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Reasoning with limited computational resources (such as time or memory) is an important prob-

lem, in particular in knowledge-intensive embedded systems. Classical logic is usually considered

inapropriate for this purpose as no guarantees regarding deadlines can be made. One of the

more interesting approaches to address this problem is built around the concept of active logics.

Although a step in the right direction, active logics still do not offer the ultimate solution.

Our work is based on the assumption that Labeled Deductive Systems offer appropriate metamathe-

matical methodology to study the problem. As a first step, we have reformulated a pair of systems,

namely the memory model and its simplification, the step logic, proposed by Elgot-Drapkin, as

Labeled Deductive Systems. This paper presents our motivation behind this project and presents

in some detail the first system.

1 Introduction

Reasoning with limited computational resources (such as time or memory) is an important

problem, in particular in knowledge-intensive embedded systems. Usually a decision,

based on a principled reasoning process, needs to be taken within limited time and given

constraints on the processing power and resources of the reasoning system. Therefore

symbolic logic is often considered as an inadequate tool for implementing reasoning in

such systems: logic does not guarantee that all relevant inferences will be made within

prescribed time nor does it allow to limit the required memory resources satisfactorily.

The paradigm shift that occured in Artificial Intelligence in the middle of 1980s can be

attributed to increasing awareness of those limitations of the the predominant way of

representing and using knowledge.

Since then there have been some attempts to constrain the inference process per-

formed in a logical system in a principled way. One possibility is to limit the expressive

power of the first-order logical calculus (as, e.g., in description logics) in order to guar-

antee polynomial-time computability. Another is to use polynomial approximations of

the reasoning process. Yet another is to constrain the inference process in order to re-

tain control over it. More details about each of those lines of research can be found in

Section 5.

One of the more interesting lines of research in this area during 1990s has focused on

logic as a model of an on-going reasoning process rather than as a static characterization
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of contents of a knowledge base. It begun with step-logic [7] and evolved into a family of

active logics. The most recent focus of this research is on modeling dialog and discourse.

However, other interesting applications like planning or multi-agent systems have also

been investigated, while some other possibilities wait for analysis. In particular, the

possibility of applying this framework to resource-bounded reasoning in embedded systems

is in the focus of our interest.

Finally, one should name the relations to the large area of belief revision that also

investigates the process of knowledge update rather than the static aspects of logical theo-

ries. However, there has been little attention paid to possibilities of using this approach in

resource-bounded reasoning - the work has rather focused on the pure non-monotonicity

aspect of knowledge revision process.

The rest of the paper is divided as follows. Section 2 presents the background of

the idea leading to our investigation. Section 3 introduces the memory model being the

foundation for active logics research. Then Section 4 presents an LDS formalization of

the memory model. In Section 5 we briefly discuss related work. Finally the conclusions

and some suggestion of further work are presented.

2 Background

The very first idea for this investigation has been born from the naive hypothesis that in

order to be able to use symbolic logical reasoning in a real-time system context it would

be sufficient to limit the depth of reasoning to a given, predefined level. This way one

would be able to guarantee predictability of a system using this particular approach to

reasoning. Unfortunately, such a modification performed on a classical logical system

yields a formalism with a heavily modified and, in principle, unknown semantics [21].

It would be necessary to relate it to the classical one in a thorough manner. This task

seems very hard and it is unclear for us what techniques should be used to proceed along

this line. But the very basic idea of “modified provability”: A formula is a theorem iff

it is provable within n steps of reasoning, is still appealing and will reappear in various

disguises in our investigations.

The next observation made in the beginning of this work was that predictability (in

the hard real-time sense) requires very tight control over the reasoning process. In the

classical approach one specifies a number of axioms and a set of inference rules, and the

entailed consequences are expected to “automagically” appear as results of an appropriate

consequence relation. Unfortunately, this relation is very hard to compute and usually

requires exponential algorithms. One possibility is to modify the consequence relation in

such way that it becomes computable. However, the exact way of achieving it far from

obvious. We have investigated previous approaches (listed in Section 5) and concluded

that a reasonable technique for doing this would be to introduce a mechanism that would

allow one to control the inference process. One such mechanism is available in Labeled

Deductive Systems [10].

In its most simple, somewhat trivialized, setting a labeled deductive system (LDS)

attaches a label to every well-formed formula and allows the inference rules to analyze and

modify labels, or even trigger on specific conditions defined on the labels. E.g. instead of



the classical Modus Ponens rule A,A→B

B
a labeled deduction system would use α:A, β:A→B

γ:B
,

where α, β, γ belong to a well-defined language (or, even better, algebra defined over

this language) of labels, and where γ would be an appropriate function of α and β. If

we were to introduce our original idea of limited-depth inference, then γ could be, e.g.,

max(α, β) + 1 provided that α and β are smaller than some constant N .

A similar idea, although restricted to manipulation of labels which denote time

points, has been introduced in step-logic [7] which later evolved into a family of active

logics [9]. Such a restriction is actually a reasonable first step towards developing a formal

system with provable computational properties. Active logics have been used so far to

describe a variety of domains, like planning [20], epistemic reasoning [8], reasoning in the

context of resource limitations [17] or modeling discourse. We are definitely interested

in pursuing this line of investigations, however in a manner that is more amenable to

metamathematical investigations. LDS seems to be a perfect technical choice for that

purpose. In particular, various possibilities offered by the freedom of choice of the labeling

algebras used to define the inference rules can be studied. Properties of the consequence

relations defined this way are definitely worth analyzing in order to gather understanding

of what can be achieved in the resource-limited setting, and what (semantical) price is

paid for this.

3 Active Logics

Active logics originated from an attempt to formalize a memory model, inspired by cog-

nitive psychology research, which was studied at the University of Maryland during the

1980s [5]. It has been first formalized by step logic. However, this formalisation has left

many of the interesting properties of the model outside its scope.

The memory model (MM later on) consists of five parts:

• LTM, the long term memory, which contains rules consisting of pairs of formulae: (trigger,

contents). Semantic retrieval is associative based on trigger formulae.

• STM, the short term memory, which acts as the current focus of attention. All new

inferences must include a formula from the STM.

• QTM, the quick term memory, which is a technical device for buffering the next cycle’s

STM content.

• RTM, the relevant term memory, which is the repository for default reasoning and rel-

evance. It contains formulae which have been pushed out of the STM but still may be

important for default resolution.

• ITM, the intermediate term memory, which contains all facts which have been pushed

out of the STM. The contents of the ITM provides the history of the agents reasoning

process. ITM provides support for goal-directed behavior.

Three of the parts, LTM, STM and ITM, originate from cognitive pychology research.

The other two, QTM and RTM, have been invented by Drapkin, Miller and Perlis, as an

auxiliary technical device. Figure 1 shows how the parts are connected to each other.
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Figure 1. The memory model from [5].

4 Active logics as an LDS

As the first step we have chosen the first active logic, namely the step logic SL7 defined

in [7]. It is, in its turn, a simplification of MM presented above. It appeared [2] that

SL7 can be rather straightforwardly formulated as an LDS. Below, we show how this

formalization can be extended to the original MM. Due to the space limitation we are

able to present only rudimentary introduction to the original systems. The reader is asked

to refer to the original publications for detailed presentation of each of them: MM [5] and

LDS [10]. a more detailed presentation can be found in [1].

4.1 LDS

Traditionally a logic was perceived as a consequence relation on a set of formulae. Prob-

lems arising in some application areas have emphasized the need for consequence relations

between structures of formulae, such as multisets, sequences or even richer structures. This

finer-tuned approach to the notion of a logical system introduces new problems which call

for an improved general framework in which many of the new logics arising from computer



science applications can be presented and investigated. LDS, labeled deductive systems,

was presented in [10] as such a unifying framework.

The first step in understanding LDS is to understand the intuitive message, which is

very simple: Traditional logics manipulate formulae, while an LDS manipulates declarative

units, pairs formula : label of formulae and labels. The labels should be viewed as more

information about the formulae, which is not encoded inside the formulae. E.g., they can

contain reliability (in an expert system), where and how a formula was deduced, or time

stamps.

A logic is here a pair (`, S`) where ` is a structured, possibly non-monotonic con-

sequence relation on a language L and S` is an LDS. ` is essentially required to satisfy

no more than identity (i.e. {A} ` A) and a version of cut.

A simple form of LDS is the algebraic LDS. There are more advanced variants,

metabases, in which the labels can be databases.

An LDS proof system is a triple (A,L, R) where A is an algebra of labels (with

some operations), L is a logical language and R is a discipline of labeling formulae of the

logic (with labels from the algebra A), together with a notion of a database and a family

of deduction rules and with agreed ways of propagating the labels via application of the

deduction rules.

4.2 Elgot-Drapkin’s memory model as an LDS

In our opinion the formalisation of MM in step logic is an oversimplification. In particular,

the STM size limit is omitted so that the number of formulae in each step may increase

rapidly. This problem has also been recognized in [17], [16] and [13]. Therefore we have

attempted to faithfully model the original system.

The labeling algebra is based on the following structure:

Slabels
df
= {LTM ,QTM , STM , ITM } × Swff × {C, U} × N × N × N (1)

where the interpretation of a tuple in Slabels is the following. If

(location, trigger , certainity , time, position, time-left-in-rtm) ∈ Slabels

is a label, then location encodes the memory bank location of the formula (one of LTM ,

QTM , STM or ITM ), trigger is used for encoding the triggering formula for LTM items

(in particular, ε is used to denote the empty triggering formula), certainity is used in case

of defeasible reasoning to encode the status of the formula (certain or uncertain), time is

the inference time, position denotes the formula’s position in STM or ITM , and, finally,

time-left-in-rtm denotes the time the labelled formula should remain in the RTM . R ∈ N

is a constant used to limit the time a formula remains in RTM after it has left STM .

The set of axioms, Saxioms , is determined by the following three schemata:

(A1’) (STM , ε, C, i, i, 0) : Now(i) for all i ∈ N Clock

(A2’) (QTM , ε, C, i, 0, 0) : α for all α ∈ OBS (i), i ∈ N Obs

(A3’) (LTM , γ, C, 0, 0, 0) : α for all rules (γ, α) ∈ LTM LTM

The first rule describes retrieval from LTM into QTM:

(SR)
(STM , ε, c1, i, p, R) : α, (LTM , β, c2, i, 0, 0) : γ, α Rsr β

(QTM , ε, c2, i, 0, 0) : γ
Semantic

retrieval



The relation Rsr describes how the trigger formulae control the semantic retrieval.

The “real” inference using Modus Ponens is performed from STM to QTM:

(MP)
(STM , ε, c1, i, p1, R) : α, (STM , ε, c2, i, p2, R) : α → β

(QTM , ε,min(c1, c2), i, 0, 0) : β
Modus ponens

(EMP)

(STM , ε, c1, i, p1, R) : P1a

· · ·

(STM , ε, cn, i, pn, R) : Pna

(STM , ε, cn+1, i, pn+1, R) : (∀x)[(P1x ∧ . . . ∧ Pnx) → Qx]

(QTM , ε,min(c1, . . . , cn+1), i, 0, 0) : Qa
Extended MP

where function min is defined over the set {U, C} of certainity levels, with the natural

ordering U < C. The idea behind it is that the status of a consequence should not be

stronger than any of its premises.

The next rule, Negative Introspection, allows one to infer lack of knowledge of a

particular formula at time i. In order to express that we need to define the set Sth(i) of

conclusions that can be drawn at time i. Sth(i) can be computed by purely syntactical

operations and it can be defined recursively using the inference rules. It is well-defined for

every i ∈ N because the consequence relation is “directed” by the natural ordering of the

set N. Every inference rule necessarily increments the label. Therefore all the elements

in Sth(i) will be inferred from a finite number of instances of axiom (A1), namely those

for which labels vary between 0 and i − 1, and from the finite amount of observations

performed until the time i. As every inference rule increments the label, only a finite

number of applications of every rule is possible before the label reaches i.

Given a finite set Sth(i) of i-theorems, we can identify all closed subformulae oc-

curring in them and not occuring as separate theorems (function fcsf ). The process of

finding all closed subformulae for a given finite set of formulae (fformulae yields unlabeled

formulae) is computable.

We can now formulate the Negative Introspection rule:

(NI)
α ∈ fcsf (SSTM (i)), α /∈ fformulae(SSTM (i))

(QTM , ε, C, i, 0, 0) : ¬K(i, pαq)
Negative introspection

where the set Sth(i) described above is replaced by its memory-bank-specific counterparts,

SQTM (i), Snew-STM (i), SSTM (i) and SRTM (i). Just like Sth(i), they are computable by

purely syntactic operations and can be defined recursively on i.

MM in [5] and step logic use different methods to detect and handle contradictions.

Step logic indicates detected contradictions with the Contra predicate while MM uses

instead certainity levels and the loses predicate which is involved in the RTM mechanism.

We have allowed both possibilities1:

(CD1)

(STM , ε, C, i, p1, R) : α

(STM , ε, C, i, p2, R) : ¬α

(QTM , ε, C, i, 0, 0) : Contra(i, pαq, p¬αq)
Contradiction detection,

same certainity

1Actually we need also a rule symmetric to (CD2).



(CD2)

(STM , ε, c1, i, p1, R) : α

(STM , ε, c2, i, p2, R) : ¬α

c1 < c2

(QTM , ε, c1, i, 0, 0) : loses(pαq)
Contradiction detection,

different certainities

The next group of rules handles inheritance, i.e., governs the time a particular formula

stays in a memory bank or is moved to another one. The first inheritance rule says that

everything in LTM stays in LTM forever:

(IL)
(LTM , α, c, i, 0, 0) : β

(LTM , α, c, i + 1, 0, 0) : β
Inheritance in LTM

The STM is implemented as a FIFO queue of sets of declarative units rather than as a

FIFO queue of declarative units. This “lazy” implementation avoids selection among the

QTM contents. To achieve this behaviour we introduce a function fmin-STM-pos(i) which

counts the number of positions the STM structure occupies in the queue containing STM ,

QTM and ITM in the same time. The exact definition, rather cumbersome, is omitted

but can be found in [1].

One problem with the “lazy” STM implementation is that limiting the number of

non-empty sets in the STM does not necessarily limit the number of formulae in the STM.

Many formulae can be moved into STM at the same time, meaning more computation per

inference step. The flow from QTM to STM must thus be controlled to limit the amount

of computation to realistic levels.

Useful formulae from QTM are promoted to STM . Because of the “lazy” STM

implementation with sets of formulae in each position instead of single formulae we do

not have to do much selection here. We just want to avoid multiple copies of the same

formula in STM . We also make use of the RTM content to avoid rework on contradictions

which have already been resolved:

(IQS)

(QTM , ε, c, i, 0, 0) : α

α /∈ fformulae(SSTM (i))

loses(α) /∈ fformulae(SRTM (i))

(STM , ε, c, i + 1, i + 1, R) : α
Inheritance QTM → STM

When new formulae are entered into STM from QTM , old formulae must be pushed out

of STM into ITM , to get a FIFO behaviour and to limit the STM size to S. This is done

by the (IS) and (ISI) rules which use the function fmin-STM-pos mentioned above:

(II)
(ITM , ε, c, i, p, r) : α

(ITM , ε, c, i + 1, p, max(0, r − 1)) : α
Inheritance in ITM

(IS)

(STM , ε, c, i, p, R) : α

(p > fmin-STM-pos(i)) ∨ (Snew-STM (i + 1) = ∅)

Contra(i − 1, pαq, pβq) /∈ fformulae(SSTM (i))

Contra(i − 1, pβq, pαq) /∈ fformulae(SSTM (i))

loses(pαq) /∈ fformulae(SSTM (i))

(α 6= Now(i)) ∧ (α 6= K(i − 1, β)) ∨ (K(i, β) /∈ SQTM (i))

(α 6= Contra(i − 1, β, γ)) ∨ (Contra(i, β, γ) /∈ SQTM (i))

(STM , ε, c, i + 1, p, R) : α
Inheritance

in STM



(ISI)

(STM , ε, c, i, p, R) : α

(p = fmin-STM-pos(i)) ∧ (Snew-STM (i + 1) 6= ∅)

Contra(i − 1, pαq, pβq) /∈ fformulae(SSTM (i))

Contra(i − 1, pβq, pαq) /∈ fformulae(SSTM (i))

loses(pαq) /∈ fformulae(SSTM (i))

(α 6= K(i − 1, β)) ∨ (K(i, β) /∈ SQTM (i))

(α 6= Contra(i − 1, β, γ)) ∨ (Contra(i, β, γ) /∈ SQTM (i))

(ITM , ε, c, i + 1, p, R) : α
Inheritance

STM → ITM

We can now define the LDS encoding the memory model:

Definition 1 (Memory model LDS) LMM
df
= (Slabels ,L, RMM ), where the consequence

relation RMM is defined by the rules (SR), (MP), (EMP), (NI), (CD1), (CD2), (IL),

(IQS), (IS), (ISI) and (II).

Slabels should be interpreted as an algebra.

The next step would be to show that the behaviour of LMM is indeed as expected,

namely faithfully implements the behaviour of MM. As this requires additional clarifica-

tions, we do not present the final theorem, expecting the reader to have the intuition of

its contents. As usual, the details can be found in [1].

One problem with LMM is that the functions Sth(i), SQTM (i), SSTM (i), Snew-STM (i)

and SRTM (i) refer to subsets of Stheorems which only sometimes agree with the contents of

the current database. The sets are certainly computable, because one can compute them

by starting from the axioms and apply the inference rules to all possible combinations of

declarative units for i time steps.

The sets are contained in the current database if the proof process is “completed”

up to level i. In an implementation the time proceeds step by step and at each step

the inference rules are applied to every possible combination of declarative units. So the

“complete” sets above automatically become part of the current database. But when

describing the system as an algebraic LDS we can’t be sure of the “completeness level”

of an arbitrary database. The requirement for completeness requires restrictions on the

order in which inference rules are applied; some of the rules can’t be applied to some of

the declarative units until the database has reached a certain level of completeness.

One of the strengths of LDS is that it can handle features which are normally at

the metalevel, at the object level. It turns out that it can handle this ordering of the

application of inference rules, too. The trick consists of including the whole database in

the labeling of formulae. Details of such solution are presented in [1].

5 Related work

The attempts to constrain in a principled way the inference process performed in a logical

system have been done as long as one has used logic for knowledge representation and

reasoning. One possibility is to limit the expressive power of the first-order logical calculus

(as, e.g., in description logics) in order to guarantee polynomial-time computability. There

is a number of theoretical results in this area (see, e.g., [6]) but we are rather interested



in investigations aimed at practical computational complexity. One of the more popular

approaches is to use a restricted language (like, e.g., description logics), see [12, 18, 19]

for examples of this approach in practice.

Another possibility is to use polynomial approximations of the reasoning process.

This approach is tightly coupled to the issue of theory compilation. The most important

contributions in this area are [21, 3, 4, 14]. However, this approach, although it substan-

tially reduces the computational complexity of the problem, still does not provide tight

bounds on the reasoning process.

Yet another possibility is to constrain the inference process in order to retain control

over it. An early attempt has been reported in [15]. The next step in this direction was the

step-logic [7] that evolved into a family of active logics [9]. Such a restriction is actually

a reasonable first step towards developing a formal system with provable computational

properties. Active logics have been used so far to describe a variety of domains, like

planning [20], epistemic reasoning [8], reasoning in the context of resource limitations [17]

or modeling discourse.

There is a growing insight that logic, if it is to be considered as a useful tool for

building autonomous intelligent agents, has to be used in a substantially different way than

before. Active logics are one example of this insight, while other important contributions

might be found, e.g., in [11] or [22].

6 Conclusions and future work

We have presented an LDS-based formalization for an early active logic, based on the

memory model. This allows us to expect that even in the case of more complex, time-

limited reasoning patterns, LDS will appear to be a useful and powerful tool. Actually,

the problem with restricting the inference rule applications to a particular order in order

to get hold of non-monotonic dependencies, can be solved satisfactorily by just extending

the labeling algebra and then constraining the inference rule invocations by appropriately

constructed predicates over these labels.

The technique described in this paper raises a number of interesting questions that

we intend to investigate. First, what is the actual status of the consequence relation RMM

in the spectrum of algebraic consequence relations defined in [10]? Can this knowledge be

used to better characterize the logic it captures? Is it possible to characterize the time-

limited reasoning in such manner that the worst-case reasoning time (analogously to the

worst-case execution time, known from the area of real-time systems) could be effectively

computed? What would be then the semantical characterization of such a logic?

Speaking slightly more generally, we hope that LDS may serve as a tool for specifying

logics that artificial intelligence is looking for: formalisms describing the knowledge in flux

(to quote the famous title of Peter Gärdenfors) that serve intelligent agents to reason about

the world they are embedded in and about other agents, without resorting to artificial,

extra-logical mechanisms.
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