
On Augmenting Reactivity with Deliberation in

a Controlled Manner

Jacek Malec

Department of Computer Science
Lund University

Box 118
221 00 LUND, Sweden

jacek@cs.lth.se

Abstract. We argue that a reactive agent obeying the requirement of
predictability imposed by a hard-real-time application domain cannot
be equipped with an arbitrarily powerful deliberation capability as this
would jeopardize the predictability of the agent's behaviour. Therefore
such augmentation should be performed in a principled, controlled man-
ner. We illustrate our line of thought with the example of Generic Lay-
ered Architecture used for creating reactive agents acting in dynamic
environments requiring real-time responsiveness.

1 Introduction

The interplay between reactivity and deliberation is one of the issues of paramo-
unt importance for intelligent agent1 design. For many years AI research focused
on deliberation as the basis for intelligent activity, neglecting the problems of
situatedness and reactivity. Increasing complexity of the problems addressed by
the researchers has led to the important insight that appropriate reactivity is
probably as necessary and important to intelligent behaviour as are the deliber-
ative capabilities. During the last �fteen years the reactive paradigm has gained
much attention and popularity, especially in the area of autonomous robotics,
and has led to important advancement in the �eld. However, probably the most
important insight is that pure reactivity is much too weak to create any complex
behaviours worth the adjective intelligent.

The coexistence of the two paradigms of building intelligent agents was not
friction-free, but the debate between the proponents of either of the approaches
has undobtedly led to better understanding of the problems within the paradigms
and also to some solutions to those problems. In the last decade the two ap-
proaches began to merge, yielding a number of so called hybrid architectures
o�ering both reactivity to cope with the dynamic environment of the agent and

1 The term agent is understood rather broadly in this paper, encompassing both soft-
ware agents (softbots living in a networked environment) and hardware agents acting
in the real (physical) world, although the main association we would like the reader
to have is that of an autonomous intelligent robot.
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deliberation to deal with the cognitive tasks. Although the number of proposals
is large and covers the whole spectrum between purely reactive and purely cog-
nitive agents, there is no agreement as to how much of both should be used in
each particular case.

The balance between reactivity and deliberation is a function of many factors.
Among the most obvious ones we can count the designed agent's predominant
tasks, or functions, constraining the number of possible implementation archi-
tectures, the architectural assumptions of the designer (revealing the designer's
preferences), the availability of eÆcient algorithms for tasks imposed by the ap-
plication domain (this is especially important for the deliberative part of the
system), the necessity to switch between several types of representations used
by di�erent parts of the system, etc.

In particular it is important to notice that the space of possible choices is
limited by the initial design decisions. Once the architecture is chosen and the
representation languages de�ned the designer is faced with the constraints that
have to be obeyed without exceptions. e.g. by choosing ATLANTIS [13] the
designer accepts the way the control is imposed over the three layers of this
architecture and the temporal dependencies between the layers become �xed. In
most cases this is the intended result: the agent architecture is expected to help
the programmer achieve maximal functionality in minimum time, relieving her
from the tedious task of creating the agent from scratch.

Usually, an architecture assumes a �xed balance between reactivity and delib-
eration. For example, when using RAPS (Reactive Action Package System, [9])
one decides upon what functionality of an agent is to be implemented at the
task (skill) level and what can be explicitly reasoned about at the highest RAP
level. However, the price to pay may be some in
exibility of the designed agent.
In complex domains one usually wants the possibility of adjusting this balance
depending on the current circumstances - thus a reasonable requirement would
be to expect the architecture to support such adjustments. In the extreme case
one may wish to let the agent decide by itself in a principled manner about this
balance, what would imply a meta-reasoning module in the system. Another
important limitation imposed by an architecture is the set of representation lan-
guages available - architectures are usually centered around some ontological
assumptions. The languages used induce a limit on what may be perceived and
understood (or reasoned about) by an agent.

Therefore the choice of the languages underlying the used architecture is
probably the most important design decision. Before a particular architecture is
commited to one needs to carefully analyse its languages and their expressive
power (and the associated computational complexity). The languages should
allow rich interpretation domains but also eÆcient reasoning, be it on the reactive
level or during deliberation. Moreover, the set of used languages must allow easy
translation for e�ective representation switches.
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Yet another dimension of analysis is that of the guaranteed predictability2

of the agent's response. In many applications the agents have to satisfy the
usual requirements put on hard-real-time systems. Traditionally AI wasn't con-
cerned much about that issue although it has received some attention during
past decades. However, all the applications where an agent might in
uence the
safety of human beings require us to address the problem of predicatbility of the
agent's behaviour.

The rest of the paper is organized as follows. In Section 2 we introduce
an agent architecture called Generic Layered Architecture (GLA) and discuss
its advantages and disadvantages, in particular for creating intelligent real-time
agents. Section 3 introduces the postulate of controlled augmentation of the
predictable reactivity with limited deliberation preserving the imposed hard-real-
time requirements. Then in Section 4 we look at some other agent architectures,
focusing mostly on the reactive side of the spectrum. Finally some conclusions
are given.

2 Generic Layered Architecture

Our approach to intelligent system design and implementation builds on the
three-layered software architecture developed during the last decade at the Lin-
k�oping University [37] (recently renamed to GLA, the generic layered software
architecture). The main distinctive property of this architecture is that it groups
similar types of computations into layers (shown in Figure 1), as opposed to the
much more common approach where a functional decomposition into layers is
typical.

Literally dozens of layered architectures have been recently proposed for au-
tonomous system implementation (see e.g. [1, 3, 5, 8, 13] for just a few of them;
good overviews can be found in [2, 38, 22]). Although there are di�erences both
in the way of assigning various tasks to di�erent layers and in the way the overall
control of the system is executed, the general conclusion is that such layering
is bene�cial, if not necessary, in designing autonomous intelligent systems. We
do not claim that the GLA architecture is novel in terms of extending the set
of agent's capabilities, rather we expect that the functionalities implementable
using GLA might be achieved by using other architectures as well. Our pri-
mary claim is that GLA has the following advantages in designing autonomous
real-time agents:

1. Explicit separation of tasks requiring di�erent conceptual and computational
frameworks;

2. Providing a potential designer with a set of formal tools (languages, algo-
rithms) simplifying and systematizing the design process itself;

2 The term predictability is used in this paper in the sense adopted by the real-time
community[45]: A system is predictable if and only if all the timing constraints in
the system are provably satis�ed.
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Fig. 1. The generic layered software architecture.

3. Supporting the design process with a set of software tools enabling easy
prototyping of complex real-time systems.

The bottom layer, called the process layer (PL), is hosting implementations
of numerical, periodic tasks, such as identi�cation or control. Data handled by
this layer is stored in dual-state vectors. Computations have the form of map-
pings from input vectors to output vectors and are performed periodically in
synchronization with the sample rates of sensors.

The middle layer is called the discrete response layer (DRL), and performs
tasks which are by nature asynchronous. For instance, it computes the responses
to asynchronous events that are recognized by the PL. An example of such a
task is the change of control mode (of the PL) due to the change of mode in
the environment. The computational model assumed for the DRL is that of
discrete event systems (DES). There exist several equivalent DES formalisms:
automata, transition systems, rule-based systems, etc. All of them distinguish the
notions of state and transition as central, although the details vary from model
to model. We have used the rule-based approach for the purpose of specifying
knowledge-based system prototypes. However, this does not preclude usage of
other approaches [25, 30]. The process and discrete response layers together form
the reactive part of the GLA.

The top layer is called the analysis layer because it is de�ned to handle
symbolic reasoning tasks such as prediction, planning and scheduling, which re-
quire reference to physical time. The output of this layer can be either control
events that guide the DRL in its decisions, or parameter settings that are passed
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through the DRL and directly a�ect the operation of the PL. This layer has
also been tested as a host for symbolic learning mechanisms which adapted the
discrete response layer while maintaining its critical response requirements. An
important sub-task of this layer, the continuous look-ahead (or limited predic-
tion) mechanism has been distinguished in order to identify a predictable subset
of the computations in this layer.

While the bottom two layers of GLA, forming the reactive part of the sys-
tem, might be considered well-developed (both theoretically and in terms of
the provided tools, see the description below) and stable, the analysis layer is
the subject of on-going research and no design and veri�cation tools have been
provided yet.

2.1 Real-Time Software Tools

During our previous research we have thoroughly studied this architecture and
its implications on software engineering issues [37]. One of the conclusions was
that it facilitates prototyping of systems, especially because it allows develop-
ment of generic software tools which can be used for implementation of each
particular application system. Along this line we have developed software ker-
nels, or engines, for development and implementation of the process layer and
the discrete response layer. The set of tools includes:

{ Process Layer eXecutive (PLX) [34]: a multi-threaded time-triggered real-
time engine for implementation of process layer software. It has been imple-
mented on a pSOS+ based system and on a PC running VDX. A port to
Real-Time Linux is currently developed.

{ Process Layer Con�guration Language (PLCL) [35] and its compiler: a lan-
guage for speci�cation of PL module interconnections and interfaces to both
sensors and actuators on one side, and to the DRL software on the other side.
The modules themselves are programmed in a subset of some conventional
language, such as C or Java.

{ Rule Layer eXecutive (RLX) [36]: an engine for implementation of rule-based
discrete-event systems in the DRL. It has been implemented on Unix-based
machines and on a PC with VDX; A port to Real-Time Linux is under
preparation.

{ Rule Language (Rl) [24]: a rule-based language for declarative speci�cation
of discrete-event control.

2.2 The Process Layer Executive

The PLX supports the implementation and maintenance of the hard real-time
parts of the application which perform the transformations of periodic data.

During processing, all data is stored in a dual state vector, which is a global
data structure consisting of an input and an output vector. The values in the
input vector represent either sensor readings or internal state, whereas the values
in the output vector represent actuator outputs or new internal state.
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A PL application de�nes a sequence of transformations that should be applied
to the input vector in order to compute a new output vector. Since sensor values
are read periodically, the transformations have to be applied with the same
periodicity. When the transformations have been applied, actuator outputs are

ushed to devices and the new internal state is installed in the input vector, thus
establishing the new state of the process layer.

The PLX engine supervises a PL application, which includes managing the
internal state, reading sensors and writing to actuators using user de�ned access
functions, and supervise the execution of the periodical transformations of the
dual state vector. The PLX supports decomposition of the vector into several
sub-vectors, each of which has its own period, causing transformations to be
executed at di�erent rates.

The PLX engine and the PLCL compiler together form the basis for a worst
case execution timing (WCET) analysis of a PL application [26, 34].

2.3 The Rule Layer Executive

The rule layer executive supports the implementation of rule-based event pro-
cessing. In the RLX the state of the world is represented by the time dependent
values of a set of symbolic state variables called slots. A slot is updated only
when its value changes, due to an external event or as a result of a change
of another slot's value. Rules specify dependencies between slots, and typically
have the following form: if the value of a particular slot is changed in a certain
way, then the value of another slot should also be changed as a result . Internally,
each such change may trigger additional rules, which lead to more updates. This
forward chaining process may continue in several steps.

We take an object-oriented view of the rule base in the sense that we as-
sociate a set of rules with each slot. This view facilitates the 
exibility and
maintainability needed for complex systems.

The RLX tool has two major tasks. Firstly, it maintains the set of slots and
rules which determines the behaviour of the discrete response layer. Secondly, it
performs the forward chaining of rules. The forward chaining is typically initiated
by an event recognized by the PL. The result of the forward chaining process
may be the change of control algorithm used by some PL process or direct output
to a device interfaced by the PL.

The language Rl is essentially a syntactic variant of a simple temporal logic
and is used for declarative speci�cation of behaviour of the discrete response
layer. A comprehensive set of tools for correctness and consistency checking, for
timing analysis and for code generation have been developed during the recent
years [23, 25, 27].

2.4 An Application Example

The GLA architecture has been used in recent years for speci�cation and im-
plementation of autonomous agents for several domains requiring hard-real-time
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guarantees. The original application that triggered our work on GLA was a
driver support system [29]. Then we have applied GLA to robot control [31]
and recently to RoboCup agent development, to 
exible manufacturing cell con-
trol [28] and to simulated helicopter control in a traÆc surveillance system [24]
(an experiment within the WITAS project [7]).

In order to keep this presentation not overwhelmed by unnecessary details,
we will brie
y present here the �rst of the applications developed using GLA: the
driver support system (DSS). The main function of the system was to provide
the driver with accurate, reliable, necessary and suÆcient, and timely safety-
related support on the basis of unreliable and limited input information, while
taking into account the driver's workload and attention capabilities.

The input devices used in our experiments were autonomous intelligent cruise
control (AICC), route guidance, road/tyre friction estimation system, and road-
side information system. However, as the number of intelligent devices available
for mounting in a contemporary car becomes larger, there is an obvious need
for modularity and incrementality. The reactive part of the GLA can provide at
least the second of these properties.

As the support systems mentioned above generate a lot of data, the amount
of information potentially available to the driver is very large, and sometimes
contains even con
icting messages. In such situation there is an immanent dan-
ger of overloading the driver's perceptual and reactive capabilities. Clearly, there
is a strong need for systematic handling of the output to the driver from di�erent
subsystems in the car, in order to guarantee that the driver gets the relevant
information at the right time. This task is complicated by a number of circum-
stances, for instance:

{ Output requests may come from many di�erent sources (support systems)
operating independently, or almost independently, without a coherent view
of the information available in the whole system.

{ Information is time-dependent, so it might prove useless, or even dangerous,
if presented to the driver at the wrong time.

{ The amount of information the driver can handle is not untimed nor static,
but varies dynamically depending on, among other things, the traÆc situa-
tion, the weather conditions and the kind of maneuvre the driver is perform-
ing.

{ There may be several output channels available (for example display(s), voice
output, and haptic actuators) whose appropriateness may change dynami-
cally.

{ Drivers may prefer some output channels to others, or may want to suppress
some kinds of messages (e.g. speed excess messages).

The DSS has been speci�ed using the rule language Rl introduced in Sec-
tion 2.3. The Rl rules are the classical event-condition-action rules of the form

WHEN event IF condition THEN action

where all the events, condition and actions are modeled as value changes to
discrete state variables called slots. Some of the actual DSS rules looked as
follows:
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WHEN aicc_distance_acc *= FIRM

IF aicc_decision |= DISTANCE

THEN aicc_warning := FIRM;

WHEN acceleration *= ACC

IF direction_indicator |= LEFT AND car_in_front |= CAR_IN_FRONT

THEN maneuver := OVERTAKING;

WHEN road_grip *= BAD

IF skid |= NO

THEN road_conditions := BAD;

WHEN on_intersection *= ON_INT

IF maneuver |= DRIVE_FREELY OR maneuver |= FOLLOWING

THEN workload := HIGH;

WHEN skill *= NOVICE

IF workload |= VERY_HIGH OR light_conditions |= NIGHT OR

maneuver |= OVERTAKING

THEN channel := VOICE;

WHEN maneuver *= {FOLLOWING, TURNING}

IF NOT light_conditions |= NIGHT AND NOT workload |= VERY_HIGH

THEN channel := DISP_AND_VOICE;

WHEN preference *= NO_SPEED_MESSGS

IF NOT aicc_state |= AUTO AND NOT aicc_state |= OFF

AND aicc_decision |= SPEED_LIMIT

THEN warning := OK;

The Rl program for the DSS is rather large. It contains 275 rules and 80
slots, where some of the slots have more than 100 possible values. The total
number of slot-value pairs is 1752. The program is strati�able (see [24]) and
therefore may be run using the strati�ed (i.e., simpler) RLX engine. Please note
that the speci�cation presented above is executable, that is, no further coding is
necessary to obtain the implementation for this layer. An automated tool creates
also stubs of the PLCL code, to be used in the Process Layer.

The consistency checker gave us guarantee that the DSS program is logi-
cally consistent. Then we have performed the timing analysis. Assuming that
all the primitive operations take no more than 4�s (implementation-dependent
constant), the one-step time bound for this engine was Tstep = 0:0108s. As the
maximal number of rules to be �red was 275, the upper bound for a response
was T = 0:88s, what was deemed acceptable from the application point of view.
Some experiments have been performed with computing tighter estimates for
the DSS program, according to the proposal described in [27]. However, as the
algorithms are NP-complete, the results were expectedly not encouraging - we
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couldn't obtain any better estimate within 72 hours of computation time due
to the complexity of rule dependencies. However, more loosely coupled speci�-
cations would theoretically allow the possibility to tighten the estimates.

The Process Layer part of the DSS application was rather simple: it consisted
of a number of processes extracting the events from the raw data provided by
the input devices and another set of processes translating the discrete decisions
into appropriate signals to the output devices (display and voice synthesiser).
The timing analysis of this part of the system has provided guarantees that all
deadlines for the assumed period of the schedule (100ms) would be met.

The �nal comment about this application (as well as all others) is that it did
not require any advanced deliberation: all necessary decision making could be
speci�ed as a set of �xed, e�ectively propositional, rules describing all modes of
the system and all possible transitions between the modes. As we did not posess
any possibility of extending our predictability framework onto the analysis layer,
we have avoided to face such applications that would require it to be present. In
particular, any dynamic cooperation of autonomous (robotic) agents, involving
situation analysis and possibly negotiation among agents, would fall into this
class and therefore has not been studied so far. The two-robot test case [28] has
been created using a simple, �xed communication protocol, and therefore could
be realised completely reactively.

3 Controlled Deliberation

It is no accident that the tools described in the previous section do not entail
the analysis layer. Our approach to the tool generation can be described as
bottom-up: we have assumed predictability as the main requirement and then
developed and extended the tools in such a way that the created agent can always
be subjected to predictability analysis. This way we can formally, declaratively
specify an agent's control system using the languages introduced earlier, then
subject the speci�cation to correctness analysis, then (mostly) automatically
derive (most of) the code and �nally analyse its worst-case timing properties.
However, the price we pay for this comfortable situation is very high: we can
only deal (so far) with purely reactive systems, as the work on development of
the tools suitable for creating non-trivial deliberative modules in the analysis
layer has lagged much behind the original schedule.

As we have decribed already �ve years ago in [32], the basic idea behind the
controlled deliberation in the analysis layer is to use one of a series of logical
formalisms with increasing expressive power and with well-de�ned computational
properties. The agent would dynamically choose the formalism suitable for the
environment and the reasoning task it is currently faced with and, possibly, the
temporal constraint currently active. The theory of inhabited dynamical systems
underlying such logical formalisms has been developed by Sandewall [44] where
he has introduced a family of logics of action of increasing complexity, suitable for
capturing evolution in worlds characterized by some of the assumed set of well-
de�ned criteria, such as temporal invariance of the domain, inertia, alternative
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results of actions, delayed e�ects of actions, concurrency of actions, surprises,
etc. However, an eÆcient implementation of such temporal reasoning systems
did not appear yet and it seems very unlikely that it will in the near future. On
the other hand, one of the most prominent results of this research has recently
led to the development of an extremely eÆcient planning system | the TAL
Planner | announced earlier this year [21].

One could imagine the use of TAL as the main tool for reasoning in the
analysis layer. Unfortunately, TAL has some peculiarities that preclude its use
as a general-purpose mechanism. It requires that for every task it is expected to
reason about a specially crafted second-order \control" formula is provided. So
far, this formula needs to be created by hand and there are no clues how one
could automate the process.

Even if it were possible, the eÆciency of TAL, however, is not suÆcient
to guarantee the success of the whole enterprise | an implementation of the
reasoning procedures needs also to be predictable in the hard-real-time sense.
The main mechanism used, continuous look-ahead, is based on the same basic
principle as Real-Time A* [20], although its complexity is larger due to the fact
that each step in predicting the future development of the world involves (in
this case) non-monotonic reasoning in a suitable logic. Therefore, in order to
provide predictability, one would need to give the worst-case timing estimates
for proving theorems in those logics - an problem, if not hopeless, then at least
far from being solved.

Given these constraints one can consider several alternative approaches to
guaranteeing predictability of the GLA analysis layer. One of them may be the
use of interruptible anytime algorithms for deduction. When the alloted reason-
ing time is over, then conclusions drawn so far are the only ones considered valid.
This, of course, Immediately puts the question of validity of this approach: Is
it formally correct that some sentences are sometimes false and sometimes true,
depending only on the eÆciency of the theorem prover? Can it happen that given
the same amount of deduction time, the theorem prover will sometimes get an
interesting conclusion and sometimes not (maybe depending on the state of the
knowledge base or on the proof heuristics used in some particular case)? This
raises the need of carefully choosing the granularity of the world description, the
proof algorithms used and the time allocation policy. Probably the idea (pre-
sented e.g. by Zilberstein and Russell [48]) of using a number of representations
in parallel, from coarse to �ne-grained, is worth considering in this context.

Another possible line of work consists of pursuing the RTA* approach, as de-
scribed earlier, but using some appropriately crafted logic for reasoning purposes.
Such logic could be e.g. expressed in terms of a labelled deductive system [11],
where an appropriate additive algebra on labels would limit the depth of proofs
in a theory. However, such label systems would need to be studied in order to
establish some correspondence between theories deducible with it and classical
theories obtainable using standard logics of AI. The language of the logic it-
self would also need to be carefully chosen: a rich vocabulary may yield more
expressiveness but usually for the price of longer or more complicated proofs.
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However, in this case such richness might be bene�cial, allowing one to use short
proofs for non-trivial conclusions. A variation on this theme would be to limit
the domain of discourse by considering essentially propositional languages with
datalog properties and �nite models.

The reason we have not extended the architecture with the deliberation tools
earlier should be now obvious: we could not guarantee predictable temporal be-
haviour of such three-layered architecture. There is still much work to be done
before we can announce that GLA ful�lls the predictability requirement. In face
of the alternatives: a purely reactive system with the necessity of compiling
in all the possible reactions, but with guaranteed temporal behaviour, and the
full-blown GLA, with rich deliberative capabilities, fast enough in most circum-
stances but without guarantees, we have to choose the �rst option as this is the
only one that can be used without risk in safety-critical applications.

Of course, the approach described above makes only sense when predictability
is accepted as the most important property of the developed system (which it is in
case of hard-real-time applications). The important lesson that we have learned
during recent years is that if one tries to �rst use a fast (in terms of development
time) but dirty solution, hoping that the details would be �xed later, then the
obtained result may happen to be completely useless, forcing the researcher to
reconsider the whole theory from scratch. This was what indeed happened with
the development of RL (the main formalism used in the middle layer of GLA) and
this is what we would like to avoid now. Especially the predictability property
has to be embedded in the theory from the very beginning, underlying every
algorithm used and every control structure introduced - as we have learnt the
hard way, reintroducing it into an existing architecture is virtually impossible.

4 Related Work

As mentioned above, a large number of layered agent architectures have been pro-
posed for autonomous agent design and implementation. Chronologically, among
the �rst ones were e.g. NASREM [1], synchronous control of [3], SSS [5], Tour-
ingMachines [8], and ATLANTIS [12]. Recently, a number of good overviews has
appeared, e.g. chapter six of Arkin's textbook [2] (pointing to the fact that \the
nature of the boundary between deliberation and reactive execution is not well
understood at this time, leading to somewhat arbitrary architectural decisions",
p. 207), Jennings, Sycara and Wooldridge's [18], M�uller's [38] or Lee's [22], to
mention just a few.

The other three-layered architectures di�er from ours in several aspects.
Gat [13] distinguishes the layers on the similar basis, i.e. the type of performed
computations, but control in his system is located in the middle layer, with only
occasional invocation of high-level (actually, path planning) procedures. As in
our system, communication with the environment is done through the lowest
(control) layer only. The language Alfa is a specialized programming language
rather than a formalism for speci�cation of system's abilities.
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Connell's system SSS [5] has a similar decomposition of tasks as in our, or
Gat's case. The lowest layer hosts control procedures, the middle one contains
behavioural speci�cation of system's reactions, and the highest layer is expected
to perform path planning. However, in contrast to ours, his approach does not
o�er any tools for, nor even possibility of, analyzing the real-time performance
of the implemented system.

Ferguson's TouringMachine architecture [8] is the most elaborate and com-
plete of the three. It addresses both the real-time aspects and higher cognitive
functions (including manipulation of system goals, intentions and beliefs about
itself and other agents). The main di�erence is in the perceptory and e�ectory
paths: TouringMachine layers are simultaneously fed with the sensory informa-
tion and then compete for the right to control the actuators. Actually, neglecting
the possibility of implementing complex continuous control algorithms in our
process layer (TouringMachine has totally separated inputs and outputs), the
two approaches are to a large extent similar, with our discrete response layer
corresponding to the reactive layer of TM, and analysis layer performing the
tasks divided between TM's planning and modeling layers.

Another example of a similar, and recently very popular, layered agent ar-
chitecture is InteRRaP [39]. It can be seen as a more general solution than ours:
yet another layer is introduced to provide multi-agent planning and coopera-
tion ability. Another signi�cant di�erence is that InteRRaP possesses a global
knowledge base, accessible from all the processing layers, whereas our approach
stresses the need of multiple models suited for the processing layer they are
used by. In this way we can have inconsistencies between the models, but on
the other hand the modeling is simpler and more realistic. However, the later
versions of InteRRaP also allow separated world models, yielding this di�erence
non-existent.

Only a few of the architectures mentioned in this section address the issue of
real-time properties. Those that do, e.g., CIRCA [41]; usually adopt the \fast-
enough" attitude combined with \anytime algorithms". A more recent architec-
ture, explicitely addressing the hard-real-time requirements, is ARTIC [4]. It is a
modi�cation of a blackboard architecture, done in the spirit of GUARDIAN [14],
i.e., the hard-real-time response is guaranteed by employing re
exes, while de-
liberation is performed without any guarantees.

Russell and coworkers have provided a useful theory for anytime algorithms
[43, 48], extending the original work by Dean and Boddy on this topic [6]. Thanks
to their analysis it is exactly known what can and what cannot be expected from
anytime algorithms in the context of real-time applications. The short answer
is that soft real-time guarantees can be reasonably derived using probablistic
approach, while hard real-time guarantees are much harder to achieve.

An approach ressembling anytime algorithms, but applied to the area of
deduction, i.e. the second approach described in previous section, is the one by
Fisher and Ghidini [10]. They provide a logical system capable of adapting its
deductive power to the resource constraints. However, no useful (for us) bound
can be derived for this approach - the only guarantee is that the number of
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theorems will be smaller in some cases, but the proofs can still be very long and
no �xed limit in terms of the number of steps may be given.

The relevant issues of formal analysis of agent architectures has not attracted
much attention until very recently. An example of correctness analysis of the
classical PRS programs may be found in [46], in its turn based on an early work
by Rao and George� [42], while a more general look at the control structures
of rule-based systems, relevant from the point of view of our approach, may be
found in [16]. However, most literature on this topic needs to be traced in the
database theory, where active real-time databases have been studied formally
for a while.

Finally, the issue of comparing agent architectures, especially with respect
to their e�ectiveness and suitability for intended applications, is an important
topic worth attention and undoubtedly requiring further studies. An interesting
preliminary dicussion may be found in [15] and [22].

5 Conclusions

In the paper we have presented the generic layered software architecture (GLA)
and commented on the possibility of extending its reactive predictable behaviour
with some deliberative capabilities, but in a controlled way. We have described
the basic elements of the architecture and some of the tools available (although
we have omitted the more advanced tools related to the correctness and timing
veri�cation). The we have mentioned Sandewall's theory of inhabited dynamical
systems and discussed its usage in extending GLA into a predictable three-
layered architecture. Finally we have mentioned a few other possibilities, based
on the ideas of RTA* combined with labelled deductive systems.

Our future work on GLA software will be concentrated on guaranteeing
the stability of the software engines and the associated tools. We expect to
share the current GLA code with the scienti�c community as soon as a pre-
liminary documentation is available. For more details please have a look at
http://www.cs.lth.se/home/Jacek Malec/.

As the last remark regarding the related work one might observe that \intel-
ligent agent" is apparently the buzzword of the last decade. Intelligent software
agents, intelligent robotic agents, intelligent real-time agents and intelligent au-
tonomous agents seem ubiquitous in the recent literature in computer science
(software engineering and arti�cial intelligence in particular) and in the systems
and control area (especially intelligent control). However, not much attention
is being paid to the very notion of an intelligent agent : it suÆces for a sys-
tem (either software-, or hardware-based, or both) to reveal a behaviour a bit
more complex than just a simple input/output transformation, to be nicknamed
intelligent agent. Even better if the behaviour is non-stationary.

What usually hides behind this name is a compound system consisting of sev-
eral components performing time- and environment-dependent operations over
extended periods of time, and composing the results of those operations in some
(usually meaningful) way. One may ask though, what is the di�erence between
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an intelligent agent and a hierarchical, goal-seeking system, as described already
in the 1960s (see e.g. [33]). The answer can be either \none", when it comes to
the underlying principles, or \enormous" when we look at the scale of the sys-
tems created nowadays. However, the size of the delivered applications should
not create an impression that we, agent researchers, are the originators of all
the ideas in the �eld (although we might have rediscovered some of them if we
did not read suÆciently much): most of what we discuss today has already been
adressed one way or the other in some other area of science. Therefore an in-
teresting research agenda would be to trace the issues underlying agent research
back to their roots.
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