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Abstract

This paper describes an attempt to provide more intelligence
to industrial robotics and automation systems. We develop
an architecture to integrate disparate knowledge representa-
tions used in different places in robotics and automation. This
knowledge integration framework, a possibly distributed en-
tity, abstracts the components used in design or production
as data sources, and provides a uniform access to them via
standard interfaces. Representation is based on the ontology
formalizing the process, product and resource triangle, where
skills are considered the common element of the three. Pro-
duction knowledge is being collected now and a preliminary
version of KIF undergoes verification.

1 Introduction

Since the beginning of Artificial Intelligence more than fifty
years ago, one of the goals (maybe rather dreams) of the dis-
cipline was to equip robots with sufficient knowledge and
acting capabilities so that they will be able to make deci-
sions and act on their own, but on behalf of their owner,
given some goal posed by their human supervisor. This
idea starts to materialize nowadays, in particular in service
robots: companions intended to serve people in different so-
cial contexts.

However, the more or less intelligent robots that we envi-
sion, usually take the form of a mobile entity, often at least
partly humanoid, in order to coexist with humans in their
natural environments. Very seldom intelligence is associ-
ated with the industrial environments, where the majority of
nowadays robots are installed. In a sense, this is natural, as
in the industrial setting it is to a much larger extent a matter
of cooperation and collaboration between production enti-
ties, normally ensured by a centralized control system, while
the individual robots remain rather limited in their decision
making capacities and autonomy.

The development of knowledge level for autonomous mo-
bile robots is the subject of much attention from the robotics
and artificial intelligence communities. Since the times of
SHAKEY the researchers have conceived more and more ad-
vanced methods to describe the environment of the robots,
their goals, their capabilities, and the reasoning necessary to
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derive an executable action plan leading to some predeter-
mined state of matters. Moore’s law allows us to implement
nowadays complex representation and reasoning schemes
and to achieve efficiency even in case of complex, real-
world, albeit limited, domains. Semantic technologies intro-
duced the possibility to exchange knowledge among many
individual systems, introducing one more way to find out
what to do in a given situation.

This paper presents the idea of applying semantic web
technology to increase the level of intelligence of practical,
robot-based automation systems, where the necessity to ex-
tend the amount of knowledge coexists, or sometimes even
contradict, the necessity of guaranteeing accuracy, repeata-
bility, meeting deadlines, error-recovery, etc. In such setting
many of the classical knowledge-based solutions need to be
reengineered, or at least carefully adapted.

The paper is organized as follows. First we discuss the
previous work in the domain, focusing on knowledge rep-
resentation in robots, semantic web techniques, and knowl-
edge representation for robots. The next section discusses
the specificity of the application domain we focus on in our
work. Then we introduce the architecture we are working
with. In the following section we describe the necessary set
of concepts needed for representing this domain, organized
with help of a number of ontologies. Finally, we present
the software tools used in our work. The paper ends with
conclusions and suggestions for further work.

2 Previous work

2.1 Knowledge Representation for Robots

Knowledge representation has been an important area for the
domain of robotics, in particular for autonomous robots re-
search. The very first approaches were based on logic as
a universal language for representation. A good overview
of the early work can be found in (Brachman & Levesque
1985). The first autonomous robot, SHAKEY, exploited
this approach to the extreme: its planning system STRIPS,
its plan execution and monitoring system PLANEX and
its learning component (Triangle tables) were all based on
first order logic and deduction (Allen, Hendler, & Tate
1990). This way of thought continued, leading to such ef-
forts as “Naive physics” by Patrick Hayes (see (Brachman &
Levesque 1985)) or “Physics for Robots” (Schmolze 1986).



This development stopped because of the insufficient com-
puting power at that time, but has recently received much
attention in the wider context of semantic web. The plan-
ning techniques have also advanced substantially and may
be used nowadays for cases of substantial complexity (Ghal-
lab, Nau, & Traverso 2004), although automation is proba-
bly still beyond this limit.

Several alternatives to the symbolic logic-based represen-
tation have been developed in the meantime. For a while
procedural representations were considered a solution (rep-
resenting “how?” instead of “what?”), but never have scaled
up properly. Rule-based representations simplified the rea-
soning mechanism while retaining the symbolic representa-
tion of facts, and mixed it with purely procedural description
of robot actions.

Finally, mixed architectures begun to emerge, with a rea-
soning layer on the top, reactive layer in the bottom, and
some synchronisation mechanism, realized in various dis-
guises, in the middle. This approach to building autonomous
robots is prevalent nowadays (Bekey 2005), where re-
searchers try to find an appropriate interface between ab-
stract, declarative description needed for any kind of rea-
soning and procedural one needed for control. The problem
remains open until today, only its complexity (or the com-
plexity of solutions) grows with time and computing power.

2.2 Semantic Web

The semantic web has recently received much attention from
the robotics community. Its roots can be traced back to stud-
ies on language semantics and semantic networks (Richens
1956; Quillian 1967). In these pioneering studies, words
were pictured as sets of nodes and semantic relationships as
labels of the arcs connecting the nodes, such as the part of
relation in Richens’ original paper. For a recent account,
see (Sowa 1999). Although the initial intent to use seman-
tic networks for translation has not borne many fruits, the
ideas behind it have been revived in the context of the web
and the internet. Computational power and storage capaci-
ties are available like never before, allowing the modeling,
storage, and processing of structures corresponding to real
world problems.

Like semantic networks, the semantic web uses a graph
to represent concepts, objects, and their relationships. It is
organized as a stack of standards with functionalities that
goes from character encoding to user applications. Figure 1
shows this stack where the Resource Description Frame-
work (RDF), RDF Schema (RDFS), Web Ontology Lan-
guage (OWL) are vocabularies to describe the labels of the
graph; SPARQL is a query language to extract data from
the graphs; and the Rule Interchange Format (RIF) is an on-
going attempt to create a standard way for exchanging rea-
soning rules.

Using these standardized graph vocabularies (RDF or
OWL) and logical tools (SPARQL and RIF), the semantic
web enables systems to: encode and interpret data using a
rich hierarchical and relational structure, share data with a
common format, and extract data and integrate them into
applications.

Figure 1: The semantic web stack. After (Bratt 2006).

2.3 Semantic Technology in Robotics

The exploitation of a semantic web approach in robotics
may be considered as a paradigm shift: instead of build-
ing monolithic, complete systems for robots, why not use a
distributed approach with many contributors and many bene-
factors of the accumulated knowledge. The RoboEarth ini-
tiative (Zweigle & Häussermann 2010) is a prominent ex-
ample of that way of thinking in the area of service robotics.

The tasks expected to be done by a robot define the com-
plexity of the representation. Preprogrammed tasks require
no thinking, just acting and reacting to changes. More au-
tonomy and more sensory power requires more reasoning to
be done on-line, while acting or just prior to it, as opposed
to at the design and programming time. The paradigm shift
occurs right now.

Numerous ontologies are created to support such
knowledge-intensive systems. Ontologies are just one (but
crucial) part of the picture. There have been several at-
tempts to codify production knowledge in form of suit-
able ontologies (and associated tools). (Lastra & Delamer
2008) provides a relatively recent overview of this expand-
ing field. One of the interesting early attempts, however
focusing on collaboration issues in the design process, has
been described by (Kim, Manley, & Yang 2006). We have
earlier developed an ontology for manufacturing, with fo-
cus on devices embodying skills (Persson et al. 2010;
Haage et al. 2011). However, there is no consensus on how
this development should proceed.

3 Architecture

Knowledge representation by itself is an activity that might
lead to rather theoretical results on representability, com-



Figure 2: The ABB FRIDA robot.
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Figure 3: Architecture of the proposed approach.

plexity or expressivity, might entail analysis of reasoning
algorithms, or might be considered as a service for other
activities leading to constructing a knowledge-based system
of some kind. This paper is guided by the latter; we adapt
our investigations to the needs and constraints imposed by
a concrete system, a co-worker robot based on FRIDA plat-
form, see Fig. 2, that we are building and will demonstrate
in 2012.

As mentioned above, we are focusing on manufacturing
domain, in particular on robotized, sensor-equipped work-
cells where there is a need to efficiently reason about chang-
ing the behavior of the system depending on time-varying
production demands. One can imagine production of sea-
son cookies, assembly of car lamps, or assembly of indus-
trial electronics as cases when varying orders enforces fast
reconfiguration of the production equipment. A similar re-
configuration problem arises when some particular produc-
tion line is to be copied (with some local modifications, e.g.
using other types of sensors or robots) to another site.

The architecture of the system is divided into three areas
(see Figure 3). In the center there is Knowledge Integration
Framework1 (KIF): a knowledge base serving other subsys-
tems. KIF is not envisioned as a necessarily monolithic unit,
but acts as if it were one. Its role is to provide knowledge
on any relevant topic to whoever requests it. Primarily we
see two kinds of clients that might wish to interact with KIF:
engineering stations and cell controllers.

An engineering station (ES) is the main user interface for

1We realize the possible confusion with Knowledge Interchange
Format (Genesereth 1990), but prefer to keep the name anyway.

human users of a system. It is used to define a production
cell, its configuration, geometry, resources, connectivity, etc.
It is also normally used to develop the work-cell control pro-
gram, including simulations and possibly virtual execution
of the code. Normally there are at least two kinds of users
of an ES: those who describe the cell (once in a while, typ-
ically system integrators) and those who use it daily (often
accessed, but limited to task redefinition and cell reconfig-
uration, typically technicians). These types of users pos-
sess different kinds of knowledge that eventually needs to
be stored in KIF if we want it to be reused.

The native controller, together with the actual physical in-
stallation, form another kind of “user” for the knowledge
available in KIF: they use it for concretizing high-level de-
scriptions provided by the human operators into actual con-
trol programs run on real hardware available in the cell. The
configuration process might be automatized to some extent,
but usually even here a human support is normally needed
in order to resolve all ambiguities.

To allow a higher level task execution control, we have
augmented our system with a Task Execution (TE) software
layer. This additional layer has an online connection to the
native robot controller and is responsible for realizing and
supervising the task on the physical system, interacting with
potential external sensors that are not easily integrated with
the native system, like camera or force sensor, and able to
relay valuable “experience” (such as adapted parameter val-
ues, or encountered errors) upstream to KIF.

The interface towards the TE layer is generic, intended to
serve stations built with different kinds of hardware and soft-
ware. On the other hand, interaction with the native robot
controller and additional devices and sensors is inherently
hardware-specific, and the TE layer needs to implement the
functionality to interface with them accordingly. Interaction
here includes possibility of supervision and parameter set-
tings, gathering behavioral information such as log data pro-
duced by the devices, support for experimentation and semi-
automatic adaptation of parameter values, etc. Some of these
functionalities use dynamically created code implementing
particular communication channel.

Normally there will be many ESs connected to the KIF. In
principle, we may expect one ES per one controller/work-
cell, but other configurations are possible as well. KIF
is supposed to serve as a knowledge storage and ex-
change database, both for knowledge accumulation (includ-
ing learning, but also assimilating tacit knowledge) as well
as knowledge reuse in various contexts.

It is also important to observe that KIF is not expected
to be an omnipotent central system supervising every activ-
ity and providing solutions to all problems. The ultimate
goal of this architecture is to allow the reusable part of pro-
duction knowledge to become stored, organized and easily
accessible by many users and for many work-cells. We ex-
pect that experience will let us draw the borderline between
the generic knowledge useful in many situations, and spe-
cific setup details relevant only in some particular produc-
tion case.

As KIF is a repository of knowledge gathering its contents
from various sources, there must exist appropriate transfor-



mations between the format used by the sources and the rep-
resentation used by KIF. We have adopted RDF as the stor-
age format (see section 6) and introduced custom-built trans-
lators for the data coming from engineering stations. In par-
ticular, we employ the Automation ML (Drath 2010) (AML)
standard as one of the languages for transferring information
about robotic work-cells. AML is suitable for both encoding
the static information about the cell (devices, their arrange-
ment, their connections) as well as discrete behaviors en-
coded as transition systems. Device-specific code is stored
in native formats, with only references to the higher-level
representations.

4 Domain

There have been several attempts to provide representation
for all kinds of physical phenomena that intelligent systems
might need to deal with. However, the lesson of CYC (Lenat,
Prakash, & Shepherd 1985; Guha & Lenat 1990) shows that
such an endeavor is enormous, requires decades and does
not necessarily produce satisfactory results.

Therefore, we limit our work to robot-based automa-
tion as a sufficiently complex domain for being challeng-
ing, but also limited enough to allow non-trivial results to
be achieved. In order to obtain meaningful results a sub-
stantial amount of consistent knowledge has to be accumu-
lated in the system. Some effort has already been made
in this direction in our previous work (Malec et al. 2007;
Nilsson et al. 2009), where manufacturing domain has been
first addressed, while the current research focusses mainly
on assembly processes. This way we expect to build a sub-
stantial knowledge base useful in many areas of the robot-
based production.

Sensor-based manufacturing is a particular challenge, be-
cause the world is so complex that faithful representation of
its state is impossible; therefore some simplification needs
always to be made. Representing the sensing process even
in case of limited application domain is a very hard problem.
In the context of this paper it is considered as a side issue,
while most of our work is devoted to reaching satisfactory
conclusions on behalf of the users of automation systems.

We have employed the usual approaches to simplifying
the problem, namely discretization in space, time, and state,
whenever possible. The behavior of sensing devices is
normally captured by FSMs, abstracting away the contin-
uous models. However, we make sure that the representa-
tion is extensible and modular so that in case when a sim-
plification does not work in some context, an appropriate
continuous symbolic model may be inserted and used as
needed (Björkelund et al. 2011b).

5 Ontology

The conceptual structure employed in our approach is based
on the so-called production (PPR) triangle: product, pro-
cess, resources (Cutting-Decelle et al. 2007) (see Figure 4).
The workpieces being manufactured are maintained in the
product-centered view. The manufacturing itself (i.e., the
process) is described using concepts corresponding to dif-
ferent levels of abstraction, namely tasks, steps, and actions.

Figure 4: The PPR model, with skills as common coordinat-
ing points for the three views.

Finally, the resources are materialized in devices (capable of
sensing or manufacturing). The central notion of skill links
all three views and is one of the founding elements of our
representation.

In case of robot-based production system, skills may be
defined as coordination of parametrized motions. This coor-
dination may happen on several levels, both sequencing (ex-
pressed, e.g., via a finite state machine or a similar formal-
ism), configuring (via appropriate parametrization of mo-
tion) and adapting (by sensor estimation). On top of this
approach, based in our case on feature frame concept (De
Schutter et al. 2007), we builds a set of reasoning methods
related to task-level description, like e.g., task planning.

The product view in our approach amounts to defining
what needs to be done with the workpiece or workpieces.
In particular, it is of utter importance to describe the goal
of the whole manufacturing process, otherwise no algorithm
will be able to meaningfully reason about this process. This
goal may be defined explicitly, using some suitable logical
formula, but may also be given as a CAD drawing depict-
ing the final state, or may be spelled out using constraints
involved in production. Yet another possibility is to describe
the transformations of the product that need to be done on
the way.

As an example, the assembly graph structure has been
chosen as a suitable representation for the assembly prece-
dence constraints. In itself, it does not lead to an executable
robot program. In order to realize that goal, the following
“platform-specific” information must be added:

• gripper(s), and other tooling (screwdrivers, etc.)

• fixture(s)

• robot(s) properties: accuracy, control mode(s)

• sensor(s): force, vision, distance sensor, etc.

Each specific combination of these can lead to a different
assembly scenario; each of those scenarios, in turn, must
deal with a range of uncertainty in the mentioned properties.

The process view describes how to achieve the product
transformations named in the product view above. To de-
scribe the transformations one has to have an appropriate



vocabulary. In our approach, limited to robotized manufac-
turing, we refer to the following concepts:

motion Continuous time and continuous space activities of
robot(s), each moving the robot’s tool(s) in a “specified
way” until a “termination condition” is reached that in-
dicates that a specified contact situation between two ob-
jects in a (sub-)assembly is reached.

action Does not involve robot motions, but other activity
like communication, signal processing or decision mak-
ing, to get more information about the world.

task The fully platform-independent specification of the
manufacturing scenario. It contains references to assem-
bly and contact graphs on one side, and to the workpiece
descriptions on the other. However, there is no specific,
platform-related information available in the task descrip-
tion yet.

Tasks form a hierarchical structure, with sub-tasks de-
composable into lower-level task structures.

skill A finite state machine (FSM), in which each state runs
one single of the above-mentioned motions, and the ter-
mination condition of the motion in that state gives rise
to a state transition. The FSMs always start in the init
state. One FSM can have multiple final states, of which
FullyAssembled is one; other final states are the envi-
sioned error conditions. The discrete states in a skill are
a superset of the states in the task’s assembly graph, or
rather, the task is also an FSM but with many different
hierarchically nested skill FSMs.

Finding out how to perform the transformations is inher-
ently a search problem, usually spelled out as automatic
planning, scheduling, or a configuration problem. Depend-
ing on how the steps are described and abstracted (oper-
ators, activities, or services) different representation lan-
guages may be used but the reasoning mechanism in the bot-
tom is the same – an efficient planning algorithm.

The resource view is the knowledge that deals with how
to allocate and schedule the physical, computational and
communication resources needed to execute the task. This
knowledge is usually spelled out as skills, linking together
devices with processes that are realized (implemented) using
them. Skills encode knowledge about possible realisations
on (possibly) different hardware and about useful parametri-
sations necessary to achieve a given objective.

We continue to develop an ontology (understood here
technically as a knowledge structure expressed in OWL lan-
guage) that includes all the notions defined above, in partic-
ular all elements of the PPR triangle. But this is just the first
step towards providing the encompassing reasoning system
with some knowledge about what is reasonable and what is
not, in context of automation domain. Ontology only offers
a static structure; taxonomy and simple contraints, while the
reasoners need much more. This knowledge has to be con-
veyed using some appropriate representation. We have con-
sidered so far:

1. rules (in the RIF variant) and an adequate reasoner to ex-
ploit them.

2. behaviors encoded in external formalisms (understood not
by KIF itself, but by other tools, like simulators, visualiz-
ers, modeling tools, etc.)

3. declarative knowledge suited for specialized reasoners
(e.g. mathML and some dedicated solver coupled to
KIF capable of using this representation for manipulating
models expressed as mathematical formulae).

Given the representations discussed above we may define
reasoning as transformation of knowledge from one repre-
sentation to another. In our case, we have a number of ab-
straction levels to deal with (continuous, discrete, symbolic)
and a number of detail levels within each kind of represen-
tation (e.g. similar transition systems, but with differing se-
mantics, are used for describing assembly constraints, tasks,
and skills).

6 Tools

There are two kinds of software tools related to KIF: those
used for implementing its functionality and those used to
interact with the knowledge base and to exploit its contents
for engineering purposes.

KIF is implemented using an RDF triple store. We have
chosen to use the Sesame RDF repository (openRDF.org
2010). Sesame (with extensions) allows for RDFS and OWL
inferencing repositories stored either in memory, on file,
or in a database system. Additional generic and special-
ized reasoners can easily be employed and served by other
servlets accessible via the same servlet container, to allow
for easy access from the same HTTP node. In particular, we
use Jena2 to perform rule-based reasoning in KIF.

Another set of tools is related to the usage of KIF. On the
engineering station side we have so far used ABB Robot-
Studio software as an access and visualisation tool, however
the access API is sufficiently generic to allow other, possibly
open source, software to be used instead. On the controller
side we use so far custom solutions adapted to the hardware
(in particular ABB IRb and FRIDA robots, and KUKA ma-
nipulators) used for testing our ideas.

We are evaluating our design and filling it with assem-
bly knowledge suitable to support engineers in the work-cell
setup process (Björkelund et al. 2011a).

7 Conclusions

In this paper we have presented an approach to creating a
knowledge repository for the manufacturing domain. Its
contents are created by systems engineers describing au-
tomation devices and production skills, both generically and
in the context of concrete work-cells and stations, as well
as is filled from experience. The repository also possesses
knowledge about workpieces and appropriate methods for
processing them.

The knowledge is exploited for designing and parametris-
ing work-cells intended to be used for similar purpose as
the already realized ones, but possibly built using different
hardware (sensors, tools, and robots) or software. The task
instantiation algorithm is using existing knowledge, but also
may provide feedback from the human user in case when an-
other solution is decided to be advantageous - this way the



knowledge base gets extended not only by typical machine
learning from data, but also by being told by experts.

The proposed architecture includes a software component
that acts as a bridge between the knowledge repository and
the native system where the task should be carried out. It
enables a higher level task execution control that generically
interfaces with the knowledge repository, while at the same
time interconnects the different hardware of the production
cell, where the native robot controller is just one amongst
many devices used in the realisation of the task.

The results obtained so far are preliminary and much work
is necessary to reach the expected level of knowledge base
contents, useful in practice. The reasoning algorithms are
rather simple as well as the ontology we have developed.
We are performing now first practical experiments on porta-
bility among different, geographically distributed hardware
setups, to be used on different brands of hardware without
necessity of intervention by humans.
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