
Extended Generic Layered Architecture for Real-Time Modeling and
Simulation

Jacek Malec1) and Janusz Zalewski2)

1)Dept. of Computer Science, Lund University
S-221 00 Lund, Sweden
jacek@cs.lth.se

2)Computer Science Program, Florida Gulf Coast University
Ft. Myers, FL 33965, USA
zalewski@fgcu.edu

Abstract
This Generic Layer Architecture (GLA) has been created to deal with problems of reasoning in conventional
process control. It is composed of a process layer, dealing with the external environment, a rule layer, that
provides an inference engine associated with a system state, and an analysis layer responsible for planning and
reasoning. This results in a hybrid controller that enhances conventional modes of operation by the capability
of taking intelligent decisions. In this work, we are extending the concept of GLA by adding into the picture
three new environments, to make it suitable for purposes of modeling and simulation. The broader context
includes a user interface, network communication and image database, where GLA becomes a core element of
a sophisticated real-time information processing system. The extended architecture is applied to a simulation
problem from air traffic control - reasoning about, predicting and detecting collisions. In this problem we focus
on investigation of timing estimates on the reasoning process to meet hard deadlines in the problem domain.

Introduction
By the term embedded systems one usually refers to
computer programs embedded in physical systems. They
provide control to mechanical, chemical and other kinds of
plants. The design and implementation of embedded
systems usually involve the contribution from both control
and computer engineers (Sanz and Zalewski, 2003).
Simple embedded systems might be designed and
implemented using rather straightforward approach. The
dynamics of the system in hand needs to be studied and a
control algorithm may be inferred possibly using some
appropriate tool, such as differential equations or a Laplace
transform. An implementation of such algorithm amounts
to choosing an appropriate execution model (usually
periodic computations) and a computer platform, and then
generating code for that platform that provably (this issue
is unfortunately often omitted) implements the algorithm.
As systems become more and more complex, a plant
cannot be any longer described as a set of (linear)
differential equations. Firstly, such a description would

take too much time to create; secondly, it would be of no
use (due to complexity) for the purpose of creating a
control algorithm. In such cases techniques like
hierarchical description and modularization come to use.
One of the modern ways to approach the problem is to use
the hybrid system models: a system is described by a
family of modes, where each mode is described by a set of
differential equations (Grossman et al., 1993). The
supervisory control consists of switching among modes,
depending on the state of the plant.
Such systems are called hybrid, since they consist of
continuous subsystems and a discrete supervisory
structure. To implement hybrid controllers one needs to
provide the algorithms for each control mode and the
discrete controller to perform the mode switching and
handle the interaction between the continuous and the
discrete control.
Implementing hybrid controllers using languages like C or
Ada is rather cumbersome since they offer very poor
support for algorithms expressed using state machines.
Software support and computer aided tools are therefore

necessary to assist in the design of hybrid controllers. One
such tool is the Generic Layered Architecture, GLA,
(Morin et al., 1992) for implementing hybrid controllers in
software. The languages and tools developed for the
architecture support both periodic and discrete
computations required by hybrid controllers.
However, the software development tools are only a part of
a larger picture - first the software needs to be specified
and designed. Even better if this specification could be
formal, so that validation and verification techniques could
be used with their full potential, yielding provably correct
embedded system. But, in order to get confidence in
formal tools, one needs a faithful model of a (hybrid)
controller and its environment.
The GLA has been previously used as a modeling tool
(Malec et al., 1995), however at that time no verification
support tools have been incorporated in the GLA
methodology. Due to increasing complexity of considered
applications, but also due to the availability of the more
powerful computer technology, the next step towards a
more powerful modeling and analysis methodology could
be taken.
In this paper we describe the extended GLA (eGLA)
obtained by adding into the picture three new
environments, to make it more suitable for purposes of
modeling and simulation. The broader context follows the
fundamental principles of designing real-time software
architectures (Zalewski, 2001) and includes a user
interface, network communication and image database,
where GLA becomes a core element of a sophisticated
real-time information processing system. The extended
architecture is applied to a simulation problem from air
traffic control - reasoning about, predicting and detecting
collisions. In this problem we focus on investigation of
timing estimates on the reasoning process to meet hard
deadlines in the problem domain.
The paper is divided as follows. First, the original GLA is
introduced, together with the associated software and
formal analysis tools. Then the extensions to the
architecture are described. Finally, we present the problem
from air-traffic control and sketch the advantages of using
eGLA in this context.

The Generic Layered Architecture
Our approach to hybrid system design and implementation
builds on the three-layered software architecture GLA, the
generic layered software architecture, developed since the
early nineties (Morin et al., 1992). The architecture differs
from other layered approaches by grouping similar types of
computations into layers (shown in Figure 1), as opposed
to functional decomposition.
The first layer, called the process layer (PL), is intended to
host implementations of numerical, periodic tasks, such as

identification or control. Data handled by this layer are
contained in input and output vectors. Computations have
the form of mappings from input vectors to output vectors
and are performed periodically in synchronization with the
sample rates of sensors.

Fig. 1. The generic layered software architecture.

The middle layer is called the discrete response layer
(DRL), and performs tasks, which are by nature
asynchronous. For instance, it computes the response to
asynchronous events that are recognized in the PL. An
example of such a task is the change of control mode (of
the PL) due to the change of mode in the environment.
The computational model assumed for the DRL is that of
discrete event systems (DES). There exist several
equivalent DES formalisms: automata, transition systems,
rule-based systems, etc. All of them distinguish the
notions of state and transition as central, although the
details vary from model to model. We have used the rule-
based approach for the purpose of specifying knowledge-
based system prototypes. However, this does not preclude
usage of other approaches (Malec, 1992).
The top layer is called the analysis layer, because it is
intended to handle symbolic reasoning tasks such as
prediction, planning and scheduling, which require
reference to physical time. The output of this layer can be
either control events that guide the DRL in its decisions or

parameter settings that are passed through the DRL and
directly affect the operation of the PL.

Real-Time Software Tools
This architecture and its implications on software
engineering issues have been thoroughly studied in
previous research (Morin et al., 1992). One of the
conclusions was that it facilitates prototyping of systems,
especially because it allows development of generic
software tools, which can be used for implementation of
each particular application system. Along this line
software kernels, or engines, have been developed for
construction and implementation of the process layer and
the discrete response layer. The set of tools includes:

• Process Layer executive, PLX (Morin, 1993): a
multi-threaded time-triggered real-time engine for
implementation of process layer software. It has
been implemented on a pSOS based system, on a PC
running VDX, and recently on a RTLinux-based PC.
There also exists a simulator of the PLX, which runs
under Unix;

• Process Layer Configuration Language, PLCL,
(Morin, 1991) and its compiler: a language for
specification of PL module interconnections and
interfaces to both sensors and actuators on one side,
and to the DRL software on the other side. The
modules themselves are programmed in a subset of
some conventional language, such as C or C++;

• Rule Layer executive, RLX (Morin, 1994): an
engine for implementation of rule-based discrete-
event systems in the DRL. It has been implemented
on Unix-based machines, and on a PC with VDX
and RTLinux;

• Rule Language. RL (Morin, 1994): a rule-based
language for declarative specification of discrete-
event control.

The Process Layer Executive
The PLX supports the implementation and maintenance of
the hard real-time parts of the application, which perform
the transformations of periodic data. During processing,
all data are stored in a dual state vector, which is a global
data structure consisting of an input and an output vector.
The values in the input vector represent either sensor
readings or internal state, whereas the values in the output
vector represent actuator outputs or new internal state.
A PL application defines a sequence of transformations
that should be applied to the input vector in order to
compute a new output vector. Since sensor values are read
periodically, the transformations have to be applied with
the same periodicity. When the transformations have been
applied, actuator outputs are flushed to devices and the

new internal state is installed in the input vector, thus
establishing the new state of the process layer.
The PLX engine supervises a PL application, which
includes managing the internal state, reading sensors and
writing to actuators using user defined access functions,
and supervise the execution of the periodical
transformations of the dual state vector. The PLX supports
decomposition of the vector into several sub-vectors, each
of which has its own period, causing transformations to be
executed at different rates.
The PLX engine and the PLCL compiler together form the
basis for a worst-case execution timing analysis of a PL
application (Morin, 1993).

The Rule Layer Executive
The rule layer executive supports the implementation of
rule-based event processing. In the RLX the state of the
world is represented by the time dependent values of a set
of symbolic state variables called slots. A slot is updated
only when its value changes, due to an external event or as
a result of a change of another slot's value. Rules specify
dependencies between slots, and typically have the
following form: if the value of a particular slot is changed
in a certain way, then the value of another slot should also
be changed as a result. Internally, each such change may
trigger additional rules, which lead to more updates. This
forward chaining process may continue in several steps.
We take an object-oriented view of the rule base in the
sense that we associate a set of rules with each slot. This
view facilitates the flexibility and maintainability needed
for complex systems.
The RLX tool has two major tasks. Firstly, it maintains
the set of slots and rules, which determines the behavior of
the discrete response layer. Secondly, it performs the
forward chaining of rules. The forward chaining is
typically initiated by an event recognized by the PL. The
result of the forward chaining process may be the change
of control algorithm used by some PL process or direct
output to a device interfaced by the PL.
The RL is essentially a syntactic variant of a simple
temporal logic and is used for declarative specification of
behavior of the discrete response layer. A comprehensive
set of tools for correctness and consistency checking, for
timing analysis of RL programs and for code generation
have been developed during the recent years (Lin and
Malec, 1998; Lin, 1999a; Lin, 1999b).

The Extended GLA
The GLA serves well as a medium for embedded controller
implementation, but its use as a tool for system modeling
and analysis, although foreseen from the very beginning
(Malec et al., 1995), is somehow limited. This is mainly
due to the lack of support tools that would help the

engineer to formulate the problem in a language of their
choice, create a simulation for deeper understanding and
finally perform analysis using formal and informal tools
available. In addition to that, the model of the controller
can be extended to include not only the process aspects
currently implemented in the Process Layer, but also three
additional aspects of an architecture a of modern real-time
controller, as illustrated in Figure 2 (Zalewski, 2001):

• Graphical User Interface, GUI, allowing the operator
to interact in real time with the controlled process
and other components of the control system;

• Network Communication, handling the connectivity
among multiple processors or computing nodes
forming the control system; and

• Database Interface, allowing for real-time access to
permanently stored data, such as images in real-time
simulation, flight plans in air-traffic control, etc.

Proc

Meas

Ctrl DBase

Timer GUI

Comm

Fig. 2. Architectural template for real-time software design
Assuming that the GLA’s Process Layer is represented in
Figure 2 by the Measurement and Control components,
and the upper GLA layers are embedded in the Processing
component, the extensions proposed just add independent
run-time agents, similar to the PL, concentrating on three
orthogonal I/O functions. Therefore the extension should
not be treated as additional layers of the architecture. The
division of GLA into three layers, based on the
computational pattern employed, still holds.
However, some functionality should be available to the
end-users if the tool is to fulfil its functions. Thus the
extensions should be seen as separate functionalities
available at the lowest layer. All three extensions, User
Interface, Network Connectivity, and Image Database, are
described briefly below.
User Interface
No software, whether it’s the controller itself or the tool to
design it, can expect popularity without an intuitive, easy-
to-use GUI. In an early phase of language design, there are
usually no additional tools, but before such development
can be considered mature there needs to be a number of

user interfaces allowing a non-expert user to exploit all the
advantages of the tool without making unnecessary
mistakes.
GLA was lacking the user interface for years, until very
recently, when the design and implementation have begun.
The currently developed interface allows the user to
develop PL programs and test their timing properties, to
develop RL programs and run various semantic and timing
checks, to develop lookahead reasoning in the analysis
layer and test its connection with the lower layers of the
software. There exist also tools allowing import of
specifications done using external formalisms, like e.g., the
hybrid automata developed using HyTech tool. Moreover,
a stepping and debugging facility exist for all three layers
of the software.
At the tool level, we consider introduction of visualisation
mechanisms for better illustrating the interplay between the
discrete and the continuous part of the software, between
the system and its environment (including other embedded
software developed using the GLA approach, see below)
and of the analysis layer software.
Network Connectivity
In order to use a GLA-based system in a larger setting,
including other computer-based control or, especially,
simulation systems, one needs to provide connectivity to
the outer world. The natural choice for this is TCP/IP
networking allowing pieces of software running in
different systems to communicate with each other
according to predefined protocols.
In general, all three levels of the GLA architecture can
communicate smoothly over the network with other
networked applications, possibly but not necessarily also
GLA-based. However, in this project we are restricting the
network connectivity to the lowest layer agent responsible
exclusively for maintaining data communication. This
allows distributed algorithms, such as large-scale
simulations, to be easily developed and run. The
applications described below provide a good example of
advantages of distributed simulation and power of analysis
tools available for the GLA.
Image Database
Current state-of-the-art simulation and analysis tools
require access to large databases containing data in various
formats. A particularly challenging topic is the use of large
corpora of image data available. We expect that
applications developed using GLA might exploit such
databases and therefore the third extension of GLA is the
mechanism of accessing them.
Usually such need arises at the level of discrete model,
when a control mode is to be changed (e.g., classification
of an observed plane as a civilian line aircraft rather than a
military UAV, or classifying a ship as a ferry carrying
people rather than a cargo ship), but the implementation of
the mode change will usually rely on computations

performed on the lowest level. Therefore the main
interface will be implemented at the process layer level
rather than any of the other two layers.

Case Studies
Benchmarking and Training System Simulation
To verify the concept and evaluate timing properties of
eGLA, several experiments were conducted within the
experimental testbed composed of three high-level
software design tools imitating the behavior of the Process
Layer (VxWorks) and User Interface (ObjecTime and Rose
Realtime), with SES/workbench acting as a Discrete
Response Layer (Mathure at al., 2003). First, the tools
were mapped onto a five-task benchmark as described in
(Guo et al., 2003) and illustrated in Figure 3.

Fig. 3. Five-task benchmark simulation architecture.

The benchmark is consistent with the architectural
template presented in Figure 2 and is composed of the
following components:

• two measurement processes, A1 and A2,
representing the Process Layer, run on VxWorks
real-time kernel

• a computational process, B, representing the two
upper layers of the GLA, run within SES/workbench

• a database process, C, representing a database
interface, run also within SES/workbench, and

• a GUI process, D, run within ObjecTime.
The idea of this experiment was to evaluate performance of
the model of an extended GLA, in a heterogeneous and
complex environment, where multiple tools based on
different theories (differential equations, finite state
machine, and queuing theory), but integrated via TCP/IP
protocol suite, contribute to the overall goal. The
experiments proved that the integration is possible and
stable operation is achieved within a short period of time.
The next step was to use the testbed for a more
sophisticated case study consisting of a training system
developed for combat vehicles (Al-Daraiseh et al., 2000).

A general configuration of this system consists of the
following four building blocks:

• SMC, Simulation Management and Control, which
is a central part of the simulation, running within
SES/workbench

• ITS, Intelligent Tutor and After Action Reporting,
which runs under VxWorks

• IG, Image Generation Subsystem, also running
under VxWorks

• CGF, Computer Generated Forces, simulated in
ObjecTime/Rose Realtime.

The performance of this system was evaluated by
simulating SMC module as a server in the role of the
GLA’s DRL layer. It served 9 clients delivering nine types
of periodic messages and one additional client generating
high-priority non-periodic traffic, according to the
customer’s specification (Al-Daraiseh et al., 2000). The
impact of changing arrival rates on queue length was
analyzed for both types of traffic. As shown in Fig. 4,
sample measurements for periodic traffic only and three
different distributions of the server population. The results
show faster system saturation for longer service times, as
expected (Mathure et al., 2003).

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 0,5 1 1,5 2 2,5

Arrival Rate

Q
ue

ue
 L

en
gt

h

Server Population for
Exponential Distribution
with Mean Service
Time= 2.0

Server Population for
Uniform Distribution with
Mean Service Time = 1

Server Population for
Exponential Distribution
with Mean Service Time
= 0.5

Fig. 4. Queue length vs. arrival rate for periodic and non-
periodic traffic combined.

Air Traffic Conflict Detection and Resolution
The objective of this case study is to focus on the
capability of the DRL layer in the extended environment
and apply the Extended GLA to a novel algorithm suite for
airspace management and deconfliction of multiple
Unmanned Aerial Vehicles (UAV’s). To avoid collisions
in space, ideally all vehicles should have enough
information of all other vehicles’ positions, directions and
speeds. This idea, however, is not feasible and effective to
implement, since it is only good under the assumption that
vehicles are cooperating and a computational unit in each
vehicle has enough memory and processing power (speed)
to complete computations on time, before a collision
occurs. For example, for N vehicles, assuming each
vehicle has to compute its X parameters for the next time
period to predict collisions, the computational time is
proportional to (N-1)*X, which is linear with respect to the
number of vehicles, but has two disadvantages:

• grows significantly with a number of vehicles
involved and may reach limits of processing
capabilities, and

• is unpredictable in highly crowded environments,
because there is no way of knowing in advance how
big N can become.

Fig. 5. UAV and its neighbor zones in 2D space.

Thus, a collision avoidance method is needed, which can
offer reduction in computational space and time,
additionally ensuring collision predictability under all
circumstances. Initial reduction of computational
complexity can be achieved by reducing the problem to a
two-dimensional space and assuming that only immediate
neighbors can participate in a collision, as illustrated in
Figure 2. Then, the computational time reduces and is
never greater than 8*X, which means that its upper limit
does not depend on the number of vehicles involved.
A new method called Right-Of-Way (ROW) deconfliction
further reduces the computational time to 3*X, because
only three immediate right-hand neighbors are involved in
computations, assuming that all vehicles in space observe
the Right-Of-Way principle and use the same algorithm of
deconfliction.
A block diagram of software architecture of ROW
deconfliction is shown in Figure 6. The reasoning system
consists of two major parts: Trajectory Prediction module
and Conflict Detection module, both forming the DRL
layer in eGLA. The Trajectory Prediction module takes
inputs from its own vehicle and obtains global time. It also
responds to inputs from Command and Control (equivalent
of GUI). UAV inputs come from vehicle sensors. Based
on this information the module estimates and predicts
values of state of the vehicle, using Kalman filter as a
computational model. The results of computations are
periodically fed to the Collision Detection module, which
combines it with information obtained from participating

neighbor vehicles and with Command and Control to use it
as a basis for decision making.

Fig. 6. Software architecture of the ROW system.

The model of the dynamics assumes a two-dimensional
linear system described using a set of general state-space
equations of the form (Johnson et al., 2003):

kkkk wXX +=+ φ1

kkkk vXHZ +=

where Xk is an (n×1) process state vector at time tk, ϕk is
(n×n) state transition matrix, wk is (n×1) vector, assumed to
be a white sequence with a known covariance structure, Zk
is (m×1) measurement (observation) vector at time tk, Hk is
(m×n) matrix giving the ideal (noiseless) connection
between the measurement and the state vector at time tk,
and vk is (m×1) measurement error, assumed to be a white
sequence with known covariance structure and having zero
cross-correlation with the wk sequence.
If this two-dimensional model works properly for surface
based UAV applications, such as airport taxing, factory
floor or parking lot, the three-dimensional model will be
built in the next step to resolve conflicts in air space.

Conclusion
The presented research is the first step towards making the
concept of Extended GLA a useful tool for modeling and
simulation, as opposed to pure implementation of hybrid
intelligent control systems. Thus far, extending GLA by
adding three more orthogonal components at the Process
Layer level turned out to be useful for specific applications
considered, as confirmed by simulation experiments.
Further work is needed on extending GLA toolset to
support the design process with appropriate user interfaces
and network and database connectivity. This will
significantly enhance the development process currently
supported mostly by off-the-shelf tools.

Acknowledgements
Some of the ideas described in this paper have been
developed within master-level projects at the Department
of Computer Science of Lund University (GLA), and at the
Computer Engineering Program of the University of
Central Florida (real-time software architecture).

References
Al-Daraiseh, A., Al Mazid, A., Croeze, T., Zalewski, J.,
Dolezal, M., Green, G., Bahr, H. (2000). High-Level Tool
Support for Integration Architecture in a Distributed
Embedded Simulation Project, Proc. CSMA2000, 2nd
Conference on Simulation Methods and Applications,
Orlando, Florida, October 27-29, pp. 33-36

Grossman, R.L., Nerode, A., Ravn, A.P., & Rischel, H.,
editors. (1993). Hybrid Systems, Berlin: Springer-Verlag.

Guo, D., van Katwijk J., Zalewski, J. (2003). A new
benchmark for distributed real-time systems: Some
experimental results, Proc. WRTP’03, 27th IFAC/IFIP
Workshop on Real-Time Programming, Łagów, Poland,
May 14-17.

Johnson, R., Sasiadek, J., Zalewski, J. (2003). Kalman
Filter Enhancement for UAV Navigation, Proc. SCS 2003
Collaborative Technologies Symposium, Orlando, Fla.,
January 19-23, pp. 262-272.

Lin, M. (1999a). Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture Perspective, PhD
thesis, Department of Computer Science, Linköping
University.

Lin, M. (1999b). Timing analysis of {PL} programs. Proc.
WRTP’99, 24th IFAC/IFIP Workshop on Real-Time
Programming, Dagstuhl, Germany, May 30 – June 3.

Lin, M., & Malec, J. (1998). Timing analysis of RL
programs. Control Engineering Practice, 6, 403-408.

Malec, J. (1992). Complex behavior specification for
autonomous systems. Proc. IEEE International Symposium
on Intelligent Control'92, pp. 178-183, Glasgow,
Scotland,.

Malec, J., Morin, M., & Nadjm-Tehrani, S. (1995). A
layered software architecture for design and analysis of
embedded systems. Proc. 1995 International Symposium
and Workshop on Systems Engineering of Computer Based
Systems, pp. 169-176, Tucson, Ariz.

Mathure M., Jonnalagadda V., & Zalewski J. (2003).
Heterogeneous architecture and testbed for simulation of
large-scale real-time systems. Proc. 7th IEEE Int’l Symp.
on Distributed Simulation and Real-Time Applications, pp.
37-42, Delft, The Netherlands.

Morin, M. (1991). PLCL - Process Layer Configuration
Language. Technical Report LAIC-IDA-91-TR10,
Linköping University.

Morin, M. (1993). Predictable cyclic computations in
autonomous systems: A computational model and
implementation. Licentiate thesis 352, Dept. of Computer
and Information Sciences, Linköping University.

Morin, M. (1994). RL: An embedded rule-based system.
Technical Report LAIC-IDA-94-TR2, Linköping
University.

Morin, M., Nadjm-Tehrani, S., {\"O}sterling P., &
Sandewall E. (1992). Real-time hierarchical control. IEEE
Software, 9(5), 51-57.

Sanz, R. & Zalewski J. (2003). Pattern-Based Control
Systems Engineering, IEEE Control Systems, 23(3), 43-60.

Zalewski J. (2001). Real-time software architectures and
design patterns: Fundamental concepts and their
consequences, Annual Reviews in Control, 25(1), 133-146.

	Benchmarking and Training System Simulation
	Air Traffic Conflict Detection and Resolution

