
Deduction and Exploratory Assessment of Partial Plans

Jacek Malec and Sławomir Nowaczyk
Jacek.Malec@cs.lth.se and Slawomir.Nowaczyk@cs.lth.se

Department of Computer Science, Lund University,
Box 118, 221 00 Lund, Sweden

Abstract
In this paper we present a preliminary investigation
of rational agents who, aware of their own limited
mental resources, use learning to augment their rea-
soning. In our approach an agent creates and de-
ductively reasons about possible plans of actions,
but — aware of the fact that finding complete plans
is in many cases intractable — it executes partial
plans which look promising. By doing so, it can
acquire new knowledge from results of performed
actions, which allows it to plan further into the fu-
ture in a more effective way.
We describe a possible application of Inductive
Logic Programming to learn which of such par-
tial plans are most likely to lead to reaching the
goal. We also discuss how one can use ILP frame-
work for generalising partial plans, thus allowing
an agent to discover, after a number of episodes, a
complete plan — or at least a good approximation
of it.

1 Introduction
The basic idea of this project is to investigate a methodol-
ogy for developing rational agents — both virtual and physi-
cal ones — that would be able to learn from experience, be-
coming more efficient at solving their tasks. A rational agent
is expected to use deductive reasoning in order to take ad-
vantage of whatever domain knowledge it has been provided
with. Besides that, it should perform inductive learning to
benefit from experience it has gathered, correcting missingor
inaccurate parts of that knowledge. Finally, it must acknowl-
edge the fact that both reasoning and acting takes time, and
try to balance those activities in a reasonable way.

In this paper we present how such rational agents can deal
with planning in domains where complexity makes finding
complete solutions intractable. Clearly, in many domains (es-
pecially those that are, at least from agent’s point of view,
nondeterministic) it is not realistic to expect an agent to be
able to find a total plan which solves a problem at hand.
Therefore, we investigate how an agent can create and reason
aboutpartial plans. By that we mean plans which bring it
somewhat closer to achieving the goal, while still being sim-
ple and short enough to be computable in reasonable time.

Currently we mainly focus on plans which allow an agent to
acquire additional knowledge about the world.

By executing such “information-providing” partial plans,
an agent can greatly simplify further planning process — it
no longer needs to take into account the vast number of possi-
ble situations which will be inconsistent with newly observed
state of the world. Thus, it can proceed further in a more ef-
fective way, by devoting its computational resources to more
relevant issues.

We believe that the research field of planning has currently
matured enough that it is time to explore new, more ambitious
settings, in order to bring artificial agents closer to what hu-
mans are capable of. Our goal is to create an agent that is able
to function in an adversary environment which it can only par-
tially observe and which it only partially understands. More-
over, the agent is supposed to face a large number of episodes,
learning from its mistakes and improving its efficiency.

We will base our examples on a simple game of Wum-
pus, a well-known test bed for intelligent agents, which is
straightforward enough to properly illustrate our approach.
In its basic form, the game takes place on a square board
through which an agent is allowed to move. One square is
inhabited by the Wumpus. Agent’s goal is to kill the mon-
ster by shooting an arrow onto the square it occupies, while
avoiding getting eaten by the monster. Luckily, Wumpus is a
smelly creature, so the player always knows if the monster is
on one of the squares adjacent to his current position — but
unfortunately, not on which one. We leave the exact details of
whether and how fast Wumpus can move open for now, since
we will vary it in order to illustrate different ideas.

The main problem in the game of Wumpus is to learn the
position of the monster. In order to plan for achieving this
objective, an agent needs to be able to reason about its own
knowledge and about how will it change as a result of per-
forming various actions. Thus, the logic it utilises in its rea-
soning needs to strongly support epistemic concepts. At the
same time, a notion of time-awareness is necessary, as we
require our agent to consciously balance planning and acting.

To accommodate those requirements, we employ a variant
of Active Logic [Elgot-Drapkinet al., 1999] as the agent’s
underlying reasoning apparatus. This logic was designed
for non-omniscient agents and has mechanisms for dealing
with uncertain and contradictory knowledge. We believe it
is a good reasoning technique for versatile agents, as it has

been successfully applied to several different problems — in-
cluding some in which planning plays a very prominent role
[Puranget al., 1999].

The domain of Wumpus game has one more interesting
feature, namely that the interesting behaviour of the agent
consists of two phases. First, it has to gather some infor-
mation (“Where is the Wumpus?”) and, after that, it needs to
exploit this knowledge (“How to get rid of it from there?”).
Since this knowledge only becomes available during plan ex-
ecution, not while agent is creating the plan, it needs to make
its choice of actions depend on the previous observations of
the world. Therefore, it has to create, reason about and ex-
ecute conditional plans. Currently we have chosen a simple,
straightforward way of representing conditional actions,al-
though quite a few more advanced formalisms can be found
in the literature [Russell and Norvig, 2003].

To summarise, our agent will create several different plans
and reason about usefulness of each one — including what
knowledge can be acquired by executing it. Further, it will
judge whether it is more beneficial to immediately begin ex-
ecuting one of those plans or rather to continue deliberation.
In other words, the agent will be performing on-line plan-
ning, interleaving it with plan execution. Moreover, we ex-
pect it to live much longer than any single planning episode
lasts, so it should generalise each solution it finds. In par-
ticular, the agent needs to extract domain-dependent control
knowledge and use it when solving subsequent, similar prob-
lem instances. Finally, it will have to be able to handle non-
stationary, adversary environment, to cooperate with others in
multi-agent setting and to plan for goals more complex than
simple reachability properties (such as temporally extended
goals and restoration goals).

All of the features mentioned above have been extensively
studied in the planning literature, including ideas how to in-
tegrate various combinations of them — and we will discuss
some of this work through this paper. However, to the best
of our knowledge, nobody has yet attempted to merge all, or
even most, of those features together in one, consistent frame-
work.

This work is divided in the following way: the next section
presents the architecture of our agent, describing the impor-
tant modules and their functions, as well as how they interact.
Sections 3–5 provide more detailed overview of each module
separately. In Section 6 we briefly present some of the most
relevant work done by other researchers. We conclude with
summary and several ideas for further work.

2 Architecture
The architecture of our agent, presented in Figure 1, consists
of three main elements. First of them is the Deductor, which
performs deductive reasoning about world, actions and their
consequences. Its main aim is to generate plans applicable in
current situation. Furthermore, it predicts — at least as far as
agent’s past experience and imperfect domain knowledge al-
lows — effects each of those plans will have, including what
new knowledge can be acquired.

The second component is the Actor, which chooses and
executes plans created by Deductor. It is also responsible for

Deductor

Actor

Plan

Observation

LearningGame history

Figure 1: The architecture of the system.

observing the world and introducing effects of actions — and,
potentially, other changes in the environment — into agent’s
knowledge base. It is important to note that Actor determines
whento stop deliberation and start execution of the chosen
plan.

These two modules form the core of the agent. By creating
and executing a sequence of partial plans our agent moves
progressively closer and closer to its goal, until it reaches a
point where a winning plan can be directly created by Deduc-
tor, and its correctness can be proven.

However, success depends on whether the chosen partial
plans are indeed moving an agentcloserto the solution. Since
agent’s knowledge is incomplete and moreover it does not
have enough resources to fully utilise the knowledge it pos-
sesses, there is — in principle — no guarantee that it will be
so. In particular, if an Actor makes a mistake, the chosen plan
may lead to loosing the game.

This is the reason for including the third module in our
architecture. After the game is over, regardless of whether
the agent has won or lost, learning system attempts to induc-
tively generalise experience it has gathered — attempting to
improve Deductor’s and Actor’s performance. We intend to
use the learned information to fill gaps in the domain knowl-
edge, to figure out generally interesting reasoning directions,
to discover relevant subgoals and, finally, to more efficiently
choose the best partial plan.

In principle, learning could take place at any time, but we
do not currently see much benefit of learning in the middle
of the game. Our variant of Wumpus game is simple enough
that a single episode does not last very long, and there is some
useful information that is only available to an agent after the
game is finished — information which can be very valuable
during learning.

3 Deductor

In order to present Deductor we begin with a description of
the chosen knowledge representation formalism. Next we in-
troduce those concepts from Active Logic which are neces-
sary for understanding the rest of this text. We then present
how the conditional actions are incorporated in our frame-
work, and finally we illustrate how the three elements are
combined for creating (partial) plans.

3.1 Knowledge representation
The language used by Deductor is the First Order Logic
(FOL) augmented with Situation Calculus mechanisms for
describing action and change. Within a given situation,
knowledge is expressed using standard FOL. In particular,
we do not put any limitations on the expressiveness of the
language, as some mechanisms we later employ would in-
validate benefits of restricting ourselves to languages such
as Horn clauses or description logics. PredicateK describes
knowledge of the agent, e.g.,

K[smell(a) ↔ ∃x(Wumpus(x) ∧ Neigh(a, x))]

meaning:agent knows that it smells on exactly those squares
which neighbour Wumpus’ position. The predicateK may be
nested, although it is seldom useful. We use standard reifica-
tion mechanism for putting formulae as parameters of theK
predicate.

The next step is to introduce action and change repre-
sentation. We use the well-known Situation Calculus ap-
proach, introducing predicatesHolds(situation, formula)
to denote that the formula holds in situation and
Informs(action, groundedwff) to denote thatactionpro-
vides information whethergroundedwffholds. We also intro-
duce functionResult(situation, action), which returns the
set of situations resulting from applyingactionin situation.

Another important concept in our formalism is a plan,
which is a sequence of actions. Plans may be subject to con-
catenation operation. In every place where this might matter
(in particular at argument list of theK predicate) we intro-
duce two additional parameters. We denote by them, respec-
tively, the set of situations and the set of plans to be executed
(starting from those situations) in order to make the third ar-
gument true. So, actually, the formula shown above should
look as follows:

K[{s}, {p}, smell(a) ↔ ∃x(Wumpus(x) ∧ Neigh(a, x))]

meaning:in a situations agent knows that if it executes planp
then it smells on exactly those squares which neighbour Wum-
pus’ position.

This particular formula is true regardless of the chosens
andp (it is an universal law), a fact which we can denote, for
example, byS (set of all situations) and either∅ (empty plan)
or P (the set of all plans). Still, there are many interesting
formulae — like ones in the form “Wumpus(x)” — which
are trueonly for specifics andp.

Please observe that the main notion our agent reasons about
is its own knowledge about the world. Similar idea was intro-
duced in [Petrick and Bacchus, 2004], where authors inves-
tigate how various actions and observations of their effects
modify agent’s belief state. They describe how such modi-
fications can be propagated backwards and forwards through
the state history: as the agent gains new knowledge, it can in-
fer that various statementsdid hold in past states of the world,
even if it did not know it then. Authors also show how such
propagation can be used to deal with temporally extended and
restoration goals.

3.2 Active Logic
Active Logic (AL) is intended to describe the deduction as an
ongoing process, instead of characterising just some infinite,
fixed-point consequence relation. To this end, it annotates
every formula with a time-stamp (usually an integer) of when
it was first derived, and bookkeeps the reasoning process by
incrementing the label with every application of an inference
rule. E.g.,

i : a, a → b

i + 1 : b

Additional features, available in AL and important for this
work, include theNow predicate, true only during current
time point (i.e., “i : Now(j)” is true for alli = j, but false for
all i 6= j) and theobservation function, which delivers axioms
that are valid since a specific time-point. It is used to model
agent acquiring new knowledge from the environment. This
way the reasoning process may refer, viaNow, to the current
(absolute or relative) time and conclude whether it has passed
a deadline or not. It can also describe change that is not a
result of performing any action — thus lifting two important
limitations present in the classical situation calculus.

3.3 Conditional plans
The conditional plans we consider consist of a concatenation
of classical and conditional actions, where each conditional
action may be described as(predicate ? action1 : action2),
meaning thataction1 will be executed ifpredicate holds,
and action2 will be executed otherwise. We consider the
possibility of introducing a more complex structure of con-
ditions (like while loops), but within this application simple
conditionals will suffice.

This type of conditional actions introduces a high branch-
ing factor in case of longer plans, but this effect is unavoid-
able at some level of consideration and will not be further
discussed here. It has received some attention in the works
by other authors (see [Russell and Norvig, 2003] for extended
bibliography).

For a well-developed discussion of conditional partial
plans and interleaving planning and execution see for exam-
ple [Bertoliet al., 2004], where authors introduce notion of
progressive plan— intuitively, one that provably moves the
agent closer to the goal. They also present an algorithm for
finding such plans in a nondeterministic but fully known do-
main and prove that it is guaranteed to find a solution if one
exists.

A somewhat similar, very interesting idea was pursued in
[Nyblom, 2005], where author uses classical planner to plan
for “optimistic” case, where an agent can choose the most
favourable outcome of each non-deterministic action. From
such an optimistic plan it is then possible, using knowledge
of probabilities of each action outcome, to generate more re-
alistic plans by updating relative costs of optimistic actions.

3.4 Reasoning about plans
Finally, the representation language needs to be augmented
with reasoning capabilities. It is done using a set of rather
natural, although not quite trivial, inference rules. Their pre-
sentation, however, is outside the scope of this paper. Using

those rules, the Deductor may conclude, from the example
formula shown earlier, that

∀x K[S, P, ¬smell(a) ∧ Neigh(a, x)] ↔

K[Result(s, p), ∅, ¬Wumpus(x)]

i.e., thatif it doesn’t smell in positiona then the agent will
know that there is no Wumpus on any of its neighbour posi-
tions. This may be further used for creating a useful plan of
actions given that the agent currently is, or has been before,
in positiona.

One of the reasons we have chosen symbolic representa-
tion of plans, as opposed to a policy (an assignment of value
to each state–action pair) is that we intend to deal with other
types of goals than just reachability ones. For a discussionof
possibilities and rationalisation of why such goals are inter-
esting, see for example [Bertoliet al., 2003], where authors
present a solution for planning with goals described in Com-
putational Tree Logic. This formalism allows to express goals
of the kind “valuea will never be changed”, “a will be re-
stored to its original value” or “value ofa after timet will
always beb” etc.

Furthermore, one of our ideas is to extend the solution pre-
sented in this paper to the case of multi-agent cooperative
planning, where benefits of symbolic plan representation are
even more clear.

To summarise, the agent uses the formalism presented in
this section in order to deductively develop plans. Given the
complexity of the domain and vastly branching proof proce-
dure (currently it can only perform forward chaining) the cre-
ated plans are usually partial, i.e. they lead to some interme-
diate states of the game, where the final outcome is not yet
decided.

4 Actor
The Actor module supervises the deduction process and
breaks it at selected moments, e.g., when it notices a particu-
larly interesting plan or when it decides that sufficiently long
time has been spent on planning. It thenevaluatesexisting
partial plans and executes the best one of them. The evalu-
ation process is crucial here, and we expect the subsequent
learning process to greatly contribute to its improvement.In
the beginning, the choice may be done at random, or some
simple heuristic may be used. After execution of partial plan,
a new situation is reached and the Actor lets the Deductor
create another set of possible plans.

This is repeated as many times as needed, until the game
episode is either won or lost. Losing the game clearly identi-
fies bad choices on the part of the Actor and leads to an update
of the evaluation function.

Winning the game also yields feedback that may be used
for improving this function, but it also provides a possibility
to (re)construct a complete plan, i.e. one which originates
from the initial situation and ends in a winning state. If such
a plan can be found, it may be subsequently used to imme-
diately solve any problem instance for which it is applicable.
Moreover, even if such plan is not applicable, an Actor can
use it when evaluating other plans found by the Deductor.

Those which have similar structure to the successful one are
more likely to lead to the goal.

In other words, the intention is for Actor to acquire gener-
alised knowledge of the domain, which can be used to guide
an agent in more promising directions.

In a sense this is similar to ideas discussed in [Fernet al.,
2004], where authors use Markov Decision Process to rep-
resent planning domains and approximate policy iteration as
means of learning agent’s behaviour. They use long random
walks to create progressively harder goals, thus bootstrapping
the agent in its learning of domain-dependent control knowl-
edge.

5 Learning
As we mentioned earlier, our agent will be presented with
large number of tasks to solve. Therefore, upon finishing each
game episode, the events (actions, observations and the re-
sult) are fed into a learning module. This module attempts to
generalise this information and provide guidelines for Actor
and Deductor to improve their performance. In this paper we
will mainly investigate the learning module from Actor’s per-
spective, as using ILP framework to evaluate quality of partial
plans is, to the best of our knowledge, a novel idea. In further
work we also intend to improve domain knowledge and to
identify interesting reasoning directions, but those later ideas
are — while definitely interesting and non-trivial — mainly a
matter of integrating the already available techniques.

5.1 Goal of learning
The first task we would like our learning module to address
is how an Actor is to choose which one of the plans being
considered by Deductor should it execute. Clearly, the longer
it allows planning phase to proceed, the better plans will it
get to choose from, and the more information about conse-
quences of each plan will be known. On the other hand, more
of the deduction effort will be wasted by considering potential
situations which will not take place in this particular game.

At some point, however, an Actor must choose one plan,
from those created by Deductor, for immediate execution.
Some of those plans are better than others — but it cannot be
determined exactly and with full confidence until those plans
extend to the terminal state of the game. And for problems
we intend to tackle, that is intractable — agent’s computa-
tional resources do not suffice tocompletelysolve problems
we are interested in. Therefore, the Actor needs some heuris-
tic method of evaluating quality of partial plans and of com-
paring them.

There is quite a bit of knowledge that domain experts could
provide — but our aim is to have a solution which does notre-
quire such experts. At the same time, if people familiar with
particular domain are available, the agent should take advan-
tage of whatever information they can provide. Therefore,
Inductive Logic Programming appears to fit our needs quite
well: it uses background knowledge when it is available, but
can also solve problems when it is not.

It is important to keep in mind that our agent has a dual
aim, very akin to the exploration and exploitation dilemma,
well-studied in reinforcement learning and related research

areas. On one hand, it wants to win the current game, but at
the same time it needs to learn as much general knowledge as
possible — in order to improve its performance at subsequent
tasks.

5.2 Choosing plans
There are clearly many features which can distinguish be-
tween good and bad plans. And with sufficiently rich history
of game episodes, it is possible to learn this distinction. In the
simplest case the agent can start with Actor randomly choos-
ing plans for execution. After a couple of games — some of
which will be won but, likely, many will be lost — it will have
enough experience to learn some useful rules.

The main problem is that most work on ILP, as well as on
Machine Learning in general, has been dealing with the prob-
lem ofclassification, while what we need is ratherevaluation.
There is no predefined set of classes into which plans should
be assigned. What our agent needs is a way to choose thebest
one of them.

Still, in order to be able to take advantage of the vast
amount of research done in the Inductive Logic Programming
framework, in the first step we recast our problems as a clas-
sification one. In particular, we attempt to distinguish plans
that leading to losing the game from all the others. In our
initial architecture this part is relatively easy — we assume
that the Deductor has perfect knowledge of consequences of
execution of each plan, so it can deduce (for some plansp) a
fact “K[{s}, {p},¬die]”.

A separate question is whether an Actor canlearn to
choose only plans for which “K[¬die]” has been deduced.
After all, not every plan for which such fact cannot be proven
actuallydoeslead to losing every game.

Moreover, it is worth noting that if the Wumpus is allowed
to move, there exist plans which do not lead to agent’s death,
but which do lead to states where winning it is no longer pos-
sible — for example, if an agent gets stuck in a corner with
Wumpus blocking its way out. It may be difficult for an agent
to notice and learn that the mistake has been made in the pre-
vious step, not in the one when the agent was killed.

5.3 Application of ILP
From the above analysis it becomes clear than the notion of
positiveand negativeexamples, as used in ILP algorithms,
is not quite appropriate for what we would like to express
in our framework. What they correspond to, informally, are
conditions that are bothnecessaryandsufficient— while we
are mainly interested those that are sufficient.

An interesting line of research, which possibly could be
useful in our case, was presented in [Gretton and Thiebaux,
2004], where authors attempt to deductively generate
domain-specific hypothesis language which is as simple as
possible, and yet expressive enough to represent all the nec-
essary concepts in a particular domain. This language is then
used by inductive learning algorithm to create generalised
policies from solutions of small problem instances.

Let us assume that we restrict ourselves to dividing plans
into two classes: those that can lead to agent’s death and
those that cannot. Each partial plan executed at some pre-
vious game can be seen as a single example. First issue we

need to deal with is which example belongs to which class. It
is easy to note that some plans — namely those that in agent’s
experiencedo lead to losing the game — are definitely exam-
ples of bad plans. However, not every plan which does not
cause the agent to die is, indeed, agoodplan. What is more,
not every plan that leads towinning a game is a good one.
An agent executing a dangerous plan might have just gotten
lucky, if in a particular episode Wumpus was in favourable
position.

Therefore, if we want ILP algorithm to learn the concept
of bad plans, we do have a set of positive examples, and a set
of examples for which we do not — at least not immediately
— know their affiliation. We have decided to use PROGOL
as a learning algorithm. The standard version is presented in
[Muggleton, 1995] and can be described here, in a somewhat
simplified manner, by the following steps:

1. Select an example to be generalised. If no more exam-
ples exist, stop.

2. Construct the most specific clause, within provided lan-
guage restrictions, which entails selected example. This
is called the ”bottom clause”.

3. Find, by searching for some subset of the literals in the
bottom clause, more general clauses. Choose one with
the best “score”.

4. Add the clause found in the previous step to the cur-
rent theory, and remove all clauses made redundant. It is
worth noting that the best clause may make clauses other
than the examples redundant. Move back to Step 1.

In our case we can define as positive examples those plans
which lead — or can beprovento possiblylead — to agent’s
death. On the other hand, those plans which can be proven to
neverlead to the agent’s death are treated as negative exam-
ples. We are working on ways to utilise other plans in some
way, those for which neither of the above assertions can be
proven (within reasonable time) — right now we simply ex-
clude them from learning.

With the definitions as above, we can use standard ILP al-
gorithm, be it PROGOL or almost any other, to have Actor
learn to choose onlynon-losingplans for execution.

However, this is only a beginning. After all, it is not quite
enough not to die, as an agent which moves in circles, without
exploring the world, clearly does not get eaten by the Wum-
pus — but it never wins either. On the other end of the spec-
trum, the feature “plan which kills the Wumpus” is clearly
non-operational.

Hopefully, we will be able to report more details on prac-
tical applicability of the ideas described above when our im-
plementation is finished and we have run some experiments.

5.4 Further ideas
One very promising idea seems to be exploring the epistemic
quality of plans. An agent should pursue those plans which
provide it with the most important knowledge. Clearly, in the
Wumpus domainimportantis directly linked with monster’s
true position — or at least that is what human players consider
it to be. Therefore, as a next step, we can redefinebadplans
as those that lead to the agent’s death or do not provide any

interesting knowledge. Again, we can use one of many ILP
algorithms to learn such concepts.

Another very general and important way of expressing dis-
tinction between good and bad partial plans, and one we feel
can lead to very good results, is related to discovering rele-
vant subgoals and landmarks in the plans, akin to the work
done in [Hoffmannet al., 2004].

The problem is that those ideas require more domain
knowledge than we are comfortable with. For example, what
we would like to have is an agent figuring out that “position
of Wumpus” is important just from the definition of the rules
and goals of the game. In principle, it appears to be pos-
sible — it is not difficult to deduce that knowing Wumpus’
position suffices for winning the game (the plan to win once
Wumpus’ position is known is simple and can be found eas-
ily). However, it is not clear how to combine such reasoning
with learning as expressed above. It is our understanding that
some modifications to the learning algorithm will be required.

To summarise, it is easy (for a human) to see some general
rules distinguishing good plans from bad ones. For example,
a plan for which an agent doesn’t know that it will not lose the
game is a bad plan. Such knowledge can be easily provided
by domain expert and most ILP algorithms are ready to use
it. Interesting question, however, is whether and how can this
knowledge be discovered by an agent itself.

One way would be to try something along the lines of re-
search presented in [Walkeret al., 2004], where authors ran-
domly sample a large number of relational features and eval-
uate them on small problems. The idea is that features found
to work satisfactory on such sample problems should also de-
scribe larger problems sufficiently well.

6 Related Work
Combination of planning and learning is an area of active
research, in addition to the extensive amount of work being
done separately in those respective areas. However, most of
the related work we are aware of is devoted to either using
state-of-the-art learning in a rather limited planning frame-
work, or to using limited learning in a more complex plan-
ning setup. Comparisons of the two areas are also relatively
common, while the true, nontrivial combination will appar-
ently require much more investigation. Since we believe it to
be very promising, this paper is aiming at attracting attention
to this line of research.

The first to mention is [Dietterich and Flann, 1995], which
presented results establishing conceptual similarities between
explanation-based learning and reinforcement learning. In
particular, they discussed how EBL can be used to learn ac-
tion strategies and provided important theoretical results con-
cerning its applicability to this aim.

There has been significant amount of work done in learn-
ing about what actions to take in a particular situation. One
notable example is [Khardon, 1999], where author showed
important theoretical results about PAC-learnability of action
strategies in various models.

In [Moyle, 2002] author discussed a more practical ap-
proach to learning Event Calculus programs using Theory
Completion. He used extraction-case abduction and the

ALECTO system in order to simultaneously learn two mu-
tually related predicates (Initiates andTerminates) from
positive-only observations.

Recently, [Könik and Laird, 2004] developed a system
which is able to learn low-level actions and plans from goal
hierarchies and action examples provided by experts, within
the SOAR architecture.

The work mentioned above focuses primarily on learning
how to act, without focusing on reaching conclusions in a de-
ductive way. In a sense, the results are somewhat more similar
to the reactive-like behaviour than to classical planning sys-
tem, with important similarities to the reinforcement learning
and related techniques. In case of large search spaces this
approach may not be as effective as a suitable combination
of learning and deduction. Therefore, some effort have been
devoted to searching for a suitable combination.

One attempt to escape the trap of large search space has
been presented in [Džeroskiet al., 2001], where relational
abstractions are used to substantially reduce cardinalityof
search space. Still, this new space is subjected to reinforce-
ment learning, not to a symbolic planning system.

A conceptually similar idea, but where relational represen-
tation is actually being learned via behaviour cloning tech-
niques, is presented in [Morales, 2004].

Outside the domain of planning, there is a lot of interesting
research being done in the learning paradigm.

Recently, [Colton and Muggleton, 2003] showed several
ideas about how to learn interesting facts about the world,
as opposed to learning a description of a predefined concept.
A somewhat similar result, more specifically related to plan-
ning, has been presented in [Fernet al., 2004], where the sys-
tem learns domain-dependentcontrol knowledge beneficial in
planning tasks.

From another point of view, [Khardon and Roth, 1995]
presented a framework of learning done “specifically for the
purpose of reasoning with the learned knowledge” — an in-
teresting early attempt to move away from thelearning to
classifyparadigm.

Yet another track of research focuses on (deductive) plan-
ning, taking into account incompleteness of agent’s knowl-
edge and uncertainty about the world. Conditional plans, gen-
eralised policies, conformant plans and universal plans are
the terms used by various researchers [Cimattiet al., 2004;
Bertoli et al., 2004] to denote in principle the same idea: gen-
erating a plan which is “prepared” for all possible reactions
of the environment. This approach has much in common with
control theory, as observed in [Bonet and Geffner, 2001] or
earlier in [Dean and Wellman, 1991]. We are not aware of
any such research that would attempt to integrate learning.

As can be seen, many of the ideas we investigate in this pa-
per have been analysed previously, but an attempt to merge
them into a single, consistent framework has not yet been
made.

7 Conclusions and Further Work
The work presented here is more a discussion of an interest-
ing track of research than a report on some concrete results.
However, we think that this idea is important and promising

enough to be subjected to wider discussion, and therefore we
have decided to present it in this forum.

We have introduced an agent architecture facilitating
resource-aware deductive planning interwoven with plan ex-
ecution and supported by inductive, life-long learning. The
particular deduction mechanism used is based on Active
Logic, in order to incorporate time-awareness into the de-
duction itself. The plans created in deductive way are condi-
tional, taking into account possible results of future actions,
in particular information-gathering ones.

The learning mechanism employed is based on PROGOL,
although in principle any standard ILP algorithm would be
suitable as well. Learning is expected to provide an evalua-
tion of the current deductive knowledge in order to improve
the agent’s performance in the long run.

We are at the moment working on implementation of the
system and expect to be able to report results of first experi-
ments at the time of the workshop.

In the future we intend to continue this work in the follow-
ing directions:

• Discovering subgoals and subplans. It seems that one
of the most useful capacities of humans problem solving
is the ability to divide a complex problem into subprob-
lems and then to solve each of them separately before
combining their solutions into a global one. We would
like to force our agent to discover this possibility. In our
example domain a useful subgoal/subproblem could be
“First, find a place where it smells.”

• Discovering general rules which Deductor will be able
to use later on. An example of such a rule might be
“Don’t shoot if you don’t know Wumpus’ position”. It
seems that availability of such rules can save a substan-
tial amount of work for Deductor, if it can establish early
on that some plans would not be usable.

• Generalisation of plans. A clear advantage would be
to reuse a valid plan in a different context. As long as
the context does not differ substantially, this operation
should lead to fast solution of a problem similar to one
solved in the past.

• Capability of handling imperfect knowledge. The cur-
rent setup assumes complete domain knowledge, while
in many situations this assumption might be violated
(e.g., the agent might not know that the Wumpus ac-
tually can move). The system should allow the agent
to learn domain knowledge, if possible, to complete its
understanding of the environment.

• Last, but not least, allow interaction with a user. Domain
experts might be an invaluable source of knowledge that
the agent should be able to exploit, if possible. For ex-
ample, to better adjust tradeoff between spending time
on deduction and induction, the agent could be guided
by an external observer (the user) providing a feedback
about its performance.

The list above does not cover all the possible further inves-
tigations and extensions of the proposed system; it is just a
biased presentation of the authors’ own interests and judge-
ments.

Acknowledgements
The authors are grateful to the anonymous reviewers for their
very thorough comments and suggestions, which lead to a
substantial improvement of this paper.

References
Piergiorgio Bertoli, Alessandro Cimatti, Marco Pistore, and

Paolo Traverso. A framework for planning with extended
goals under partial observability. InInternational Confer-
ence on Automated Planning and Scheduling, pages 215–
225, 2003.

Piergiorgio Bertoli, Alessandro Cimatti, and Paolo Traverso.
Interleaving execution and planning for nondeterministic,
partially observable domains. InEuropean Conference on
Artificial Intelligence, pages 657–661, 2004.

Blai Bonet and Hector Geffner. Planning and control in arti-
ficial intelligence: A unifying perspective.Applied Intelli-
gence, 14(3):237–252, 2001.

Alessandro Cimatti, Marco Roveri, and Piergiorgio Bertoli.
Conformant planning via symbolic model checking and
heuristic search.Artificial Intelligence, 159(1-2):127–206,
2004.

Simon Colton and Stephen Muggleton. ILP for mathematical
discovery. In13th International Conference on Inductive
Logic Programming, 2003.

Thomas Dean and Michael P. Wellman.Planning and Con-
trol. Morgan Kaufmann, 1991.

Thomas G. Dietterich and Nicholas S. Flann. Explanation-
based learning and reinforcement learning: A unified view.
In International Conference on Machine Learning, pages
176–184, 1995.

Saso Džeroski, Luc De Raedt, and Kurt Driessens. Relational
reinforcement learning.Machine Learning, 43(1/2):7–52,
2001.

Jennifer Elgot-Drapkin, Sarit Kraus, Michael Miller, Mad-
hura Nirkhe, and Donald Perlis. Active logics: A unified
formal approach to episodic reasoning. Technical Report
CS-TR-4072, University of Maryland, 1999.

Alan Fern, SungWook Yoon, and Robert Givan. Learning
domain-specific control knowledge from random walks.
In International Conference on Automated Planning and
Scheduling, 2004.

Charles Gretton and Sylvie Thiebaux. Exploiting first-order
regression in inductive policy selection. InConference on
Uncertainty in Artificial Intelligence, 2004.

Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered
landmarks in planning.Journal of Artificial Intelligence
Research, 22:215–278, 2004.

Khardon and Roth. Learning to reason with a restricted view.
In Proceedings of the Workshop on Computational Learn-
ing Theory, Morgan Kaufmann Publishers, 1995.

Roni Khardon. Learning to take actions.Machine Learning,
35:57–90, 1999.

Tolga Könik and John Laird. Learning goal hierarchies from
structured observations and expert annotations. In14th In-
ternational Conference on Inductive Logic Programming,
2004.

Eduardo P. Morales. Relational state abstraction for rein-
forcement learning. InProceedings of the ICML’04 Work-
shop on Relational Reinforcement Learning, 2004.

Steve Moyle. Using theory completion to learn a robot navi-
gation control program. In12th International Conference
on Inductive Logic Programming, 2002.

Stephen Muggleton. Inverse entailment and Progol.New
Generation Computing, Special issue on Inductive Logic
Programming, 13(3-4):245–286, 1995.

Per Nyblom. Handling uncertainty by interleaving cost-aware
classical planning with execution. InSwedish AI Society
Workshop, 2005.

Ronald P. A. Petrick and Fahiem Bacchus. Extending the
knowledge-based approach to planning with incomplete in-
formation and sensing. InProceedings of the International
Conference on Automated Planning and Scheduling, pages
2–11, 2004.

Khemdut Purang, Darsana Purushothaman, David Traum,
Carl Andersen, and Donald Perlis. Practical reasoning and
plan execution with active logic. InProceedings of the
IJCAI-99 Workshop on Practical Reasoning and Rational-
ity, pages 30–38, 1999.

S. Russell and P. Norvig.Artificial Intelligence: A Modern
Approach. Prentice Hall Series in AI, 2nd edition, 2003.

Trevor Walker, Jude Shavlik, and Richard Maclin. Relational
reinforcement learning via sampling the space of first-order
conjunctive features. InIn working notes of ICML-04
Workshop on Relational Reinforcement Learning, 2004.

	Introduction
	Architecture
	Deductor
	Knowledge representation
	Active Logic
	Conditional plans
	Reasoning about plans

	Actor
	Learning
	Goal of learning
	Choosing plans
	Application of ILP
	Further ideas

	Related Work
	Conclusions and Further Work

