
On Reasoning and Planning in Real-Time:
An LDS-Based Approach

Mikael Asker and Jacek Malec1

Abstract. Reasoning with limited computational resources (such
as time or memory) is an important problem, in particular in cog-
nitive embedded systems. Classical logic is usually considered inap-
propriate for this purpose as no guarantees regarding deadlines can be
made. One of the more interesting approaches to address this prob-
lem is built around the concept ofactive logics. Although a step in the
right direction, active logics still do not offer the ultimate solution.

Our work is based on the assumption thatLabeled Deductive Sys-
temsoffer appropriate metamathematical methodology to study the
problem. As a first step, we have shown that the LDS-based approach
is strictly more expressive than active logics. We have also imple-
mented a prototype automatic theorem prover for LDS-based sys-
tems.

1 Introduction

Reasoning with limited computational resources (such as time or
memory) is an important problem, in particular in cognitive embed-
ded systems. Usually a decision, based on a principled reasoning pro-
cess, needs to be taken within limited time and given constraints on
the processing power and resources of the reasoning system. There-
fore symbolic logic is often considered as an inadequate tool for im-
plementing reasoning in such systems: classical logic does not guar-
antee that all relevant inferences will be made within prescribed time
nor does it allow to limit the required memory resources satisfacto-
rily. The paradigm shift that occured in Artificial Intelligence in the
middle of 1980s can be attributed to increasing awareness of those
limitations of the the predominant way of representing and using
knowledge.

Since then there have been some attempts to constrain the in-
ference process performed in a logical system in a principled way.
One possibility is to limit the expressive power of the first-order
logical calculus (as, e.g., in description logics) in order to guaran-
tee polynomial-time computability. Another is to use polynomial ap-
proximations of the reasoning process. Yet another is to constrain the
inference process in order to retain control over it. More details about
each of those lines of research can be found in Section 6.

One of the more interesting lines of research in this area during
1990s has focused on logic as a model of an on-going reasoning pro-
cess rather than as a static characterization of contents of a knowl-
edge base. It begun with step-logic [7] and evolved into a family
of active logics. The most recent focus of this research is on model-
ing dialog and discourse. However, other interesting applications like
planning or multi-agent systems have also been investigated, while

1 Department of Computer Science, Department of Computer Sci-
ence, Lund University, Box 118, 221 00 Lund, Sweden, email:
mikael.asker@fagotten.org, jacek@cs.lth.se

some other possibilities wait for analysis. In particular, the possi-
bility of applying this framework to resource-bounded reasoning in
cognitive robotic systems is in the focus of our interest.

Finally, one should name the relations to the large area ofbelief
revisionthat also investigates the process of knowledge update rather
than the static aspects of logical theories. However, there has been
little attention paid to possibilities of using this approach in resource-
bounded reasoning - the work has rather focused on the pure non-
monotonicity aspect of knowledge revision process.

The rest of the paper is divided as follows. Section 2 presents the
background of our investigation. Section 3 introduces the memory
model being the foundation for active logics research. Then Section 4
presents an LDS formalization of the memory model. Section 5 dis-
cusses how the described approach could be used for planning in
real-time for robotic applications. In Section 6 we briefly present re-
lated work. Finally the conclusions and some suggestion of further
work are presented.

2 Background

The very first idea for this investigation has been born from the naive
hypothesis that in order to be able to use symbolic logical reason-
ing in a real-time system context it would be sufficient to limit the
depth of reasoning to a given, predefined level. This way one would
be able to guarantee predictability of a system using this particular
approach to reasoning. Unfortunately, such a modification performed
on a classical logical system yields a formalism with a heavily modi-
fied and, in principle, unknown semantics [22]. It would be necessary
to relate it to the classical one in a thorough manner. This task seems
very hard and it is unclear for us what techniques should be used to
proceed along this line. But the very basic idea of “modified prov-
ability”: A formula is a theorem iff it is provable withinn steps of
reasoning, is still appealing and will reappear in various disguises in
our investigations.

The next observation made in the beginning of this work was that
predictability (in the hard real-time sense) requires very tight control
over the reasoning process. In the classical approach one specifies
a number of axioms and a set of inference rules, and the entailed
consequences are expected to “automagically” appear as results of
an appropriate consequence relation. Unfortunately, this relation is
very hard to compute and usually requires exponential algorithms.
One possibility is to modify the consequence relation in such way
that it becomes computable. However, the exact way of achieving
that is far from obvious. We have investigated previous approaches
(listed in Section 6) and concluded that a reasonable technique for
doing this would be to introduce a mechanism that would allow one
to control the inference process. One such mechanism is available in

Labeled Deductive Systems [10].
In its most simple, somewhat trivialized, setting a labeled deduc-

tive system (LDS) attaches alabel to every well-formed formula
and allows the inference rules to analyze and modify labels, or even
trigger on specific conditions defined on the labels. E.g., instead of
the classical Modus Ponens ruleA,A→B

B
a labeled deduction system

would useα:A, β:A→B
γ:B

, whereα, β, γ belong to a well-defined lan-
guage (or, even better, algebra defined over this language) of labels,
and whereγ would be an appropriate function ofα and β. If we
were to introduce our original idea of limited-depth inference, then
γ could be, e.g.,max(α, β) + 1 provided thatα andβ are smaller
than some constantN .

A similar idea, although restricted to manipulation of labels which
denote time points, has been introduced instep-logic[7] which later
evolved into a family ofactive logics[9]. Such a restriction is actu-
ally a reasonable first step towards developing a formal system with
provable computational properties. Active logics have been used so
far to describe a variety of domains, like planning [21], epistemic
reasoning [8], reasoning in the context of resource limitations [18]
or modeling discourse. We are definitely interested in pursuing this
line of investigations, however in a manner that is more amenable
to metamathematical investigations. LDS seems to be a perfect tech-
nical choice for that purpose. In particular, various possibilities of-
fered by the freedom of choice of the labeling algebras used to de-
fine the inference rules can be studied. Properties of the consequence
relations defined this way are definitely worth analyzing in order to
gather understanding of what can be achieved in the resource-limited
setting, and what (semantical) price is paid for this.

3 Active Logics

Active logics originated from an attempt to formalize a memory
model, inspired by cognitive psychology research, which was studied
at the University of Maryland during the 1980s [5]. It has been first
formalized bystep logic. However, this formalization has left many
of the interesting properties of the model outside its scope.

The memory model (MM later on) consists of five parts:

• LTM, the long term memory, which contains rules consisting of
pairs of formulae: (trigger, contents). Semantic retrieval is asso-
ciative based on trigger formulae.

• STM, theshort term memory, which acts as the current focus of at-
tention. All new inferences must include a formula from the STM.

• QTM, the quick term memory, which is a technical device for
buffering the next cycle’s STM content.

• RTM, the relevant term memory, which is the repository for de-
fault reasoning and relevance. It contains formulae which have
recently been pushed out of the STM but still may be important
for default resolution.

• ITM, the intermediate term memory, which contains all facts
which have been pushed out of the STM. The contents of the ITM
provides the history of the agents reasoning process. ITM may
provide support for goal-directed behavior.

Three of the parts, LTM, STM and ITM, originate from cognitive
psychology research. The other two, QTM and RTM, have been in-
vented by Drapkin, Miller and Perlis, as an auxiliary technical device.
Figure 1 shows how the parts are connected to each other.

4 Active logics as LDS-s

As the first step we have chosen the first active logic, namely the step
logic SL7 defined in [7]. It is, in its turn, a simplification of MM pre-

sented above. It appeared [2] thatSL7 can be rather straightforwardly
formulated as an LDS. Below, we show how this formalization can
be extended to the original MM. None of the active logic systems de-
fined so far ([18], [17], and [13]) has been able to faithfully capture
its full complexity. Therefore our first conclusion is that LDS offers
a more expressive mechanism to control deduction. This chapter is
based on MM presentation from [5] andLMM from [1].

4.1 LDS

Traditionally a logic was perceived as a consequence relation on a
setof formulae. Problems arising in some application areas have em-
phasized the need for consequence relations betweenstructuresof
formulae, such as multisets, sequences or even richer structures. This
finer-tuned approach to the notion of a logical system introduces new
problems which call for an improved general framework in which
many of the new logics arising from computer science applications
can be presented and investigated. LDS,labeled deductive systems,
was presented in [10] as such a unifying framework.

The first step in understanding LDS is to understand the intu-
itive message, which is very simple: Traditional logics manipulate
formulae, while an LDS manipulatesdeclarative units, i.e., pairs
formula : label , of formulae and labels. The labels should be viewed
as more information about the formulae, which is not encoded inside
the formulae. E.g., they can contain reliability (in an expert system),
where and how a formula was deduced, or time stamps.

A logic is here a pair(`, S`) where` is a structured, possibly
non-monotonic consequence relation on a languageL andS` is an
LDS. ` is essentially required to satisfy no more than identity (i.e.
{A} ` A) and a version of cut.

A simple form of LDS is thealgebraic LDS. There are more ad-
vanced variants,metabases, in which the labels can be databases.

An LDS proof systemis a triple(A, L,R) whereA is an algebra
of labels (with some operations),L is a logical language andR is
a discipline of labeling formulae of the logic (with labels from the
algebraA), together with a notion of adatabaseand a family of
deduction rules and with agreed ways of propagating the labels via
application of the deduction rules.

4.2 Elgot-Drapkin’s Memory Model as an LDS

In our opinion the formalization of MM in step logic is an oversim-
plification. In particular, the STM size limit is omitted so that the
number of formulae in each step may increase rapidly. This problem
has also been recognized in [18], [17] and [13], which present other
formal active logic systems. However, the major deficiency — the
exponential growth of the number of formulae in each reasoning step
— has not been satisfactorily solved by any of those approaches. In
Section 5 we address this problem again, postulating a solution.

Below we present an LDS-based formulation of the Memory
Model in order to show that LDS has substantially larger expressive
power than any of the active logics studied so far.

The labeling algebra is based on the following structure:

Slabels
df
= {LTM ,QTM ,STM , ITM} × Swff × {C, U} × N

3

(1)

where the interpretation of a tuple inSlabels is the following. If
(loc, trigger , certainity , time, position , time-left-in-rtm) ∈ Slabels

is a label, thenloc encodes the memory bank location of the formula
(one ofLTM , QTM , STM or ITM), trigger is used for encoding

unlimited size

can be inconsistent

unlimited size

semantic retrieval

Direct observation

FIFO queue

active beliefs

limited size

LIFO stack, never
 emptied

old STM contents

repository for default
 resolution and

 relevance
Prohibits faulty default
 conclusions
temporal decay of STM

Modus
Ponens

selection by RTM

entered into STM, no repetition

present in STM

discarded from
 STM

controls flow into STM

 attention
current focus of

LTM

RTM

ITM

QTM

STM

Figure 1. The memory model from [5].

the triggering formula forLTM items (in particular,ε is used to
denote the empty triggering formula),certainty is used in case of
defeasible reasoning to encode the status of the formula (certain or
uncertain),time is the inference time,positiondenotes the formula’s
position inSTM or ITM , and, finally,time-left-in-rtmdenotes the
time the labeled formula should remain in theRTM . R ∈ N is a
constant used to limit the time a formula remains inRTM after it
has leftSTM .

The set of axioms,Saxioms , is determined by the following three
schemata:

(A1) (STM , ε, C, i, i, 0) : Now(i) for all i ∈ N

(CLOCK)
(A2) (QTM , ε,C, i, 0, 0) : α for all α ∈ OBS(i),

i ∈ N (OBS)
(A3) (LTM , γ, C, 0, 0, 0) : α for all (γ, α) ∈ LTM

(LTM)

The first rule, SEMANTIC RETRIEVAL, describes retrieval from LTM
into QTM:

(SR)
(STM , ε, c1, i, p, R) : α, (LTM , β, c2, i, 0, 0) : γ, α Rsr β

(QTM , ε, c2, i, 0, 0) : γ

The relationRsr describes how the trigger formulae control the se-
mantic retrieval.

The “real” inference using either MODUS PONENSor EXTENDED

MODUS PONENSis performed from STM to QTM:

(MP)
(STM , ε, c1, i, p1, R) : α, (STM , ε, c2, i, p2, R) : α → β

(QTM , ε,min(c1, c2), i, 0, 0) : β

(EMP)
(STM , ε, c1, i, p1, R) : P1a
· · ·
(STM , ε, cn, i, pn, R) : Pna
(STM , ε, cn+1, i, pn+1, R) : (∀x)[(P1x ∧ . . . ∧ Pnx) → Qx]

(QTM , ε,min(c1, . . . , cn+1), i, 0, 0) : Qa

where functionmin is defined over the set{U, C} of certainty levels,
with the natural orderingU < C. The idea behind it is that the status
of a consequence should not be stronger than any of its premises.

The next rule, Negative Introspection, allows one to infer lack of
knowledge of a particular formula at timei. In order to express that
we need to define the setSth(i) of conclusions that can be drawn at
timei. Sth(i) can be computed by purely syntactical operations and it
can be defined recursively using the inference rules. It is well-defined
for everyi ∈ N because the consequence relation is “directed” by the
natural ordering of the setN. Every inference rule necessarily incre-
ments the label. Therefore all the elements inSth(i) will be inferred
from a finite number of instances of axiom (A1), namely those for
which labels vary between 0 andi − 1, and from the finite amount
of observations performed until the timei. As every inference rule
increments the label, only a finite number of applications of every
rule is possible before the label reachesi.

Given a finite setSth(i) of i-theorems, we can identify all closed
subformulae occurring in them and not occuring as separate theorems
(functionfcsf). The process of finding all closed subformulae for a
given finite set of formulae (fformulae yields unlabeled formulae) is
computable.

We can now formulate the NEGATIVE INTROSPECTIONrule:

(NI)
α ∈ fcsf (SSTM(i)), α /∈ fformulae(SSTM(i))

(QTM , ε, C, i, 0, 0) : ¬K(i, pαq)

where the setSth(i) described above is replaced by its memory-bank-
specific counterparts,SQTM(i), Snew-STM(i), SSTM(i) andSRTM(i). Just
like Sth(i), they are computable by purely syntactic operations and
can be defined recursively oni.

The (NI) rule involves the knowledge predicateK that takes as
one of its arguments a formula. Later rules will introduce predicates
Contra andloses which behave similarly. In order to keep the lan-
guage first-order we use the standard reification technique allowing
us to treat formulae (or rather their names) as terms of the language.
In order to make a distinction between formulae and their names,
quoting (shown aspαq, for an arbitrary formulaα) is used.

MM in [5] and step logic use different methods to detect and han-
dle contradictions. Step logic indicates detected contradictions with
the Contra predicate while MM uses instead certainty levels and
the loses predicate which is involved in theRTM mechanism. We
have allowed both possibilities, where CD1 handles the case of equal
certainties while CD2 and CD2’ deal with the case of different cer-
tainties:

(CD1)

(STM , ε, C, i, p1, R) : α
(STM , ε, C, i, p2, R) : ¬α

(QTM , ε,C, i, 0, 0) : Contra(i, pαq, p¬αq)

(CD2)

(STM , ε, c1, i, p1, R) : α
(STM , ε, c2, i, p2, R) : ¬α
c1 < c2

(QTM , ε, c1, i, 0, 0) : loses(pαq)

(CD2’)

(STM , ε, c1, i, p1, R) : ¬α
(STM , ε, c2, i, p2, R) : α
c1 < c2

(QTM , ε, c1, i, 0, 0) : loses(p¬αq)

The next group of rules handles inheritance, i.e., governs the time a
particular formula stays in a memory bank or is moved to another
one. The first inheritance rule says that everything inLTM stays in
LTM forever:

(IL)
(LTM , α, c, i, 0, 0) : β

(LTM , α, c, i + 1, 0, 0) : β

The STM is implemented as a FIFO queue ofsetsof declarative
units, rather than as a FIFO queue of declarative units. This “lazy”
implementation avoids selection among theQTM contents.

One problem with the lazySTM implementation is that limiting
the number of sets in theSTM does not necessarily limit the total
number of elements in those sets, which is the number of formulae
in the STM . If many formulae are moved intoSTM at the same
time step, the sets will contain many elements, theSTM will contain
many formulae and there will be more computation per inference
step. The flow fromQTM to STM must thus be controlled to limit
the amount of computation to realistic levels. And because there is
no selection among theQTM contents, everything that entersQTM
also entersSTM , so the flow intoQTM must be controlled as well.

OurSTM implementation uses the position field in the labels. The
value of the position field should be zero, unless the associated for-
mula is inSTM or ITM . In that case, it contains the time at which
the formula was moved intoSTM by the IQS rule. The position
field then remains unchanged, while the IS rule propagates the for-
mula forwards in time. A functionfmin-STM-pos(i) computes the min-
imum position value of all the declarative units in theSTM at time

i. At time i, the declarative units inSTM can have position values
fmin-STM-pos(i), . . . , i, see Figure 2 below.

A simple way to definefmin-STM-pos(i) would be to set it to
max(0, i − S + 1), whereS is the intended maximum number of
elements inSTM . If a position field in a label isfmin-STM-pos(i) at
time i, then the associated formula can be moved toITM at time
i + 1. The problem with this simple definition is that formulae will
“time out” from STM into ITM , even when no new formulae are
entered intoSTM . That is not the FIFO behaviour described in[5].

Our solution to the “time out” problem is to interpretS as the
maximum number ofnon-emptysets inSTM . We use a more com-
plex definition offmin-STM-pos(i) and do not move anything out from
STM to ITM if nothing is moved in fromQTM to STM . The ex-
act fmin-STM-pos(i) definition, rather cumbersome, is omitted but can
be found in [1].

Useful formulae fromQTM are promoted toSTM . Because of
the “lazy” STM implementation with sets of formulae in each posi-
tion instead of single formulae we do not have to do much selection
here. We just want to avoid multiple copies of the same formula in
STM . We also make use of theRTM content to avoid rework on
contradictions which have already been resolved:

(IQS)

(QTM , ε, c, i, 0, 0) : α
α /∈ fformulae(SSTM(i))
loses(α) /∈ fformulae(SRTM(i))

(STM , ε, c, i + 1, i + 1, R) : α

When new formulae are entered intoSTM from QTM , old formu-
lae must be pushed out ofSTM into ITM , to get a FIFO behaviour
and to limit theSTM size toS. This is done by the (IS) and (ISI)
rules which use the functionfmin-STM-posmentioned above:

(II)
(ITM , ε, c, i, p, r) : α

(ITM , ε, c, i + 1, p,max(0, r − 1)) : α

(IS)
(STM , ε, c, i, p, R) : α
(p > fmin-STM-pos(i)) ∨ (Snew-STM(i + 1) = ∅)
Contra(i − 1, pαq, pβq) /∈ fformulae(SSTM(i))
Contra(i − 1, pβq, pαq) /∈ fformulae(SSTM(i))
loses(pαq) /∈ fformulae(SSTM(i))
(α 6= Now(i)) ∧ (α 6= K(i − 1, β)) ∨ (K(i, β) /∈ SQTM(i))
(α 6= Contra(i − 1, β, γ)) ∨ (Contra(i, β, γ) /∈ SQTM(i))

(STM , ε, c, i + 1, p, R) : α

(ISI)
(STM , ε, c, i, p, R) : α
(p = fmin-STM-pos(i)) ∧ (Snew-STM(i + 1) 6= ∅)
Contra(i − 1, pαq, pβq) /∈ fformulae(SSTM(i))
Contra(i − 1, pβq, pαq) /∈ fformulae(SSTM(i))
loses(pαq) /∈ fformulae(SSTM(i))
(α 6= K(i − 1, β)) ∨ (K(i, β) /∈ SQTM(i))
(α 6= Contra(i − 1, β, γ)) ∨ (Contra(i, β, γ) /∈ SQTM(i))

(ITM , ε, c, i + 1, p, R) : α

We can now define the LDS encoding the memory model:

Definition 1 (Memory model LDS) LMM
df
= (Slabels ,L,RMM),

where the consequence relationRMM is defined by the rules (SR),
(MP), (EMP), (NI), (CD1), (CD2), (IL), (IQS), (IS), (ISI) and (II).

Slabels should be interpreted as an algebra.
The next step would be to show that the behaviour ofLMM is

indeed as expected, namely faithfully implements the behaviour of
MM. Unfortunately, it cannot be done in a formal way because the

position:
time when entered

into STM
fmin-STM-pos(i) - 1 fmin-STM-pos(i) fmin-STM-pos(i) + 10 1 2 i-1 i

Growth direction
of the STM-ITM

structureITM STM

Figure 2. The structure of theSTM andITM buffer.

original memory model [5] was introduced only as an informal de-
scription of a cognitively plausible reasoning mechanism. Although
this model, according to the authors, has been tested in practice, it has
never been completely formalised. The subsequent formal systems,
step logic and a number of active logics based on it, do not have all
the control mechanisms present in the original MM. Therefore the
correspondence could only be established against our interpretation
of the behaviour as described in the literature. In order to achieve
such result one can interpret theLMM system using structures re-
sembling the ones illustrated in Figure 1. This is the approach we
have taken in our investigations. As usual, some more details can be
found in [1].

One problem withLMM is that the functionsSth(i), SQTM(i),
SSTM(i), Snew-STM(i) andSRTM(i) refer to subsets ofStheorems which
only sometimes agree with the contents of the current database. The
sets are certainly computable, because one can compute them by
starting from the axioms and apply the inference rules to all possible
combinations of declarative units fori time steps.

The sets are contained in the current database if the proof process
is “completed” up to leveli. In an implementation the time proceeds
step by step and at each step the inference rules are applied to ev-
ery possible combination of declarative units. So the “complete” sets
above automatically become part of the current database. But when
describing the system as an algebraic LDS we can’t be sure of the
“completeness level” of an arbitrary database. The requirement for
completeness requires restrictions on the order in which inference
rules are applied; some of the rules can’t be applied to some of the
declarative units until the database has reached a certain level of com-
pleteness.

One of the strengths of LDS is that it can handle features, which
are normally at the meta-level, at the object level. It turns out that
it can handle this ordering of the application of inference rules, too.
The trick consists of including the whole database in the labeling of
formulae. A sketch of such solution is presented in [1].

5 Planning in real-time

Some work on active logics has been devoted to application of this
approach in real-time planning. In particular, Nirkhe [17, 18] has in-
troduced an active logic for reasoning with limited resources and pro-
vided a modal semantics for it. However, the computational issues
have not been addressed by this research.

A later formulation in [21] describes an active logic-based sys-
tem, called Alma/Carne, designed for planning and plan execution in
real-time. Alma is the reasoning part of the agent, based on active
logic, and capable to deal with deadlines. Carne is the plan execution
module, procedural in its nature, cooperating with Alma. However,
the computational complexity issue inherited from the step logic, has
not been addressed here either.

Although the idea behind Alma/Carne is appealing — in some
sense it is rather obvious that a decent real-time cognitive system
should have such a structure — the limitations of active logic, con-
sisting of low granularity, limited to time points, of the reasoning
process, are putting the possibility of practical applications of this
approach into question.

As we have shown above,LMM can offer exactly the same func-
tionality as active logics, but with much richer structure of the labels
attached to formulae. This way we can limit the number of formu-
lae staying in focus to a small, manageable value. We can introduce
a labeling in which not only time points are relevant for predicting
the real-time behaviour of the system, but where the individual ap-
plications of inference rules can be counted, timed and predicted, if
necessary. Therefore a solution similar to Alma/Carne, but based on
LMM (or some other suitable LDS) as the reasoning formalism, is
envisioned as a possible breakthrough leading to the hard-real-time
predictability of a reasoning system. The next step would be to per-
form the worst-case execution time analysis of the reasoning process,
similarly to the one proposed in [16] for a different system.

As the first step in this direction we are developing a prototype
implementation of a theorem prover for LDS-based systems, where
the labeling policy and the “classical part” of an inference rule are
handled in a modular way, allowing one to exchange the label pro-
cessing policy while retaining those parts of inference rules (e.g.,
Modus Ponens or Inheritance) that deal with the actual formulae, in-
tact. The system will provide a framework for experimenting with
different LDS-s, analyzing their computational properties, and lead-
ing to a formalization that can survive the requirements of real-time.
The prototype has been so far applied to simple problems, solvable
in principle by hand. But already at this stage we see the benefit of
the prover as a proof verifier.

6 Related work

The attempts to constrain in a principled way the inference process
performed in a logical system have been done as long as one has
used logic for knowledge representation and reasoning. One possibil-
ity is to limit the expressive power of the first-order logical calculus
(as, e.g., in description logics) in order to guarantee polynomial-time
computability. There is a number of theoretical results in this area
(see, e.g., [6]) but we are rather interested in investigations aimed
at practical computational complexity. One of the more popular ap-
proaches is to use a restricted language (like, e.g., description logics),
see [12, 19, 20] for examples of this approach in practice.

Another possibility is to use polynomial approximations of the
reasoning process. This approach is tightly coupled to the issue of
theory compilation. The most important contributions in this area
are [22, 3, 4, 14]. However, this approach, although it substantially
reduces the computational complexity of the problem, still does not

provide tight bounds on the reasoning process.
Yet another possibility is to constrain the inference process in or-

der to retain control over it. An early attempt has been reported
in [15]. The next step in this direction was the step-logic [7] that
evolved into a family ofactive logics[9]. Such a restriction is actu-
ally a reasonable first step towards developing a formal system with
provable computational properties. Active logics have been used so
far to describe a variety of domains, like planning [21], epistemic
reasoning [8], reasoning in the context of resource limitations [18]
or modeling discourse. However, none of the proposed systems has
overcome the limitation of the exponential blow-up of the number of
formulae produced in the inference process.

There is a growing insight that logic, if it is to be considered as a
useful tool for building autonomous intelligent agents, has to be used
in a substantially different way than before. Active logics are one
example of this insight, while other important contributions might be
found, e.g., in [11] or [23].

7 Conclusions and future work

We have presented an LDS-based formalization for the memory
model entailing later formal active logic systems. This allows us to
expect that even in the case of more complex, time-limited reasoning
patterns, LDS will appear to be a useful and powerful tool. Actu-
ally, the technical problem with restricting the inference rule appli-
cations to a particular order in order to get hold of non-monotonic
dependencies, can be solved satisfactorily by just extending the la-
beling algebra and then constraining the inference rule invocations
by appropriately constructed predicates over these labels. LDS pro-
vides also far more sophisticated basis for defining semantics of such
resource-limited reasoners, in particular, systems that reason in time
and about time.

The technique described in this paper raises a number of interest-
ing questions that we intend to investigate. First, what is the actual
status of the consequence relationRMM in the spectrum of algebraic
consequence relations defined in [10]? Can this knowledge be used
to better characterize the logic it captures? Is it possible to charac-
terize the time-limited reasoning in such manner that the worst-case
reasoning time (analogously to the worst-case execution time, known
from the area of real-time systems) could be effectively computed?
What would be then the semantical characterization of such a logic?

Another challenging problem is to practically realize a planning
system based on this approach. We expect to be able to implement a
LMM -based planner in the near future, and to experiment with phys-
ical robots in the next stage of the project.

Speaking slightly more generally, we hope that LDS may serve as
a tool for specifying logics that artificial intelligence is looking for:
formalisms describing the knowledge in flux (to quote the famous
title of Peter Gärdenfors) that serve intelligent agents to reason about
the world they are embedded in and about other agents, in real-time,
without resorting to artificial, extra-logical mechanisms.

ACKNOWLEDGEMENTS

The second author would like to thank Michael Fisher for point-
ing out LDS mechanism as a potential tool for implementing time-
limited reasoning.

Sonia Fabre Escusa has made the preliminary implementation of a
theorem prover for theLMM LDS. It allowed us to find a number of
inaccuracies in the text.

REFERENCES
[1] M. Asker, Logical Reasoning with Temporal Con-

straints, Master’s thesis, Department of Computer Sci-
ence, Lund University, August 2003. Available at
http://ai.cs.lth.se/xj/MikaelAsker/exjobb0820.ps .

[2] M. Asker and J. Malec, ‘Reasoning with limited resources: An LDS-
based approach’, inProc. Eight Scandinavian Conference on Artificial
Intelligence, ed., et al. B. Tessem, pp. 13–24. IOS Press, (2003).

[3] M. Cadoli and F. Donini, ‘A survey on knowledge compilation’,AI
Communications, (2001).

[4] M. Cadoli and M. Schaerf, ‘Approximate reasoning and non-omniscient
agents’, inProc. TARK 92, pp. 169–183, (1992).

[5] J. Drapkin, M. Miller, and D. Perlis, ‘A memory model for real-time
commonsense reasoning’, Technical Report TR-86-21, Department of
Computer Science, University of Maryland, (1986).

[6] H.-D. Ebbinghaus, ‘Is there a logic for polynomial time?’,L. J. of the
IGPL, 7(3), 359–374, (1999).

[7] J. Elgot-Drapkin,Step Logic: Reasoning Situated in Time, Ph.D. dis-
sertation, Department of Computer Science, University of Maryland,
1988.

[8] J. Elgot-Drapkin, ‘Step-logic and the three-wise-men problem’, in
Proc. AAAI, pp. 412–417, (1991).

[9] J. Elgot-Drapkin, S. Kraus, M. Miller, M. Nirkhe, and D. Perlis, ‘Ac-
tive logics: A unified formal approach to episodic reasoning’, Techni-
cal report, Department of Computer Science, University of Maryland,
(1996).

[10] D. Gabbay,Labelled Deductive Systems, Vol. 1, Oxford University
Press, 1996.

[11] D. Gabbay and J. Woods, ‘The new logic’,L. J. of the IGPL, 9(2), 141–
174, (2001).

[12] G. De Giacomo, L. Iochhi, D. Nardi, and R. Rosati, ‘A theory and im-
plementation of cognitive mobile robots’,J. Logic Computation, 9(5),
759–785, (1999).

[13] A. Globerman,A Modal Active Logic with Focus of Attention for Rea-
soning in Time, Master’s thesis, Department of Mathematics and Com-
puter Science, Bar-Illan University, 1997.

[14] G. Gogic, C. Papadimitriou, and M. Sideri, ‘Incremental recompilation
of knowledge’,JAIR, 8, 23–37, (1998).

[15] H. Levesque, ‘A logic of implicit and explicit belief’, inProc. AAAI 84,
pp. 198–202, (1984).

[16] M. Lin and J. Malec, ‘Timing analysis of RL programs’,Control Engi-
neering Practice, 6, 403–408, (1998).

[17] M. Nirkhe, Time-Situated Reasoning Within Tight Deadlines and Re-
alistic Space and Computation Bounds, Ph.D. dissertation, Department
of Computer Science, University of Maryland, 1994.

[18] M. Nirkhe, S. Kraus, and D. Perlis, ‘Situated reasoning within tight
deadlines and realistic space and computation bounds’, inProc. Com-
mon Sense 93, (1993).

[19] P. F. Patel-Schneider, ‘A decidable first-order logic for knowledge rep-
resentation’, inProc. IJCAI 85, pp. 455–458, (1985).

[20] P. F. Patel-Schneider, ‘A four-valued semantics for frame-based de-
scription languages’, inProc. AAAI 86, pp. 344–348, (1986).

[21] K. Purang, D. Purushothaman, D. Traum, C. Andersen, D. Traum, and
D. Perlis, ‘Practical reasoning and plan execution with active logic’,
in Proceedings of the IJCAI’99 Workshop on Practical Reasoning and
Rationality, (1999).

[22] B. Selman and H. Kautz, ‘Knowledge compilation and theory approxi-
mation’,JACM, 43(2), 193–224, (1996).

[23] M. Wooldridge and A. Lomuscio, ‘A computationally grounded logic
of visibility, perception, and knowledge’,L. J. of the IGPL, 9(2), 257–
272, (2001).

