1

Deduction and Exploratory Assessment of Partial Plans

Jacek Malec and Stawomir Nowaczyk
Jacek.Malec@cs.lth.se and Slawomir.Nowaczyk@cs.lth.se
Department of Computer Science, Lund University,
Box 118, 221 00 Lund, Sweden

Abstract

In this paper we present a preliminary investigation
of rational agents who, aware of their own limited
mental resources, use learning to augment their rea-
soning. In our approach an agent creates and de-
ductively reasons about possible plans of actions,
but — aware of the fact that finding complete plans
is in many cases intractable — it executes partial
plans which look promising. By doing so, it can
acquire new knowledge from results of performed
actions, which allows it to plan further into the fu-
ture in a more effective way.

We describe a possible application of Inductive
Logic Programming to learn which of such par-
tial plans are most likely to lead to reaching the
goal. We also discuss how one can use ILP frame-
work for generalising partial plans, thus allowing
an agent to discover, after a number of episodes, a
complete plan — or at least a good approximation
of it.

Introduction

Currently we mainly focus on plans which allow an agent to
acquire additional knowledge about the world.

By executing such “information-providing” partial plans,
an agent can greatly simplify further planning process — it
no longer needs to take into account the vast number of possi-
ble situations which will be inconsistent with newly obseav
state of the world. Thus, it can proceed further in a more ef-
fective way, by devoting its computational resources toemor
relevant issues.

We believe that the research field of planning has currently
matured enough that it is time to explore new, more ambitious
settings, in order to bring artificial agents closer to what h
mans are capable of. Our goal is to create an agent that is able
to function in an adversary environmentwhich it can onlypar
tially observe and which it only partially understands. gtor
over, the agent is supposed to face a large number of episodes
learning from its mistakes and improving its efficiency.

We will base our examples on a simple game of Wum-
pus, a well-known test bed for intelligent agents, which is
straightforward enough to properly illustrate our appfroac
In its basic form, the game takes place on a square board
through which an agent is allowed to move. One square is
inhabited by the Wumpus. Agent’s goal is to kill the mon-

The basic idea of this project is to investigate a methodolSter by shooting an arrow onto the square it occupies, while
ogy for developing rational agents — both virtual and physi-avoiding getting eaten by the monster. Luckily, Wumpus is a
cal ones — that would be able to learn from experience, besmelly creature, so the player always knows if the monster is
coming more efficient at solving their tasks. A rational agen 0n one of the squares adjacent to his current position — but
is expected to use deductive reasoning in order to take adinfortunately, not on which one. We leave the exact detéils o
vantage of whatever domain knowledge it has been provideghether and how fast Wumpus can move open for now, since
with. Besides that, it should perform inductive learning towe will vary it in order to illustrate different ideas.
benefit from experience it has gathered, correcting missing ~ The main problem in the game of Wumpus is to learn the
inaccurate parts of that knowledge. Finally, it must ackikow position of the monster. In order to plan for achieving this
edge the fact that both reasoning and acting takes time, arbjective, an agent needs to be able to reason about its own
try to balance those activities in a reasonable way. knowledge and about how will it change as a result of per-
In this paper we present how such rational agents can defdrming various actions. Thus, the logic it utilises in itar
with planning in domains where complexity makes findingsoning needs to strongly support epistemic concepts. At the
complete solutions intractable. Clearly, in many domaéss (same time, a notion of time-awareness is necessary, as we
pecially those that are, at least from agent’s point of viewrequire our agent to consciously balance planning andgctin
nondeterministic) it is not realistic to expect an agentéo b To accommodate those requirements, we employ a variant
able to find a total plan which solves a problem at handof Active Logic [Elgot-Drapkiret al, 1999] as the agent’s
Therefore, we investigate how an agent can create and reasanderlying reasoning apparatus. This logic was designed
aboutpartial plans By that we mean plans which bring it for non-omniscient agents and has mechanisms for dealing
somewhat closer to achieving the goal, while still being-sim with uncertain and contradictory knowledge. We believe it
ple and short enough to be computable in reasonable timés a good reasoning technique for versatile agents, as it has

been successfully applied to several different problems— i
cluding some in which planning plays a very prominent role | Deductor
[Puranget al, 1999].

The domain of Wumpus game has one more interesting
feature, namely that the interesting behaviour of the agent Game histor-y Learning
consists of two phases. First, it has to gather some infor- —
mation (“Where is the Wumpus?”) and, after that, it needs to
exploit this knowledge (“How to get rid of it from there?”).

Since this knowledge only becomes available during plan ex- Observation
ecution, not while agent is creating the plan, it needs toanak

its choice of actions depend on the previous observations of _ _
the world. Therefore, it has to create, reason about and ex- Figure 1: The architecture of the system.

ecute conditional plans. Currently we have chosen a simple,

straightforward way of representing conditional actioais,

though quite a few more advanced formalisms can be foun@bserving the world and introducing effects of actions —and

in the literature [Russell and Norvig, 2003]. potentially, other changes in the environment — into agent’

To summarise, our agent will create several different planknowledge base. It is important to note that Actor detersiine
and reason about usefulness of each one — inc|uding Whmhento StOp deliberation and start execution of the chosen
knowledge can be acquired by executing it. Further, it willplan.
judge whether it is more beneficial to immediately begin ex- These two modules form the core of the agent. By creating
ecuting one of those plans or rather to continue deliberatio and executing a sequence of partial plans our agent moves
In other words, the agent will be performing on-line plan- progressively closer and closer to its goal, until it reache
ning, interleaving it with plan execution. Moreover, we ex- point where a winning plan can be directly created by Deduc-
pect it to live much longer than any single planning episodeor, and its correctness can be proven.

I_asts, so it should generalise each squt_|on it finds. In par- However, success depends on whether the chosen partial
ticular, the agent needs to extract domain-dependentdontr jans are indeed moving an agetdserto the solution. Since
knowledge and use it when solving subsequent, similar probygents knowledge is incomplete and moreover it does not
lem instances. Finally, it will have to be able to handle non-aye enough resources to fully utilise the knowledge it pos-
stationary, adversary environment, to cooperate withrstite gagses. there is — in principle — no guarantee that it will be

multi-agent setting and to plan for goals more complex tharg, |y particular, if an Actor makes a mistake, the chosen pla
simple reachability properties (such as temporally exg¢end may lead to loosing the game.

goals and restoration goals).

Plan

Actor

This is the reason for including the third module in our

All of the features mentioned above have been extensivel : .
studied in the planning literature, including ideas howrto i Srchitecture. After the game IS over, regardiess of Whether
the agent has won or lost, learning system attempts to induc-

;%grgaet%;/a::gu; oCriTr?rlgjtlﬁr;ﬁics)f tgergr]i\r/]v%\%er V;/c')” tﬂ'scbuessTively generalise experience it has gathered — attempting t
9 paper. ' mprove Deductor’'s and Actor’s performance. We intend to

of our knowledge, nobody has yet attempted to merge all, or

. : use the learned information to fill gaps in the domain knowl-
\(/av\é)erﬂ most, of those features togetherin one, consistenefra edge, to figure out generally interesting reasoning divesti

This work is divided in the following way: the next section to discover relevant subgoals and, finally, to more effijent

. -~ . choose the best partial plan.
presents the architecture of our agent, describing the impo . . .
tant modules and their functions, as well as how they interac . !N Principle, learning could take place at any time, but we
Sections 3-5 provide more detailed overview of each modul© not currently see much benefit of learning in the middle
separately. In Section 6 we briefly present some of the mogf the game. Our variant of Wumpus game is simple enough

relevant work done by other researchers. We conclude witfat @ single episode does not last very long, and there is som
summary and several ideas for further work. useful information that is only available to an agent after t

game is finished — information which can be very valuable
2 Architecture during learning.
The architecture of our agent, presented in Figure 1, cnsis
of three main elements. First of them is the Deductor, which3 Deductor
performs deductive reasoning about world, actions and thei
consequences. Its main aim is to generate plans appligable in order to present Deductor we begin with a description of
current situation. Furthermore, it predicts — at least as$a the chosen knowledge representation formalism. Next we in-
agent’s past experience and imperfect domain knowledge atroduce those concepts from Active Logic which are neces-
lows — effects each of those plans will have, including whatsary for understanding the rest of this text. We then present
new knowledge can be acquired. how the conditional actions are incorporated in our frame-
The second component is the Actor, which chooses andiork, and finally we illustrate how the three elements are
executes plans created by Deductor. It is also responsible f combined for creating (partial) plans.

3.1 Knowledge representation 3.2 Active Logic

The language used by Deductor is the First Order LogidActive Logic (AL) is intended to describe the deduction as an
(FOL) augmented with Situation Calculus mechanisms forongoing process, instead of characterising just some tiefini
describing action and change. Within a given situation fixed-point consequence relation. To this end, it annotates
knowledge is expressed using standard FOL. In particulagvery formula with a time-stamp (usually an integer) of when
we do not put any limitations on the expressiveness of thét was first derived, and bookkeeps the reasoning process by
language, as some mechanisms we later employ would irincrementing the label with every application of an inferen
validate benefits of restricting ourselves to languages sucrule. E.g.,
as Horn clauses or description logics. Prediddtdescribes

)t — b
knowledge of the agent, e.g., - ¢a—0

i+1: b
Additional features, available in AL and important for this
K[smell(a) < 3,(Wumpus(z) A Neigh(a, r))] work, include theNow predicate, true only during current
time point(i.e., % : Now(j)" is true for alli = j, but false for
Al # j) and theobservation functiorwhich delivers axioms
that are valid since a specific time-point. It is used to model
aagent acquiring new knowledge from the environment. This

meaning:agent knows that it smells on exactly those square
which neighbour Wumpus’ positioiithe predicatd may be
nested, although it is seldom useful. We use standard reific

tion mechanism for putting formulae as parameters ofithe way the reasoning process may refer, Miauw, to the current

predicate. ; . .
The next step is to introduce action and change repre(absolute or relative) time and conclude whether it hasguhss

. Lo a deadline or not. It can also describe change that is not a
sentation. We use the yvell—known 'S|tua.t|0n Calculus aPyesult of performing any action — thus lifting two important
proach, introducing predicatdgolds(situation, formula) = initations present in the classical situation calculus.
to denote that theformula holds in situation and
Informs(action, groundedw f f) to denote thaactionpro- 3.3 Conditional plans
vides information whethegroundedwffolds. We also intro-
duce functionResult(situation, action), which returns the

set of situations resulting from applyi@gtionin situation action may be described asredicate ? action, : actions),

Another important concept in our formalism is a plan, meaning thatction; will be executed ifpredicate holds,

Wht'Ch Its' a sequer:_ce Olf actions. IPIans Lnay ?ﬁ sub_Je;]:tt to ito'&'nd actions Will be executed otherwise. We consider the
catenation operation. In every place where this might ma epossibility of introducing a more complex structure of con-

(in particular at argument list of th&" predicate) we intro- ditions (like while loops), but within this application simple
duce two additional parameters. We denote by them, respecy ditionals will suffice

tively, the set of situations and the set of plans to be exglut ~ rpis v e of conditional actions introduces a high branch-
(starting from those situations) in order to make the third a ing factor in case of longer plans, but this effect is unavoid
gument true. So, actually, the formula shown above shouldye 3¢ some level of consideration and will not be further

look as follows: discussed here. It has received some attention in the works
by other authors (see [Russell and Norvig, 2003] for extdnde
- : bibliography).
Klis}, {p}, smell(a) & 3.(Wumpus(x) A Neigh(a, z))] For a well-developed discussion of conditional partial
meaningin a situations agent knows thatif it executes plan plans and interleaving planning and execution see for exam-
then it smells on exactly those squares which neighbour Wunple [Bertoliet al, 2004], where authors introduce notion of
pus’ position progressive plan— intuitively, one that provably moves the
This particular formula is true regardless of the chosen agent closer to the goal. They also present an algorithm for
andp (it is an universal law), a fact which we can denote, forfinding such plans in a nondeterministic but fully known do-
example, by (set of all situations) and eith@r(empty plan) main and prove that it is guaranteed to find a solution if one
or P (the set of all plans). Still, there are many interestingexists.
formulae — like ones in the formWumpus(z)” — which A somewhat similar, very interesting idea was pursued in
are trueonly for specifics andp. [Nyblom, 2005], where author uses classical planner to plan
Please observe that the main notion our agentreasons abdat “optimistic” case, where an agent can choose the most
is its own knowledge about the world. Similar idea was intro-favourable outcome of each non-deterministic action. From
duced in [Petrick and Bacchus, 2004], where authors invessuch an optimistic plan it is then possible, using knowledge
tigate how various actions and observations of their effectof probabilities of each action outcome, to generate more re
modify agent’s belief state. They describe how such modialistic plans by updating relative costs of optimistic ans.
fications can be propagated backwards and forwards through .
the state history: as the agent gains new knowledge, it can i%g-"r Reasoning about plans
fer that various statemendigd hold in past states of the world, Finally, the representation language needs to be augmented
even if it did not know it then. Authors also show how such with reasoning capabilities. It is done using a set of rather
propagation can be used to deal with temporally extended andhatural, although not quite trivial, inference rules. Theie-
restoration goals. sentation, however, is outside the scope of this paper.dJsin

The conditional plans we consider consist of a concatematio
of classical and conditional actions, where each condition

those rules, the Deductor may conclude, from the exampl@&@hose which have similar structure to the successful one are
formula shown earlier, that more likely to lead to the goal.

In other words, the intention is for Actor to acquire gener-
alised knowledge of the domain, which can be used to guide
Vo K[S, P, ~smell(a) A Neigh(a, z) | < an agentin mo?e promising directions. ’

K[Result(s,p), 0, =Wumpus(z)] In a sense this is similar to ideas discussed in [,
2004], where authors use Markov Decision Process to rep-

:;ﬁavf/ht?gt Itthg(r):?: ;sr\r/ﬁlnlln LE)SO(S)';'(;? ﬂ:)??tsthnee?%ebr:)tuvr\"Hosi[esent planning domains and approximate policy iteraton a
X . p yol 9 POSIeans of learning agent’s behaviour. They use long random
tions This may be further used for creating a useful plan of

; ; ! walks to create progressively harder goals, thus bootsin
actions given that the agent currently is, or has been b,efor(?he agentin its I%argr]ﬂng of d%main-dgpendent control kzgwl
in positiona.

One of the reasons we have chosen symbolic representggge'

tion of plans, as opposed to a policy (an assignment of value .
to each state—action pair) is that we intend to deal withrothe® ~Learning

types of goals than just reachability ones. For a discussion As we mentioned earlier, our agent will be presented with
possibilities and rationalisation of why such goals arerfint |arge number of tasks to solve. Therefore, upon finishing eac
esting, see for example [Bertalt al, 2003], where authors game episode, the events (actions, observations and the re-
present a solution for planning with goals described in Comy|t) are fed into a learning module. This module attempts to
putational Tree Logic. This formalism allows to expressigoa generalise this information and provide guidelines forokct
of the kind “valuea will never be changed”, & will be re- anq peductor to improve their performance. In this paper we
stored to its original value” or “value d after timet will || mainly investigate the learning module from Actor’srpe
always beb” etc. . . _ spective, as using ILP framework to evaluate quality ofiphrt
Furthermore, one of our ideas is to extend the solution prepjans is, to the best of our knowledge, a novel idea. In furthe
sented in this paper to the case of multi-agent cooperativyork we also intend to improve domain knowledge and to
planning, where benefits of symbolic plan representatien arigentify interesting reasoning directions, but thoserlateas
even more clear. are — while definitely interesting and non-trivial — mainly a

To summarise, the agent uses the formalism presented {Ratter of integrating the already available techniques.
this section in order to deductively develop plans. Given th

complexity of the domain and vastly branching proof proce-5.1 Goal of learning

dure (currently it can only perform forward chaining) thecr ' . ,
ated plans are usually partial, i.e. they lead to some irgerm The first task we would like our learning module to address

: 4 . how an Actor is to choose which one of the plans being
gg%géates of the game, where the final outcome is not y(%:f‘onsidered by Deductor should it execute. Clearly, thedong

it allows planning phase to proceed, the better plans will it
get to choose from, and the more information about conse-
4 Actor quences of each plan will be known. On the other hand, more
The Actor module supervises the deduction process andf the deduction effort will be wasted by considering point
breaks it at selected moments, e.g., when it notices a partic situations which will not take place in this particular game
larly interesting plan or when it decides that sufficientdpd At some point, however, an Actor must choose one plan,
time has been spent on planning. It theraluatesexisting from those created by Deductor, for immediate execution.
partial plans and executes the best one of them. The evalome of those plans are better than others — but it cannot be
ation process is crucial here, and we expect the subsequetittermined exactly and with full confidence until those plan
learning process to greatly contribute to its improvemémt. extend to the terminal state of the game. And for problems
the beginning, the choice may be done at random, or someae intend to tackle, that is intractable — agent's computa-
simple heuristic may be used. After execution of partiahpla tional resources do not suffice tmmpletelysolve problems
a new situation is reached and the Actor lets the Deductowe are interested in. Therefore, the Actor needs some heuris
create another set of possible plans. tic method of evaluating quality of partial plans and of com-
This is repeated as many times as needed, until the gang&ring them.
episode is either won or lost. Losing the game clearly identi There is quite a bit of knowledge that domain experts could
fies bad choices on the part of the Actor and leads to an updatgovide — but our aim is to have a solution which doesreet
of the evaluation function. quire such experts. At the same time, if people familiar with
Winning the game also yields feedback that may be useg@articular domain are available, the agent should takeradva
for improving this function, but it also provides a possilil tage of whatever information they can provide. Therefore,
to (re)construct a complete plan, i.e. one which originatesnductive Logic Programming appears to fit our needs quite
from the initial situation and ends in a winning state. Iflsuc well: it uses background knowledge when it is available, but
a plan can be found, it may be subsequently used to immesan also solve problems when it is not.
diately solve any problem instance for which it is applieabl It is important to keep in mind that our agent has a dual
Moreover, even if such plan is not applicable, an Actor camaim, very akin to the exploration and exploitation dilemma,
use it when evaluating other plans found by the Deductomwell-studied in reinforcement learning and related resear

areas. On one hand, it wants to win the current game, but ateed to deal with is which example belongs to which class. It
the same time it needs to learn as much general knowledge &seasy to note that some plans — namely those that in agent’s
possible — in order to improve its performance at subsequergxperiencelolead to losing the game — are definitely exam-

tasks. ples of bad plans. However, not every plan which does not
] cause the agent to die is, indeedyadplan. What is more,
5.2 Choosing plans not every plan that leads teinning a game is a good one.

There are clearly many features which can distinguish beAn agent executing a dangerous plan might have just gotten
tween good and bad plans. And with sufficiently rich historylucky, if in a particular episode Wumpus was in favourable
of game episodes, it is possible to learn this distinctiorthe position.

simplest case the agent can start with Actor randomly choos- Therefore, if we want ILP algorithm to learn the concept
ing plans for execution. After a couple of games — some ofof bad plans, we do have a set of positive examples, and a set
which will be won but, likely, many will be lost — it will have of examples for which we do not — at least not immediately
enough experience to learn some useful rules. — know their affiliation. We have decided to use PROGOL

The main problem is that most work on ILP, as well as onas a learning algorithm. The standard version is presented i
Machine Learning in general, has been dealing with the probfMuggleton, 1995] and can be described here, in a somewhat
lem ofclassificationwhile what we need is rathewaluation ~ simplified manner, by the following steps:

There !s no predefined set of classe§ into which plans should gaject an example to be generalised. If no more exam-
be assigned. What our agent needs is a way to choobesie les exist, stop
one of them. P ' ' - o)

Still, in order to be able to take advantage of the vast 2. Construct the_most sp_ecmc clause, within provided Ian_—
amount of research done in the Inductive Logic Programming ~ 9uage restrictions, which entails selected example. This
framework, in the first step we recast our problems as a clas- IS called the "bottom clause”.
sification one. In particular, we attempt to distinguishngla 3. Find, by searching for some subset of the literals in the
that leading to losing the game from all the others. In our bottom clause, more general clauses. Choose one with
initial architecture this part is relatively easy — we assum the best “score”.
that the Deductor has perfect knowledge of consequences of4
execution of each plan, so it can deduce (for some pipas
fact “K[{s}, {p}, ~die]".

A separate question is whether an Actor dearn to
choose only plans for whichR'[—die]” has been deduced.
After all, not every plan for which such fact cannot be proven In our case we can define as positive examples those plans
actuallydoeslead to losing every game. which lead — or can bprovento possiblylead — to agent’s

Moreover, it is worth noting that if the Wumpus is allowed death. On the other hand, those plans which can be proven to
to move, there exist plans which do not lead to agent’s deatheverlead to the agent’s death are treated as negative exam-
but which do lead to states where winning it is no longer posples. We are working on ways to utilise other plans in some
sible — for example, if an agent gets stuck in a corner withway, those for which neither of the above assertions can be
Wumpus blocking its way out. It may be difficult for an agent proven (within reasonable time) — right now we simply ex-
to notice and learn that the mistake has been made in the prelude them from learning.

. Add the clause found in the previous step to the cur-
rent theory, and remove all clauses made redundant. Itis
worth noting that the best clause may make clauses other
than the examples redundant. Move back to Step 1.

vious step, not in the one when the agent was killed. With the definitions as above, we can use standard ILP al-
o gorithm, be it PROGOL or almost any other, to have Actor
5.3 Application of ILP learn to choose onlgon-losingplans for execution.

From the above analysis it becomes clear than the notion of However, this is only a beginning. After all, it is not quite
positiveand negativeexamples, as used in ILP algorithms, enough notto die, as an agent which moves in circles, without
is not quite appropriate for what we would like to expressexploring the world, clearly does not get eaten by the Wum-
in our framework. What they correspond to, informally, are pus — but it never wins either. On the other end of the spec-
conditions that are bothecessanandsufficient— while we trum, the feature “plan which kills the Wumpus” is clearly
are mainly interested those that are sufficient. non-operational.

An interesting line of research, which possibly could be Hopefully, we will be able to report more details on prac-
useful in our case, was presented in [Gretton and Thiebaufical applicability of the ideas described above when our im
2004], where authors attempt to deductively generat@lementation is finished and we have run some experiments.
domain-specific hypothesis language which is as simple as .
possible, and yet expressive enough to represent all the nee-4 Further ideas
essary concepts in a particular domain. This language iis theOne very promising idea seems to be exploring the epistemic
used by inductive learning algorithm to create generalisedjuality of plans. An agent should pursue those plans which
policies from solutions of small problem instances. provide it with the most important knowledge. Clearly, i th

Let us assume that we restrict ourselves to dividing plan®Vumpus domaiimportantis directly linked with monster’s
into two classes: those that can lead to agent’s death artdue position — or at least that is what human players conside
those that cannot. Each partial plan executed at some pré-to be. Therefore, as a next step, we can reddfamplans
vious game can be seen as a single example. First issue vas those that lead to the agent’s death or do not provide any

interesting knowledge. Again, we can use one of many ILPALECTO system in order to simultaneously learn two mu-
algorithms to learn such concepts. tually related predicated{itiates andT erminates) from

Another very general and important way of expressing dispositive-only observations.
tinction between good and bad partial plans, and one we feel Recently, [Kodnik and Laird, 2004] developed a system
can lead to very good results, is related to discovering relewhich is able to learn low-level actions and plans from goal
vant subgoals and landmarks in the plans, akin to the workierarchies and action examples provided by experts, mvithi
done in [Hoffmanret al, 2004]. the SOAR architecture.

The problem is that those ideas require more domain The work mentioned above focuses primarily on learning
knowledge than we are comfortable with. For example, whahow to act, without focusing on reaching conclusions in a de-
we would like to have is an agent figuring out that “position ductive way. In a sense, the results are somewhat more simila
of Wumpus” is important just from the definition of the rules to the reactive-like behaviour than to classical planniys s
and goals of the game. In principle, it appears to be postem, with important similarities to the reinforcement ieiag
sible — it is not difficult to deduce that knowing Wumpus’ and related techniques. In case of large search spaces this
position suffices for winning the game (the plan to win onceapproach may not be as effective as a suitable combination
Wumpus' position is known is simple and can be found easof learning and deduction. Therefore, some effort have been
ily). However, it is not clear how to combine such reasoningdevoted to searching for a suitable combination.
with learning as expressed above. Itis our understandatgth One attempt to escape the trap of large search space has
some modifications to the learning algorithm will be reqdire been presented in [DZerosiial, 2001], where relational

To summarise, it is easy (for a human) to see some generabstractions are used to substantially reduce cardinality
rules distinguishing good plans from bad ones. For examplesearch space. Still, this new space is subjected to reieforc
a plan for which an agent doesn’t know that it will not lose thement learning, not to a symbolic planning system.
game is a bad plan. Such knowledge can be easily provided A conceptually similar idea, but where relational represen
by domain expert and most ILP algorithms are ready to useation is actually being learned via behaviour cloning tech
it. Interesting question, however, is whether and how can th niques, is presented in [Morales, 2004].
knowledge be discovered by an agent itself. Outside the domain of planning, there is a lot of interesting

One way would be to try something along the lines of re-research being done in the learning paradigm.
search presented in [Walket al, 2004], where authors ran- Recently, [Colton and Muggleton, 2003] showed several
domly sample a large number of relational features and evalideas about how to learn interesting facts about the world,
uate them on small problems. The idea is that features founds opposed to learning a description of a predefined concept.
to work satisfactory on such sample problems should also dea somewhat similar result, more specifically related to plan

scribe larger problems sufficiently well. ning, has been presented in [Fextral., 2004], where the sys-
tem learns domain-dependent control knowledge beneficial i
6 Related Work planning tasks.

o] o] From another point of view, [Khardon and Roth, 1995]
Combination of planning and learning is an area of activeyresented a framework of learning done “specifically for the
research, in addition to the extensive amount of work beingyrpose of reasoning with the learned knowledge” — an in-

done separately in those respective areas. However, most g;resting early attempt to move away from flearning to
the related work we are aware of is devoted to either USin@:Iassifyparadigm.
state-of-the-art learning in a rather limited planningnfea Yet another track of research focuses on (deductive) plan-
work, or to using limited learning in a more complex plan- ping, taking into account incompleteness of agent’s knowl-
ning setup. Comparisons of the two areas are also relativelygyge and uncertainty about the world. Conditional plans; ge
common, while the true, nontrivial combination will appar- eralised policies, conformant plans and universal plags ar
ently require much more investigation. Since we believe itt e terms used by various researchers [Cinedtsil, 2004;
be very promising, this paper is aiming at attracting aitent gertolj et al, 2004] to denote in principle the same idea: gen-
tothisline of research. _erating a plan which is “prepared” for all possible reacsion
The first to mention is [Dietterich and Flann, 1995], which of the environment. This approach has much in common with
presented results establishing conceptual similarigés®n control theory, as observed in [Bonet and Geffner, 2001] or
explanation-based learning and reinforcement learniny. |earlier in [Dean and Wellman, 1991]. We are not aware of
particular, they discussed how EBL can be used to learn agny such research that would attempt to integrate learning.
tion strategies and provided important theoretical residn- As can be seen, many of the ideas we investigate in this pa-
cerning its applicability to this aim. per have been analysed previously, but an attempt to merge

~ There has been significant amount of work done in learnthem into a single, consistent framework has not yet been
ing about what actions to take in a particular situation. Ongnade.

notable example is [Khardon, 1999], where author showed

important theoretical results about PAC-learnability ctien ;

strategies in various models. 7 Conclusions and Further Work
In [Moyle, 2002] author discussed a more practical ap-The work presented here is more a discussion of an interest-

proach to learning Event Calculus programs using Theoryng track of research than a report on some concrete results.

Completion. He used extraction-case abduction and thélowever, we think that this idea is important and promising

enough to be subjected to wider discussion, and therefore wdcknowledgements

have decided to presentit in this forum. The authors are grateful to the anonymous reviewers for thei

We have introduced an agent architecture facilitating, oy thorough comments and suggestions, which lead to a
resource-aware deductive planning interwoven with plan eXsubstantial improvement of this paper '

ecution and supported by inductive, life-long learning.eTh
particular deduction mechanism used is based on ACtiVﬁ
Logic, in order to incorporate time-awareness into the de- eferences
duction itself. The plans created in deductive way are condiPiergiorgio Bertoli, Alessandro Cimatti, Marco Pistorada
tional, taking into account possible results of future @, Paolo Traverso. A framework for planning with extended
in particular information-gathering ones. goals under partial observability. International Confer-
The learning mechanism employed is based on PROGOL, ence on Automated Planning and Schedylipages 215—
although in principle any standard ILP algorithm would be 225, 2003.

suitable as well. Learning is expected to provide an evaluag,;q, viorqio Bertoli, Alessandro Cimatti, and Paolo Traeer
tion of the current deductive knowledge in order to improve Interleaving execution and planning for nondeterminjstic

the agent’s performance in the long run. : :
Wegare a?the moment workin %n implementation of the pa(t[a!ly observable domains. European Conference on
9 P Artificial Intelligence pages 657-661, 2004.

system and expect to be able to report results of first experi-

ments at the time of the workshop. Blai Bonet and Hector Geffner. Planning and control in arti-
In the future we intend to continue this work in the follow- ~ficial intelligence: A unifying perspectiveApplied Intelli-
ing directions: gence 14(3):237-252, 2001.

e Discovering subgoals and subplans. It seems that onélessandro Cimatti, Marco Roveri, and Piergiorgio Bertoli
of the most useful capacities of humans problem solving Conformant planning via symbolic model checking and
is the ability to divide a complex problem into subprob- heuristic searchArtificial Intelligence 159(1-2):127-206,
lems and then to solve each of them separately before 2004.

combining their solutions into a global one. We would simon Colton and Stephen Muggleton. ILP for mathematical

like to force our agent to discover this possibility. Inour giscovery. In13th International Conference on Inductive
example domain a useful subgoal/subproblem could be | ogic Programming2003.

“First, find a place where it smells.” i)
: . . i Thomas Dean and Michael P. WellmaRlanning and Con-
¢ Discovering general rules which Deductor will be able . Morgan Kaufmann, 1991.

to use later on. An example of such a rule might be)) . .
“Don’t shoot if you don’t know Wumpus' position”. It Thomas G. Dietterich and Nicholas S. Flann. Explanation-

seems that availability of such rules can save a substan- Pased learning and reinforcement learning: A unified view.
tial amount of work for Deductor, if it can establish early ~ In Intérnational Conference on Machine Learningages
on that some plans would not be usable. 176-184, 1995.

e Generalisation of plans. A clear advantage would be>as0 Dzeroski, Luc De Raedt, and Kurt Driessens. Reldtiona
to reuse a valid plan in a different context. As long as reinforcement learningMachine Learning43(1/2):7-52,
the context does not differ substantially, this operation 2001.
should lead to fast solution of a problem similar to one Jennifer Elgot-Drapkin, Sarit Kraus, Michael Miller, Mad-
solved in the past. hura Nirkhe, and Donald Perlis. Active logics: A unified

e Capability of handling imperfect knowledge. The cur- formal approach to episodic reasoning. Technical Report
rent setup assumes complete domain knowledge, while CS-TR-4072, University of Maryland, 1999.
in many situations this assumption might be violatedAlan Fern, SungWook Yoon, and Robert Givan. Learning
(e.g., the agent might not know that the Wumpus ac- domain-specific control knowledge from random walks.

tually can move). The system should allow the agent |n International Conference on Automated Planning and
to learn domain knowledge, if possible, to complete its Scheduling2004.

understanding of the en\{lronme-nt.] _ Charles Gretton and Sylvie Thiebaux. Exploiting first-arde
e Last, but not least, allow interaction with a user. Domain regression in inductive policy selection. Gonference on

experts might be an invaluable source of knowledge that Uncertainty in Artificial Intelligence2004.

the agent should be able to exploit, if possible. For ex-... : .

ample, to better adjust tradeoff between spending time©'9 Hoffmann, Julie Porteous, and Laura Sebastia. Qidere

on deduction and induction, the agent could be guided landmarks |r'1 planning.Journal of Artificial Intelligence

by an external observer (the user) providing a feedback Research22:215-278, 2004.

about its performance. Khardon and Roth. Learning to reason with a restricted view.

The list above does not cover all the possible further inves- In Proceedings of the Workshop on Computational Learn-

tigations and extensions of the proposed system: it is just a "9 Theory, Morgan Kaufmann Publishef95.
biased presentation of the authors’ own interests and judgdRoni Khardon. Learning to take actionglachine Learning
ments. 35:57-90, 1999.

Tolga Konik and John Laird. Learning goal hierarchies from
structured observations and expert annotationg4th In-
ternational Conference on Inductive Logic Programming
2004.

Eduardo P. Morales. Relational state abstraction for rein-
forcement learning. I®Proceedings of the ICML'04 Work-
shop on Relational Reinforcement Learni2g04.

Steve Moyle. Using theory completion to learn a robot navi-
gation control program. 142th International Conference
on Inductive Logic Programmin@002.

Stephen Muggleton. Inverse entailment and Progdew
Generation Computing, Special issue on Inductive Logic
Programming 13(3-4):245-286, 1995.

Per Nyblom. Handling uncertainty by interleaving cost-esva
classical planning with execution. Bwedish Al Society
Workshop2005.

Ronald P. A. Petrick and Fahiem Bacchus. Extending the
knowledge-based approach to planning with incomplete in-
formation and sensing. IAroceedings of the International
Conference on Automated Planning and Schedupages
2-11, 2004.

Khemdut Purang, Darsana Purushothaman, David Traum,
Carl Andersen, and Donald Perlis. Practical reasoning and
plan execution with active logic. IRroceedings of the
IJCAI-99 Workshop on Practical Reasoning and Rational-
ity, pages 30-38, 1999.

S. Russell and P. NorvigAtrtificial Intelligence: A Modern
Approach Prentice Hall Series in Al, 2nd edition, 2003.

Trevor Walker, Jude Shavlik, and Richard Maclin. Relatlona
reinforcementlearning via sampling the space of first-orde
conjunctive features. In working notes of ICML-04
Workshop on Relational Reinforcement Learnid@04.

	Introduction
	Architecture
	Deductor
	Knowledge representation
	Active Logic
	Conditional plans
	Reasoning about plans

	Actor
	Learning
	Goal of learning
	Choosing plans
	Application of ILP
	Further ideas

	Related Work
	Conclusions and Further Work

