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A New Q-Learning Algorithm Based
on the Metropolis Criterion

Maozu Guo, Yang Liu, and Jacek Malec

Abstract—The balance between exploration and exploitation is one of the
key problems of action selection in Q-learning. Pure exploitation causes
the agent to reach the locally optimal policies quickly, whereas excessive
exploration degrades the performance of the Q-learning algorithm even if
it may accelerate the learning process and allow avoiding the locally op-
timal policies. In this paper, finding the optimum policy in Q-learning is de-
scribed as search for the optimum solution in combinatorial optimization.
The Metropolis criterion of simulated annealing algorithm is introduced in
order to balance exploration and exploitation of Q-learning, and the mod-
ified Q-learning algorithm based on this criterion, SA-Q-learning, is pre-
sented. Experiments show that SA-Q-learning converges more quickly than
Q-learning or Boltzmann exploration, and that the search does not suffer
of performance degradation due to excessive exploration.

Index Terms—Exploitation, exploration, Metropolis criterion,
Q-learning, reinforcement learning.

I. INTRODUCTION

Reinforcement learning (RL) is one of the most rapidly developing
machine learning methods in recent years [1], [2]. It includes the tem-
poral difference algorithm proposed by Sutton [3] and the Q-learning
of Watkins [4], [5]. Those algorithms have been extensively used in
many applications such as industrial control, time sequence prediction
[6], robot soccer competition [7], and many more.

However, finding the proper balance between exploration and ex-
ploitation in Q-learning is one of the major issues requiring further
attention. Exploitation occurs if the action selection strategy is based
purely on current values of the state-action pairs (SAPs), i.e., when the
selection is greedy. In the case of most of the optimization problems,
this will lead to locally optimal policies, possibly differing from a glob-
ally optimal one. In contrast, exploration is the strategy based on the
assumption that the agent selects a nonoptimal action in the current
situation and obtains more knowledge about the problem. This knowl-
edge allows it to neglect the locally optimal policies, and to reach the
globally optimal one instead. On the other hand, excessive exploration
will drastically decrease the performance of a learning algorithm, and
in some cases might be even harmful with respect to the learning re-
sults themselves [8].

The balance between exploitation and exploration has been investi-
gated previously. A simple strategy proposed to deal with this problem
is the �-greedy [8] (with 0 � � < 1), with larger � corresponding to
larger probability of exploration. Here, the value of � has obviously
a great impact on the algorithm. Sutton and Barto compared the per-
formance of learning for different � values and concluded that the re-
sult for a nonzero � is usually better than that for � equal 0 (i.e., the
blindly greedy case), which means that �-greediness is effective. How-
ever, excessive exploration becomes unnecessary after a period of an
initial interaction between the agent and the environment (assuming,
of course, that the state-action-pair values are constant). As reinforce-
ment learning is mainly used as an online learning method, excessive
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exploration will unavoidably result in the decreasing performance of a
RL algorithm.

An overview of strategies addressing the balance problem has
been presented by Kaelbling, Littman and Moore [9]. The first three
formally justified techniques are dynamic-programming, Gittins
allocation indices, and learning automata. However, the expense of
dynamic-programming approach is exponential, Gittins allocation
indices method applies only under the discounted expected reward
criterion with immediate reward, and learning automata approach
does not necessarily converge to the correct action. Besides, all three
methods provide formal guarantees only for the case of immediate
reward and are not extensible in an obvious way to the delayed
reinforcement case. The other three strategies, labeled ad hoc, and
not formally justified, are greedy approaches, randomized strategies
(including Boltzmann exploration), and interval-based techniques.
However, unmodified greedy strategies will necessarily pick subop-
timal actions, randomized strategies get no direction in exploration,
Boltzmann exploration, while ameliorating this problem, suffers
when the values of the actions are not separated enough, moreover it
converges unnecessarily slowly if not properly tuned, and finally, the
interval-based techniques require the algorithm to store statistics for
each action.

Therefore, we have decided to explore the possibility of improving
the simple �-greedy approach by appropriately reducing � during the
learning process. This will not only improve the ability of the agent
to acquire new knowledge, but will also allow the algorithm to avoid
performance decrease due to the constant value of � (and thus constant
probability of exploration). A solution to a similarly posed problem
may be found in the simulated annealing (SA) algorithm, where a local
change of a solution to a combinatorial optimization problem is based
on the Metropolis criterion [10]. In this paper, the task of finding the
optimal policy in Q-learning is transformed into search for an optimal
solution in a combinatorial optimization problem. Then the Metropolis
criterion from SA algorithm is applied to the search procedure in order
to control the balance between exploration and exploitation. Hence, in
the execution process of the proposed algorithm, the exploration will
gradually decay, leading to convergence towards the optimum. After in-
troducing the proposed method we present some experimental results
confirming the hypothesis. The paper ends with conclusions and sug-
gestions for future work.

II. SIMULATED ANNEALING (SA) AND Q-LEARNING

A. SA Algorithm

Simulating the annealing process of solids, the SA algorithm is one
kind of the computational processes resembling nature [11] and has
been shown to be an effective approximate algorithm to solve combi-
natorial optimization problems. The Metropolis criterion, the core of
the SA algorithm, derives from the importance sampling method pro-
posed by Metropolis and others in 1953 [10]. Observing the similarity
between the annealing process of solids and combinatorial optimiza-
tion problems, Kirkpatrick introduced the Metropolis criterion into op-
timization to solve the problem of getting stuck in the local optima
[12]. In the SA algorithm, the transition probability P (i ) j) of the
Metropolis criterion is used to decide whether the transition from the
current state (solution) i to the new state j occurs. P (i ) j) can be
defined as follows (in case of a maximization problem):

P (i) j) =
1; if f(j) � f(i)

exp f(j)�f(i)
t

; otherwise
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where f(i) and f(j) are the values of the cost function of the opti-
mization problem. f(i) and f(j) can be compared to the energy of the
states i and j, respectively, in an annealing solid. Obviously, the SA
algorithm does not greedily reject all the suboptimal solutions, and the
optimal state can eventually be reached.

B. Q-Learning Algorithm

Q-learning, one of the most important reinforcement learning algo-
rithms, was presented by Watkins in 1989 [4]. Another case of rein-
forcement learning is the temporal difference learning (TD) algorithm
[5], and some researchers classify Q-learning as a special case of TD
learning [13], [8].

One-step Q-learning is a simple algorithm, in which the key formula
to modify the Q value is as follows:

Q(st; at) Q(st; at)

+� rt + 
max
a

Q(st+1; a)�Q(st; at)

where Q(st; at) is the value function of the state-action pair (st; at)
at moment t. � and 
 are the learning rate and discount factor, respec-
tively, and rt is the reward value received as the result of taking action
at in state st.

Algorithm 1: ONE-STEP Q-LEARNING ALGORITHM

1. Initiate arbitrarily all values;
2. Repeat (for each episode):
(a) Choose a random (initial) state ;
(b) Repeat (for each step in the
episode):
i. Select an action according to
the policy;
ii. Execute the action , receive imme-
diate reward , then observe the new state
;
iii.

Q(s; a) Q(s; a) + � r + 
max
a

Q(s0; a0)�Q(s; a) :

iv.
Until is one of the goal states;
Until the desired number of episodes have
been investigated.

In the original Q-learning algorithm, the greedy strategy with pure
exploitation (i.e., to select the optimal action according to the current
state-action pair value, step 2(b)i in One-step Q-learning algorithm) is
used. But by employing this strategy, it is generally difficult to obtain
satisfactory results as the system usually falls into a locally optimal
solution even if the learning time is extended. In the case of the ex-
ploration strategy, the agent is allowed to adopt a nonoptimal action
in the current situation. For instance, in the �-greedy strategy, in order
to balance the contradiction between exploration and exploitation, it is
proposed to explore nonoptimal actions in the current situation with a
fixed probability �. However, the longer the learning process, the more
accurate the knowledge of the agent becomes (i.e., the Q values con-
verge to the optimal Q�), and hence continuing exploration with fixed
probability must result in the decrease of performance of the system.
Therefore, it is necessary to decay the exploration appropriately after
some adequate amount of interactions between the agent and the envi-
ronment.

III. Q-LEARNING AND THE METROPOLIS CRITERION

As the accuracy of the agent’s knowledge about the environment
increases, the proportion of exploration should decrease. Toward this
effect, the Metropolis criterion from SA algorithm is introduced into the
action-selection strategy of Q-learning. The resulting algorithm, called
SA-Q-learning, is presented below.

A. The Main Principle

One can distinguish two kinds of search for optimum solutions. One
is to search for the optimum in the solution space of combinatorial opti-
mization problems (like, e.g., the traveling salesman problem). Another
is to find the optimal policy (or path) given an initial state and a goal
state in some appropriate state space (e.g., game problems). Reinforce-
ment learning, which belongs to the latter kind, is based on observing
the environment changes from a state to another as a result of the ac-
tions of an agent; in this process, the value function of the state (or the
state-action pair) is calculated so that the optimal policy can be found.

The formal definition of the policy space is given below to describe
learning definite policies in the discrete Markov decision process en-
vironment. Then the latter kind of problems mentioned above can be
compared to the former one so that Q-learning can be regarded as a
combinatorial optimization problem and thus it becomes meaningful
to introduce the Metropolis criterion into the Q-learning algorithm.

Definition 1: In a problem with a discrete finite state space, the
policy space is the setP = A(s1)�A(s2)�� � ��A(sn), where si(i =
1; 2; . . . ; n) are the possible environment states, A(si) are the sets of
actions allowed in each of the state si, respectively. A problem policy
will be represented as a n-tuple (a1; a2; . . . ; an), with ai 2 A(si).

Definition 1 describes the policy space in case of problems with finite
state spaces. It can obviously be easily extended to the case of problems
with infinite state spaces. Moreover, the finiteness of the state space
does not affect the considerations that follow below.

Observation 1: Let P be a policy space for a problem. The change
of any element in a n-tuple (a1; a2; . . . ; an) corresponds to the transi-
tion from one solution to another in the policy space P .

Proof: Assume that the i-th element is changed to
be bi, bi 2 A(si). Then the new corresponding n-tuple
becomes (a1; a2; . . . ; ai�1; bi; ai+1; . . . ; an). Hence,
(a1; a2; . . . ; ai�1; bi; ai+1; . . . ; an) 2 P due to Definition 1.

The value function of a policy is used to evaluate the policy. As it is
based on Q-values, let us be reminded of the definition here.

Definition 2: Let p 2 P be a policy. The Q-value for a state-action
pair is defined as the expected discounted reward with infinite horizon,
i.e.,

Q
p(s; a)

=

df E(Rtjst = s; at = a)

=E

1

k=0



k
rt+k+1jst = s; at = a

where the actions are chosen according to the policy p.
Definition 3: Let p 2 P . The value function V (p) of the policy p is

V (p)
=

df V ((a1; a2; . . . ; an)) =

n

k=1

Q
p(sk; ak)

i.e., it is the sum of all the Q-values obtained for this policy.
Regarding the reward maximization problem, the policy p1 is con-

sidered superior to the policy p2 if V (p1) > V (p2).
We will compare the value of a policy to the energy of the micro-

cosmic state in solid annealing, and it will be used in the algorithm
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to decide the probability of the action-selecting, in combination with
other parameters, such as the temperature.

Observation 2: If the policy
p1 = (a1; . . . ; ai�1; ai; ai+1; . . . ; an) transits to the policy
p2 = (a1; . . . ; ai�1; bi; ai+1; . . . ; an), then the difference between
their values is V (p2)� V (p1) = Q(si; bi)�Q(si; ai).

Proof: Directly from Definition 3.

B. SA-Q-Learning Algorithm

Unlike in the one-step Q-learning (Algorithm 1), in the
SA-Q-learning algorithm, when the agent selects actions, it does
not obey the policy learned so far, but also attempts to explore (ac-
cording to the parameters such as temperature) by increasing chances
of selecting actions other than those adopted by the current (possibly
sub-)optimal policy.

Algorithm 2: SA-Q-LEARNING ALGORITHM

1. Initiate arbitrarily all values;
2. Repeat (for each episode):
(a) Choose a random (initial) state ;
(b) Repeat (for each step in the
episode):
i. Select an action in arbi-
trarily;
ii. Select an action in according
to the policy;
iii.
iv. Generate random value
v. If
then
vi. Execute the action , receive imme-
diate reward , then observe the new state

vii.

Q(s; a) Q(s; a) + � r + 
max
a

Q(s0; a0)�Q(s; a)

viii.
Until is one of the goal states
(c) Recalculate Temperature by the tem-
perature-dropping criterion.
Until the desired number of episodes has
been investigated.

Although the temperature-dropping criterion can be in general arbi-
trary, we use the geometric scaling factor criterion, i.e., tk+1 = �tk ,
k = 0; 1; 2; . . ., � 2 (0:5; 1). Usually � is a constant close to 1, in
order to guarantee a slow decay of the temperature factor in the algo-
rithm.

In Algorithm 2, no more than one action of the policy is modified
in steps 2(b)i–2(b)vi, and this corresponds to the transition from one
policy to another according to Observation 1. Therefore, the Q-learning
algorithm can be regarded as the combinatorial optimization in the
policy space. Hence, the introduction of the Metropolis criterion is ra-
tional.

By Observation 2, the statement 2(b)v in Algorithm 2 replaces the
difference of the value functions between the policies with Q(s; ar)�
Q(s; ap) in order to reduce the amount of computation.

Comparing the description of Algorithm 1, there are only two ad-
ditional steps in Algorithm 2: the randomized selection of action and

Fig. 1. Puzzle problem.

the evaluation of the Metropolis criterion. Therefore, there is no sub-
stantial increase of complexity between them, as the two steps take the
constant time to evaluate.

Although [8] concludes that the results for � > 0 in Q-learning
based on the �-greedy strategy are often better than those of � = 0,
a great number of explorations in case of fixed probability becomes
unnecessary and may even be harmful to the system performance as
the learning process proceeds. With the introduction of the Metropolis
criterion, SA-Q-learning algorithm eliminates the disadvantage of the
probability � remaining constant, and the exploration will gradually be
reduced in par with the dropping temperature.

IV. EXPERIMENTS

The SA-Q-learning algorithm has been tested on the 22� 17 puzzle
problem taken from [14] and compared with the results of Q-learning
algorithm equipped with the �-greedy strategy and of the Boltzmann
exploration.

A. The Puzzle Problem

In the puzzle problem (Fig. 1), the bold lines represent the walls and
the squares marked “G” are the goal states. The agent is located in
one of the squares of the grid (the current state) and has the choice
among eight possible actions. The four one-step actions are: NORTH,
SOUTH, WEST, and EAST. As their effect the agent moves one square
forward in the corresponding direction. Once encountering the wall,
the agent has no possibility of moving in the given direction—the re-
sulting state after such action is the original one. Each operation has
cost 1 and the received immediate reward can be assumed to be the neg-
ative cost value, i.e., �1. In the case of the four compound operations:
NORTH-TO-WALL, SOUTH-TO-WALL, WEST-TO-WALL, and EAST-TO-
WALL, the agent moves in the stated direction until it reaches a wall.
Each of those actions has cost 3. When the agent enters the goal region
(i.e., one of the goal states), it receives reward 100.

Throughout the learning process, the agent tries to find the optimal
path to the goal and to maximize the reward it receives. Assuming no
fixed initial position, all the optimal paths (i.e., the optimal policy)
should be found.

B. Results

Performance of the SA-Q-learning algorithm has been evaluated
with respect to two criteria.

1) The quality of the solution found, in terms of differences between
the paths proposed by the policy learned by the algorithm, and the
optimal paths for this problem, found by dynamic programming, as
a function of the episode.
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TABLE I
RECEIVED POLICY VALUES FOR THE DIFFERENT ALGORITHMS

Fig. 2. Quality of the solutions found by the algorithms.

2) The maximum value of the value function of the learned policy,
reflecting the distance to the optimal policy.

The comparison has been done for the Boltzmann exploration algo-
rithm, the basic Q-learning algorithm (i.e., the 0-greedy strategy), the
Q-learning equipped with the �-greedy strategy for � > 0, and the
SA-Q-learning algorithm, as described above.

The graph in Fig. 2 presents the growth of the quality of solutions
found by the four algorithms. The quality is measured by taking the
ratio between the number of steps on the optimal path from the initial
state to a goal state, and the number of steps on the path proposed by
the policy learned so far. First, it can be noticed that this ratio is higher
for the SA-Q algorithm than for the Boltzmann exploration. This may
be attributed to the poor separability of the Q-values for the problem
at hand and to the fixed schedule of temperature decay. In the case
of SA-Q-learning, the random value � enforces additional, beneficial
exploration, in particular in the beginning of the learning process. In
turn, the ratio is much higher for the Boltzmann exploration, which de-
creases exploration with the temperature decayed over time, than for
the basic Q-learning and the �-greedy strategy which provide much
worse on-line learning performance due to the unchanged exploration
probability. Moreover, while the pure reinforcement learning leads to
discovery of interactions among actions and eventually to some locally
optimal solution, the �-greedy case with larger � decreases the prob-
ability of executing the (locally) optimal actions by the agent. For the
studied case, � = 0:1 this improved the quality of the solution, but only
marginally.

For the SA-Q-learning algorithm, however, the chances of con-
verging to nonoptimal policies are much smaller due to initial
exploration and to its subsequent decrease according to the Metropolis
criterion.

Table I presents the values of the V function for the policies
found after specific number of learning episodes. Although a more
detailed analysis could be done, we have chosen to represent the
result of learning by the total sum of all the V values in the grid.
Such an illustration is sufficient to draw at least approximate con-
clusions about the quality of learning of the four algorithms. The
values found by SA-Q-learning algorithm exceed substantially those

found by the Boltzmann exploration, the basic Q-learning and the
0.1-greedy Q-learning. Moreover, it should be noted that the values of
the Boltzmann exploration algorithm are smallest, although the algo-
rithm converges faster than the basic Q-learning and the 0.1-greedy
Q-learning. This would suggest that fewer policies reach the optimum
in case of the Boltzmann exploration than in the other approaches.
Actually, Table I is another way of presenting the same results as
shown in Fig. 2, where the figure focuses on local quality of a policy
(exemplified by a path from a randomly chosen start state), while the
table presents a global, compound evaluation of the complete policy.

V. CONCLUSIONS

This paper presents learning the optimal policy in Q-learning as
a combinatorial optimization problem. The relation between explo-
ration and exploitation in search for an optimal solution is presented
and a version of the Q-learning algorithm based on the Metropolis
criterion—the SA-Q-learning algorithm—is proposed to balance be-
tween exploration and exploitation. Preliminary results show that the
SA-Q-learning is superior to the standard Q-learning algorithm with
respect to convergence speed. SA-Q-learning exhibits also improved
performance in comparison with some random learning algorithms,
namely the �-greedy strategy and the Boltzmann exploration.

Our future investigations will analyze the convergence speed of the
SA-Q-learning algorithm in relation to the discount factor�. Moreover,
similarly to the SA algorithm, the influence of the dropping criterion
of the temperature needs to be further analyzed.
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