in the CMD, or
Commander) provides an abstract interface to the sensori-motoric functionali-
ties of the robot. The middle layer maintains a consistent representation of the
space around the robot (through the PAM, or Perceptual Anchoring Module),
and implements a set of robust tactical behaviors, implemented in a hierarchi-
cal manner (in the HBM, or Hierarchical Behavior Module). The higher layer
maintains a global map of the field (kept in the GM, or Global Map), and makes
real-time strategic decisions based on the current situation (situation assessment
and role selection is performed in the SAM, or Situation Assessment Module).
Radio communication is used to exchange position and coordination information
with other robots (via the TCM, or Team Communication Module).

5 The Thinking Cap is an framework for building autonomous
robots jointly developed by Örebro University and the Univer-
sity of Murcia. See http://www.aass.oru.se/~asaffio/Software/TC/

http://ants.dif.um.es/~humberto/robots/tc2/.



3 Motion control

The Commander module accepts locomotion commands from the HBM in terms
of linear and rotational velocities, and translates them to an appropriate walking
style. This simplifies the writing of motion behaviors, which are easily portable
between different (legged and/or wheeled) platforms. The Commander also im-
plements several types of kicks. This module also controls head movement, and
implements scan and look commands.

Our walking styles are based on the code for parametric walk created by
the University of New South Wales (UNSW)[3], suitably re-tuned to best fit our
needs. In addition, we have implemented a number of different kicks, as well as
combined grab-and-kick and turn-and-kick motions.

4 Behaviors and behavior selection

The HBM implements a set of navigation and ball control behaviors realized
using fuzzy logic techniques, and organized in a hierarchical manner [4, 6]. For
instance, the following set of fuzzy rules implement the “GoToPosition” behavior.

IF (AND(NOT(PositionHere), PositionLeft)) TURN (LEFT);

IF (AND(NOT(PositionHere), PositionRight)) TURN (RIGHT);

IF (OR(PositionHere, PositionAhead)) TURN (AHEAD);

IF (AND(NOT(PositionHere), PositionAhead)) GO (FAST);

IF (OR(PositionHere, NOT(PositionAhead))) GO (STAY);

More complex behaviors are achieved by combining simpler ones using fuzzy
meta-rules which activate concurrent sub-behaviors. Behaviors also incorporate
perceptual rules used to communicate the perceptual needs of active behaviors
to the PAM.

5 Roles and role selection

Each robot can assume one of four different roles: attack, defend, support or
ball-control. The first three roles are chosen by the SAM module depending on
the current field situation; more than one robot can have the same role. Role
selection is relatively consistent since the robots share the same information
about the positions of objects in the field (this is explained in the section on
information sharing). The fourth role, ball-control, is negotiated between the
robots using wireless communication; at most one robot can be in ball-control
mode at any time. There is also a pre-empting mechanism in place, to avoid
having a robot which can not reach to ball prevent others from getting it; this
also avoids situations where a robot who is obviously in a better position with
respect to the ball is not able to take advantage of that position.



6 Perception

The locus of perception is the PAM, which acts as a short term memory of the
location of the objects around the robot. At every moment, the PAM contains
the best available estimates of the positions of these objects. Estimates are up-
dated by a combination of three mechanisms: by perceptual anchoring, whenever
the object is detected by vision; by odometry, whenever the robot moves; and
by global information, whenever the robot re-localizes. Global information can
incorporate information received from other robots (e.g. the ball position).

The PAM also takes care of selective gaze control, by moving the camera
according to the current perceptual needs, which are communicated by the HBM
in the form of a degree of importance attached to each object in the environment.
The PAM uses these degrees to guarantee that all currently needed objects are
perceptually anchored as often as possible (see [5] for details).

Object recognition in the PAM relies on three techniques: color segmentation
based on a fast region-growing algorithm; model-based region fusion to combine
color blobs into features; and knowledge-based filters to eliminate false positives.
For instance, a yellow blob over a pink one are fused into a landmark; however,
this landmark may be rejected if it is, for example, too high or too low relative
to the field.

This year, significant improvements have been made to the PAM. Previously,
seeds for the growing algorithm were obtained by hardware color segmentation
on YUV images, taken directly from the camera. Seeds are now chosen by per-
forming software thresholding on the images, which are first converted to HSV.
This allows for a very portable and robust color segmentation, which works even
in the face of changing lighting conditions.

In addition to the normal objects in the RoboCup domain, we also detect
natural features, such as field lines and corners. Currently we use corners com-
prised of the (white) field lines on the (green) carpet. Corners provide useful
information, since they can be classified by their type, and they are relatively
easy to track (given the small field of view of the camera). Natural feature detec-
tion is performed using three techniques: corner detection based on changes in
the direction of the brightness gradient; color-based filtering for filtering out cor-
ners that aren’t on the carpet; and corner grouping for associating the detected
corners with the natural features for which we are looking ([8]).

The first step in our algorithm is to segment the raw image using a simple
thresholding algorithm. The result of this step on a sample image is shown in
Fig. 2(b). The next step is to apply the Seed Region Growing (SRG) algorithm,
which starts from a number of seed pixels (which are “safe” pixels of each color),
and grows the region until a discontinuity in the color space is reached. The
result of the growing step is shown in Fig. 2(c). Corners are detected using a
gradient-based method, and a color filter is applied to determine which corners
are on the carpet. Fig. 2(d) shows the corners obtained from the gradient-based
method (in white), and those which survived the color filtering process (in black).



(a) (b) (c) (d)

Fig. 2. (a) Raw image. (b) Segmented image (software thresholding). (c) Segmented
image after region growing. (d) Gradient-based corner detection (white) and corners
after color filtering (black).

7 Self-Localization

Self-localization in the 4-legged robot league is a challenging task: odometric in-
formation is extremely inaccurate; landmarks can only be observed sporadically
since a single camera is needed for many tasks; and visual recognition is subject
to unpredictable errors (e.g., mislabeling). To meet these challenges, we have
developed a self-localization technique based on fuzzy logic, reported in [1]. This
technique needs only qualitative motion and sensor models, can accommodate
sporadic observations during normal motion, can recover from arbitrarily large
errors, and has a low computational cost. The result of self-localization is used to
make strategic decisions inside the SAM, and to exchange information between
robots in field coordinates.

(a) (b)

Fig. 3. Self localization grids.



(a) (b)

Fig. 4. Position grid induced by observation of two different types of corners. Due to
symmetry of the field, the center of gravity is close to the middle of the field.

(a) (b) (c)

Fig. 5. Belief induced by the observation of (a) a net, (b) the first feature, and (c) the
second feature. Initially the position of the robot is unknown (belief distributed along
the full field).



This technique, implemented in the GM module, relies on the integration of
approximate position information, derived from observations of landmarks and
nets, into a fuzzy position grid — see Fig. 3. To include own motion information,
we dilate the grid using a fuzzy mathematical morphology operator. Using this
technique, our robots can maintain a position estimate with an average error of
approximately ±20 cm and ±10◦ during normal game situations. Localization is
done continuously during normal action. Stopping the robot to re-localize is only
needed occasionally (e.g. in case of major errors due to an undetected collision).

The extension to our method which includes natural features as landmarks is
described in [8]. The extended technique allows the robot to localize using only
the nets and natural features of the environment (i.e. corners).

The observation of a landmark constrains the possible robot positions to be
on a partial circle around the observed landmark (see Fig. 3 (b)). However, since
our feature detector doesn’t provide unique identifiers for corners, the possible
robot positions induced by a corner observation is the union of several circles,
each centered around a corner in the map. This can be seen in Fig. 4. It should be
noted that the ability to handle this ambiguity efficiently is a primary advantage
of our representation. The data association problem is automatically addressed
in the fusion process (Fig. 5). Data association is a difficult problem, and many
existing localization techniques are unable to adequately address it.

8 Information sharing

We use radio communication to exchange information between robots about the
positions of objects in the field, in particular the ball. Information from other
robots is fused using an original approach based on fuzzy logic, which is reported
in [2]. In our approach we see each robot as an expert which provides unreliable
information about the locations of objects in the environment. The information
provided by different robots is combined using fuzzy logic techniques, in order
to achieve agreement between the robots.

This contrasts with most current techniques, many of which average the in-
formation provided by different robots in some way, and can incur well-known
problems when information is unreliable. Our method strives to obtain a con-
sensus between data sources, whereas most other methods try to achieve a com-
promise or tradeoff between sources.

One of the major innovations of this approach is that it consistently maintains
and propagates uncertainty about the robots own position into the estimates of
object positions in the environment. Moreover, in constrast to many existing
approaches, it does not require high accuracy in self-localization.

The schema used for cooperative ball localization is shown in Fig. 6. The
self position grids for both robots are shown on the left, the ball location grids
are shown in the middle, and the result of the fusion of the ball grids is shown
on the right. Darker cells have higher degrees of possibility. The two triangles
represent the robot’s (defuzzified) estimates of their own positions. The yellow
circles show the point estimates of the ball position.



R
ob

ot
 1

Object location grid 2Self−location grid 2

Self−location grid 1 Object location grid 1
R

ob
ot

 2

Fusion grid

Fusion grid

Fig. 6. Schema used for information fusion.

Fig. 7. Combining two imprecise estimates into an accurate one.

An example of our method can be seen in Fig. 7. The left window shows the
ball grid resulting from the sharing of information. The three small circles near
the bottom represent the point estimates of the ball position according to each
robot (lighter circles) and as a result of the fusion (darker circle). The other two
windows show the self-localization grids for robots 1 and 2, respectively. In this
example, both robots happen to have a rather poor self-localization, which can
be seen from the blurring of the two individual self-grids. Correspondingly, the
individual estimates for the ball positions are relatively inaccurate, and quite
different from each other. When intersecting the fuzzy sets, however, we obtain
a fairly accurate fused estimate of the ball position (left window). Note that
just averaging the estimates of the ball position produced by the two robots
independently would result in an inaccurate estimate of the ball position.



9 Development Tools

Team Chaos is developing a suite of tools which can be used to tele-operate
the robots, as well as debug, monitor, calibrate and tune the Team Chaos im-
plementation. These tools allow online interaction with the various modules of
the architecture. Communication between the robot and the host machine is
implemented via a custom UDP protocol, which allows the user to dynamically
modify various parameters of the system. This same protocol will also be used
for information sharing, which is currently done through the TCP gateway. The
configuration tool has proven to be very useful for calibrating the vision system,
and for tuning various other sub-systems, for example the walking styles and
kicks.

10 Conclusion

The general principles and techniques developed in our research have been suc-
cessfully applied to the RoboCup domain. In particular, fuzzy logic was beneficial
in writing robust behaviors, providing reliable self-localization, and achieving ef-
fective cooperative perception.

Acknowledgements

Team Chaos gratefully acknowledges the support of the Swedish KK founda-
tion, the Spanish Seneca Foundation, “El Dulze” (Murcia, Spain), and the four
participating universities.

References

1. P. Buschka, A. Saffiotti, and Z. Wasik. Fuzzy landmark-based localization for a
legged robot. IEEE/RSJ Int. Conf. on Intell. Robots and Systems (IROS), 2000.

2. J.P. Canovas, K. LeBlanc, and A. Saffiotti. Robust multi-robot object localization
using fuzzy logic. Proc. of the Int. RoboCup Symposium, Lisbon, PT, 2004. To
appear.

3. B. Hengst, B. Ibbotson, P. Pham, and C. Sammut. Omnidirectional locomotion
for quadruped robots. Birk, Coradeschi, Tadokoro (eds) RoboCup 2001, Springer-
Verlag, 2002.

4. A. Saffiotti. Using fuzzy logic in autonomous robot navigation. Soft Computing,
1(4):180–197, 1997. Online at http://www.aass.oru.se/Agora/FLAR/.

5. A. Saffiotti and K. LeBlanc. Active perceptual anchoring of robot behavior in a
dynamic environment. IEEE Int. Conf. Robotics and Automation (ICRA), 2000.

6. A. Saffiotti and Z. Wasik. Using hierarchical fuzzy behaviors in the RoboCup
domain. In: Zhou, Maravall, Ruan (eds) Autonomous Robotic Systems, Springer-
Verlag, 2002, pp. 235-262.

7. Z. Wasik and A. Saffiotti. Robust color segmentation for the RoboCup domain.
IEEE Int. Conf. on Pattern Recognition (ICPR), 2002.

8. D. Herrero-Perez, H. Martinez-Barbera, and A. Saffiotti. Fuzzy Self-Localization
using Natural Features in the Four-Legged League. Proc. of the Int. RoboCup
Symposium, Lisbon, PT, 2004. To appear.


