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Abstract 
This Generic Layer Architecture (GLA) has been created to deal with problems of reasoning in conventional 
process control.  It is composed of a process layer, dealing with the external environment, a rule layer, that 
provides an inference engine associated with a system state, and an analysis layer responsible for planning and 
reasoning.  This results in a hybrid controller that enhances conventional modes of operation by the capability 
of taking intelligent decisions.  In this work, we are extending the concept of GLA by adding into the picture 
three new environments, to make it suitable for purposes of modeling and simulation.  The broader context 
includes a user interface, network communication and image database, where GLA becomes a core element of 
a sophisticated real-time information processing system.  The extended architecture is applied to a simulation 
problem from air traffic control - reasoning about, predicting and detecting collisions.  In this problem we focus 
on investigation of timing estimates on the reasoning process to meet hard deadlines in the problem domain.   

 

Introduction 
By the term embedded systems one usually refers to 
computer programs embedded in physical systems. They 
provide control to mechanical, chemical and other kinds of 
plants. The design and implementation of embedded 
systems usually involve the contribution from both control 
and computer engineers (Sanz and Zalewski, 2003). 
Simple embedded systems might be designed and 
implemented using rather straightforward approach. The 
dynamics of the system in hand needs to be studied and a 
control algorithm may be inferred possibly using some 
appropriate tool, such as differential equations or a Laplace 
transform. An implementation of such algorithm amounts 
to choosing an appropriate execution model (usually 
periodic computations) and a computer platform, and then 
generating code for that platform that provably (this issue 
is unfortunately often omitted) implements the algorithm. 
As systems become more and more complex, a plant 
cannot be any longer described as a set of (linear) 
differential equations. Firstly, such a description would 

take too much time to create; secondly, it would be of no 
use (due to complexity) for the purpose of creating a 
control algorithm. In such cases techniques like 
hierarchical description and modularization come to use. 
One of the modern ways to approach the problem is to use 
the hybrid system models: a system is described by a 
family of modes, where each mode is described by a set of 
differential equations (Grossman et al., 1993).  The 
supervisory control consists of switching among modes, 
depending on the state of the plant.  
Such systems are called hybrid, since they consist of 
continuous subsystems and a discrete supervisory 
structure. To implement hybrid controllers one needs to 
provide the algorithms for each control mode and the 
discrete controller to perform the mode switching and 
handle the interaction between the continuous and the 
discrete control. 
Implementing hybrid controllers using languages like C or 
Ada is rather cumbersome since they offer very poor 
support for algorithms expressed using state machines. 
Software support and computer aided tools are therefore 



necessary to assist in the design of hybrid controllers.  One 
such tool is the Generic Layered Architecture, GLA, 
(Morin et al., 1992) for implementing hybrid controllers in 
software. The languages and tools developed for the 
architecture support both periodic and discrete 
computations required by hybrid controllers. 
However, the software development tools are only a part of 
a larger picture - first the software needs to be specified 
and designed. Even better if this specification could be 
formal, so that validation and verification techniques could 
be used with their full potential, yielding provably correct 
embedded system.  But, in order to get confidence in 
formal tools, one needs a faithful model of a (hybrid) 
controller and its environment. 
The GLA has been previously used as a modeling tool 
(Malec et al., 1995), however at that time no verification 
support tools have been incorporated in the GLA 
methodology. Due to increasing complexity of considered 
applications, but also due to the availability of the more 
powerful computer technology, the next step towards a 
more powerful modeling and analysis methodology could 
be taken. 
In this paper we describe the extended GLA (eGLA) 
obtained by adding into the picture three new 
environments, to make it more suitable for purposes of 
modeling and simulation.  The broader context follows the 
fundamental principles of designing real-time software 
architectures (Zalewski, 2001) and includes a user 
interface, network communication and image database, 
where GLA becomes a core element of a sophisticated 
real-time information processing system.  The extended 
architecture is applied to a simulation problem from air 
traffic control - reasoning about, predicting and detecting 
collisions.  In this problem we focus on investigation of 
timing estimates on the reasoning process to meet hard 
deadlines in the problem domain. 
The paper is divided as follows. First, the original GLA is 
introduced, together with the associated software and 
formal analysis tools. Then the extensions to the 
architecture are described. Finally, we present the problem 
from air-traffic control and sketch the advantages of using 
eGLA in this context. 

The Generic Layered Architecture 
Our approach to hybrid system design and implementation 
builds on the three-layered software architecture GLA, the 
generic layered software architecture, developed since the 
early nineties (Morin et al., 1992). The architecture differs 
from other layered approaches by grouping similar types of 
computations into layers (shown in Figure 1), as opposed 
to functional decomposition. 
The first layer, called the process layer (PL), is intended to 
host implementations of numerical, periodic tasks, such as 

identification or control.  Data handled by this layer are 
contained in input and output vectors.  Computations have 
the form of mappings from input vectors to output vectors 
and are performed periodically in synchronization with the 
sample rates of sensors. 
 

 
Fig. 1. The generic layered software architecture. 

 
The middle layer is called the discrete response layer 
(DRL), and performs tasks, which are by nature 
asynchronous.  For instance, it computes the response to 
asynchronous events that are recognized in the PL.  An 
example of such a task is the change of control mode (of 
the PL) due to the change of mode in the environment.  
The computational model assumed for the DRL is that of 
discrete event systems (DES).  There exist several 
equivalent DES formalisms: automata, transition systems, 
rule-based systems, etc.  All of them distinguish the 
notions of state and transition as central, although the 
details vary from model to model.  We have used the rule-
based approach for the purpose of specifying knowledge-
based system prototypes. However, this does not preclude 
usage of other approaches (Malec, 1992). 
The top layer is called the analysis layer, because it is 
intended to handle symbolic reasoning tasks such as 
prediction, planning and scheduling, which require 
reference to physical time.  The output of this layer can be 
either control events that guide the DRL in its decisions or 



parameter settings that are passed through the DRL and 
directly affect the operation of the PL. 

Real-Time Software Tools 
This architecture and its implications on software 
engineering issues have been thoroughly studied in 
previous research (Morin et al., 1992).  One of the 
conclusions was that it facilitates prototyping of systems, 
especially because it allows development of generic 
software tools, which can be used for implementation of 
each particular application system.  Along this line 
software kernels, or engines, have been developed for 
construction and implementation of the process layer and 
the discrete response layer.  The set of tools includes: 

• Process Layer executive, PLX (Morin, 1993): a 
multi-threaded time-triggered real-time engine for 
implementation of process layer software. It has 
been implemented on a pSOS based system, on a PC 
running VDX, and recently on a RTLinux-based PC. 
There also exists a simulator of the PLX, which runs 
under Unix; 

• Process Layer Configuration Language, PLCL, 
(Morin, 1991) and   its compiler: a language for 
specification of PL module interconnections and 
interfaces to both sensors and actuators on one side, 
and to the DRL software on the other side. The 
modules themselves are programmed in a subset of 
some conventional language, such as C or C++; 

• Rule Layer executive, RLX (Morin, 1994): an 
engine for implementation of rule-based discrete-
event systems in the DRL. It has been implemented 
on Unix-based machines, and on a PC with VDX 
and RTLinux; 

• Rule Language. RL (Morin, 1994):  a rule-based 
language for declarative specification of discrete-
event control. 

The Process Layer Executive 
The PLX supports the implementation and maintenance of 
the hard real-time parts of the application, which perform 
the transformations of periodic data.  During processing, 
all data are stored in a dual state vector, which is a global 
data structure consisting of an input and an output vector.  
The values in the input vector represent either sensor 
readings or internal state, whereas the values in the output 
vector represent actuator outputs or new internal state. 
A PL application defines a sequence of transformations 
that should be applied to the input vector in order to 
compute a new output vector.  Since sensor values are read 
periodically, the transformations have to be applied with 
the same periodicity.  When the transformations have been 
applied, actuator outputs are flushed to devices and the 

new internal state is installed in the input vector, thus 
establishing the new state of the process layer. 
The PLX engine supervises a PL application, which 
includes managing the internal state, reading sensors and 
writing to actuators using user defined access functions, 
and supervise the execution of the periodical 
transformations of the dual state vector. The PLX supports 
decomposition of the vector into several sub-vectors, each 
of which has its own period, causing transformations to be 
executed at different rates. 
The PLX engine and the PLCL compiler together form the 
basis for a worst-case execution timing analysis of a PL 
application (Morin, 1993). 

The Rule Layer Executive 
The rule layer executive supports the implementation of 
rule-based event processing.  In the RLX the state of the 
world is represented by the time dependent values of a set 
of symbolic state variables called slots.  A slot is updated 
only when its value changes, due to an external event or as 
a result of a change of another slot's value.  Rules specify 
dependencies between slots, and typically have the 
following form: if the value of a particular slot is changed 
in a certain way, then the value of another slot should also 
be changed as a result. Internally, each such change may 
trigger additional rules, which lead to more updates. This 
forward chaining process may continue in several steps. 
We take an object-oriented view of the rule base in the 
sense that we associate a set of rules with each slot.  This 
view facilitates the flexibility and maintainability needed 
for complex systems. 
The RLX tool has two major tasks.  Firstly, it maintains 
the set of slots and rules, which determines the behavior of 
the discrete response layer.  Secondly, it performs the 
forward chaining of rules. The forward chaining is 
typically initiated by an event recognized by the PL. The 
result of the forward chaining process may be the change 
of control algorithm used by some PL process or direct 
output to a device interfaced by the PL. 
The RL is essentially a syntactic variant of a simple 
temporal logic and is used for declarative specification of 
behavior of the discrete response layer. A comprehensive 
set of tools for correctness and consistency checking, for 
timing analysis of RL programs and for code generation 
have been developed during the recent years (Lin and 
Malec, 1998; Lin, 1999a; Lin, 1999b). 

The Extended GLA 
The GLA serves well as a medium for embedded controller 
implementation, but its use as a tool for system modeling 
and analysis, although foreseen from the very beginning 
(Malec et al., 1995), is somehow limited. This is mainly 
due to the lack of support tools that would help the 



engineer to formulate the problem in a language of their 
choice, create a simulation for deeper understanding and 
finally perform analysis using formal and informal tools 
available. In addition to that, the model of the controller 
can be extended to include not only the process aspects 
currently implemented in the Process Layer, but also three 
additional aspects of an architecture a of modern real-time 
controller, as illustrated in Figure 2 (Zalewski, 2001): 

• Graphical User Interface, GUI, allowing the operator 
to interact in real time with the controlled process 
and other components of the control system; 

• Network Communication, handling the connectivity 
among multiple processors or computing nodes 
forming the control system; and 

• Database Interface, allowing for real-time access to 
permanently stored data, such as images in real-time 
simulation, flight plans in air-traffic control, etc. 
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Fig. 2. Architectural template for real-time software design 
Assuming that the GLA’s Process Layer is represented in 
Figure 2 by the Measurement and Control components, 
and the upper GLA layers are embedded in the Processing 
component, the extensions proposed just add independent 
run-time agents, similar to the PL, concentrating on three 
orthogonal I/O functions.  Therefore the extension should 
not be treated as additional layers of the architecture.  The 
division of GLA into three layers, based on the 
computational pattern employed, still holds.  
However, some functionality should be available to the 
end-users if the tool is to fulfil its functions. Thus the 
extensions should be seen as separate functionalities 
available at the lowest layer.  All three extensions, User 
Interface, Network Connectivity, and Image Database, are 
described briefly below.   
User Interface 
No software, whether it’s the controller itself or the tool to 
design it, can expect popularity without an intuitive, easy-
to-use GUI. In an early phase of language design, there are 
usually no additional tools, but before such development 
can be considered mature there needs to be a number of 

user interfaces allowing a non-expert user to exploit all the 
advantages of the tool without making unnecessary 
mistakes.  
GLA was lacking the user interface for years, until very 
recently, when the design and implementation have begun. 
The currently developed interface allows the user to 
develop PL programs and test their timing properties, to 
develop RL programs and run various semantic and timing 
checks, to develop lookahead reasoning in the analysis 
layer and test its connection with the lower layers of the 
software. There exist also tools allowing import of 
specifications done using external formalisms, like e.g., the 
hybrid automata developed using HyTech tool. Moreover, 
a stepping and debugging facility exist for all three layers 
of the software. 
At the tool level, we consider introduction of visualisation 
mechanisms for better illustrating the interplay between the 
discrete and the continuous part of the software, between 
the system and its environment (including other embedded 
software developed using the GLA approach, see below) 
and of the analysis layer software. 
Network Connectivity 
In order to use a GLA-based system in a larger setting, 
including other computer-based control or, especially, 
simulation systems, one needs to provide connectivity to 
the outer world. The natural choice for this is TCP/IP 
networking allowing pieces of software running in 
different systems to communicate with each other 
according to predefined protocols.  
In general, all three levels of the GLA architecture can 
communicate smoothly over the network with other 
networked applications, possibly but not necessarily also 
GLA-based.  However, in this project we are restricting the 
network connectivity to the lowest layer agent responsible 
exclusively for maintaining data communication. This 
allows distributed algorithms, such as large-scale 
simulations, to be easily developed and run. The 
applications described below provide a good example of 
advantages of distributed simulation and power of analysis 
tools available for the GLA. 
Image Database 
Current state-of-the-art simulation and analysis tools 
require access to large databases containing data in various 
formats. A particularly challenging topic is the use of large 
corpora of image data available. We expect that 
applications developed using GLA might exploit such 
databases and therefore the third extension of GLA is the 
mechanism of accessing them.  
Usually such need arises at the level of discrete model, 
when a control mode is to be changed (e.g., classification 
of an observed plane as a civilian line aircraft rather than a 
military UAV, or classifying a ship as a ferry carrying 
people rather than a cargo ship), but the implementation of 
the mode change will usually rely on computations 



performed on the lowest level. Therefore the main 
interface will be implemented at the process layer level 
rather than any of the other two layers. 

Case Studies 
Benchmarking and Training System Simulation 
To verify the concept and evaluate timing properties of 
eGLA, several experiments were conducted within the 
experimental testbed composed of three high-level 
software design tools imitating the behavior of the Process 
Layer (VxWorks) and User Interface (ObjecTime and Rose 
Realtime), with SES/workbench acting as a Discrete 
Response Layer (Mathure at al., 2003).  First, the tools 
were mapped onto a five-task benchmark as described in 
(Guo et al., 2003) and illustrated in Figure 3. 
 

 
Fig. 3. Five-task benchmark simulation architecture. 

The benchmark is consistent with the architectural 
template presented in Figure 2 and is composed of the 
following components: 

• two measurement processes, A1 and A2, 
representing the Process Layer, run on VxWorks 
real-time kernel 

• a computational process, B, representing the two 
upper layers of the GLA, run within SES/workbench 

• a database process, C, representing a database 
interface, run also within SES/workbench, and 

• a GUI process, D, run within ObjecTime. 
The idea of this experiment was to evaluate performance of 
the model of an extended GLA, in a heterogeneous and 
complex environment, where multiple tools based on 
different theories (differential equations, finite state 
machine, and queuing theory), but integrated via TCP/IP 
protocol suite, contribute to the overall goal.  The 
experiments proved that the integration is possible and 
stable operation is achieved within a short period of time. 
The next step was to use the testbed for a more 
sophisticated case study consisting of a training system 
developed for combat vehicles (Al-Daraiseh et al., 2000). 

A general configuration of this system consists of the 
following four building blocks: 

• SMC, Simulation Management and Control, which 
is a central part of the simulation, running within 
SES/workbench 

• ITS, Intelligent Tutor and After Action Reporting, 
which runs under VxWorks 

• IG, Image Generation Subsystem, also running 
under VxWorks 

• CGF, Computer Generated Forces, simulated in 
ObjecTime/Rose Realtime. 

The performance of this system was evaluated by 
simulating SMC module as a server in the role of the 
GLA’s DRL layer.  It served 9 clients delivering nine types 
of periodic messages and one additional client generating 
high-priority non-periodic traffic, according to the 
customer’s specification (Al-Daraiseh et al., 2000).  The 
impact of changing arrival rates on queue length was 
analyzed for both types of traffic. As shown in Fig. 4, 
sample measurements for periodic traffic only and three 
different distributions of the server population.  The results 
show faster system saturation for longer service times, as 
expected (Mathure et al., 2003). 
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Fig. 4. Queue length vs. arrival rate for periodic and non-
periodic traffic combined. 

Air Traffic Conflict Detection and Resolution 
The objective of this case study is to focus on the 
capability of the DRL layer in the extended environment 
and apply the Extended GLA to a novel algorithm suite for 
airspace management and deconfliction of multiple 
Unmanned Aerial Vehicles (UAV’s).  To avoid collisions 
in space, ideally all vehicles should have enough 
information of all other vehicles’ positions, directions and 
speeds.  This idea, however, is not feasible and effective to 
implement, since it is only good under the assumption that 
vehicles are cooperating and a computational unit in each 
vehicle has enough memory and processing power (speed) 
to complete computations on time, before a collision 
occurs.  For example, for N vehicles, assuming each 
vehicle has to compute its X parameters for the next time 
period to predict collisions, the computational time is 
proportional to (N-1)*X, which is linear with respect to the 
number of vehicles, but has two disadvantages: 



• grows significantly with a number of vehicles 
involved and may reach limits of processing 
capabilities, and 

• is unpredictable in highly crowded environments, 
because there is no way of knowing in advance how 
big N can become.   

 
Fig. 5.  UAV and its neighbor zones in 2D space. 

 
Thus, a collision avoidance method is needed, which can 
offer reduction in computational space and time, 
additionally ensuring collision predictability under all 
circumstances. Initial reduction of computational 
complexity can be achieved by reducing the problem to a 
two-dimensional space and assuming that only immediate 
neighbors can participate in a collision, as illustrated in 
Figure 2.  Then, the computational time reduces and is 
never greater than 8*X, which means that its upper limit 
does not depend on the number of vehicles involved. 
A new method called Right-Of-Way (ROW) deconfliction 
further reduces the computational time to 3*X, because 
only three immediate right-hand neighbors are involved in 
computations, assuming that all vehicles in space observe 
the Right-Of-Way principle and use the same algorithm of 
deconfliction. 
A block diagram of software architecture of ROW 
deconfliction is shown in Figure 6. The reasoning system 
consists of two major parts:  Trajectory Prediction module 
and Conflict Detection module, both forming the DRL 
layer in eGLA.  The Trajectory Prediction module takes 
inputs from its own vehicle and obtains global time.  It also 
responds to inputs from Command and Control (equivalent 
of GUI).  UAV inputs come from vehicle sensors. Based 
on this information the module estimates and predicts 
values of state of the vehicle, using Kalman filter as a 
computational model.  The results of computations are 
periodically fed to the Collision Detection module, which 
combines it with information obtained from participating 

neighbor vehicles and with Command and Control to use it 
as a basis for decision making.  

Fig. 6.  Software architecture of the ROW system. 
 

The model of the dynamics assumes a two-dimensional 
linear system described using a set of general state-space 
equations of the form (Johnson et al., 2003): 
 

kkkk wXX +=+ φ1  

kkkk vXHZ +=  
 
where Xk is an (n×1) process state vector at time tk, ϕk is 
(n×n) state transition matrix, wk is (n×1) vector, assumed to 
be a white sequence with a known covariance structure, Zk 
is (m×1) measurement (observation) vector at time tk, Hk is 
(m×n) matrix giving the ideal (noiseless) connection 
between the measurement and the state vector at time tk, 
and vk is (m×1) measurement error, assumed to be a white 
sequence with known covariance structure and having zero 
cross-correlation with the wk sequence. 
If this two-dimensional model works properly for surface 
based UAV applications, such as airport taxing, factory 
floor or parking lot, the three-dimensional model will be 
built in the next step to resolve conflicts in air space. 

Conclusion 
The presented research is the first step towards making the 
concept of Extended GLA a useful tool for modeling and 
simulation, as opposed to pure implementation of hybrid 
intelligent control systems.  Thus far, extending GLA by 
adding three more orthogonal components at the Process 
Layer level turned out to be useful for specific applications 
considered, as confirmed by simulation experiments. 
Further work is needed on extending GLA toolset to 
support the design process with appropriate user interfaces 
and network and database connectivity.  This will 
significantly enhance the development process currently 
supported mostly by off-the-shelf tools. 
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