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Abstract We describe JastAdd, a Java-based system for specifying and imple-
menting the frontend parts of a compiler that follow parsing. The system is built
on top of a traditional Java parser generator which is used for parsing and tree-
building. JastAdd adds facilities for specifying and generating object-oriented
abstract syntax trees with both declarative behavior (using Reference Attributed
Grammars (RAGs)) and imperative behavior (using ordinary Java code). The
behavior can be modularized into different aspects, e.g. name analysis, type
checking, etc., that are woven together into classes. This combination of object-
oriented ASTs and aspect-modularized behavior results in a system which is eas-
ier and safer to use than solutions based on, e.g., the Visitor pattern. We also
describe the implementation of the RAG evaluator (optimal recursive evaluation)
which is implemented very conveniently using Java classes, interfaces, and vir-
tual methods.

1 Introduction

Most existing compiler-compilers are focused on scanning and/or parsing and
only rudimentary support for further front-end processing. Often, the support is lim
to simple semantic actions and tree-building during parsing. Systems supporting
advanced front-end processing are usually based on dedicated formalisms like att
grammars and algebraic specifications. These systems often have their own spe
tion language and can be difficult to integrate with handwritten code, in particu
when it is desired to take full advantage of state-of-the-art object-oriented langu
like Java. In this paper we describe JastAdd, a simple yet flexible system which al
static-semantic behavior to be implemented conveniently based on an object-orie
abstract syntax tree. The behavior can be modularized into different aspects, e.g.
analysis, type checking, intermediate code generation, etc., that are woven tog
into the classes of the abstract syntax tree, using techniques related to aspect-or
programming [9] and subject-oriented programming [3]. A common alternative mo
larization technique is to use the Visitor design pattern [2]. However, aspect wea
has many advantages over the Visitor pattern, including full type checking of met
parameters and return values, and the possibility to associate not only methods bu
fields to classes.

When implementing the front-end of a translator, it is often desired to use a com
nation of declarative and imperative code, allowing results computed by declara
modules to be accessed by imperative modules. For example, an imperative m
implementing a print-out of compile-time errors can access the error attributes c
1
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puted by a declarative module. In JastAdd, imperative modules are written in ordi
Java code. For declarative modules, JastAdd supports Reference Attributed Gram
(RAGs) [5]. This is an extension to attribute grammars that allows attributes to be
erences to abstract syntax tree nodes, and attributes can be accessed remotely v
references. RAGs allow name analysis to be specified in a simple way also for
guages with complex scope mechanisms like inheritance in object-oriented langu
The formalism makes it possible to use the AST itself as a symbol table, and to e
lish direct connections between identifier use sites and declaration sites. Fu
behavior, whether declarative or imperative, can be specified easily by making u
such connections. The RAG modules are specified in an extension to Java an
translated to ordinary Java code by the system.

Our current version of the JastAdd system is built on top of the parser gener
JavaCC [7]. However, it is not specifically tied to JavaCC: the parser generator is
only to parse the program and to build the abstract syntax tree. The definition o
abstract syntax tree and the behavior modules are completely independent of Ja
and the system could as well have been based on any other parser generator fo
such as CUP or ANTLR.

The tree building support in JavaCC is a preprocessor to JavaCC called JJTre
allows easy specification of what AST nodes to generate during parsing. JJTree
supports automatic generation of AST classes. However, it does not merge handw
code in these classes with the generated code, so it relies on the programmer to m
the generated code and update it by hand after changes to the grammar. This is
error-prone procedure and is completely avoided in JastAdd. In JastAdd, there is a
tinction between generated and handwritten modules, and the programmer never
modify generated code. The AST classes are generated by JastAdd, rather than r
on the JJTree facility for this. SableCC [1] is another Java-based system that has a
ilar distinction between generated and handwritten modules, but SableCC relies o
Visitor pattern for adding behavior, and supports only imperative specification of
behavior (using ordinary Java code).

The attribute evaluator used in JastAdd is an optimal recursive evaluator that
handle arbitrary acyclic attribute dependencies. If the dependencies contains cy
these are detected at attribute evaluation time. The evaluation technique is in prin
the same as the one used by many earlier systems such as Madsen [11], Jalili [6
Jourdan [8]: access to attribute values are replaced by functions that comput
semantic function for the value and then cache the computed value for fur
accesses. A cache-flag is used to keep track of if the value has been computed
and is cached, and a cycle-flag is used to keep track of attributes involved in an ev
tion so that cyclic dependencies can be detected at evaluation time. Our implem
tion differs in its use of object-oriented programming for convenient coding of
algorithm.

The rest of the paper is outlined as follows. Section 2 gives an overview by desc
ing the overall architecture of the system. Section 3 describes the object-oriented A
used in JastAdd. Section 4 describes how imperative code can be modularized ac
ing to different aspects of compilation and woven together into complete classes.
2
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tion 5 describes how RAGs can be used in JastAdd and section 6 how they
translated to Java. Section 7 discusses related work and Section 8 concludes the

2 System architecture

JastAdd contains two separate tools:JragandJadd. Jaddgenerates abstract syntax tre
classes based on a specification in an.astfile and weaves imperative aspect code wri
ten in.jaddfiles into the generated AST classes.Jragcompiles and weaves RAG mod-
ules written in .jrag files into Java implementations that contain the recursi
evaluator. The output fromJrag is a.jaddfile that is woven into the AST classes by th
Jaddtool. The traditional parser generator (in this case JJTree/JavaCC) is used fo
ating a parser that creates instances of the AST classes. Additional Java code is w
in order to put together the system, i.e., to call the parser and the various imper

Fig. 1. JastAdd architecture

DADT.java

nameanalysis.jrag

typecheck.jrag

LANG.ast Jrag

Display.java Code.java

erroreporter.jadd

codegen.jadd

Jadd

LANG.jjt

JJTree/
JavaCC

LANGParser.java

LANGCompiler.java

ASTA.java

ASTB.java

jrag.jadd

ASTC.java

tool generated file handwritten file input/output
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behaviors. The declarative behaviors need not be called explicitly, since any code
the defined attributes will implicitly start the recursive evaluation of those attribut
Additional Java code can also be written that is used by the.jrag and.jadd modules.

Figure 1 shows an example of generating a compiler for a languageLANG, using
the JastAdd system. Handwritten modules are shown with double borders and g
ated modules with single borders. The abstract syntax forLANG is specified in the
LANG.astmodule. Declarative behavior is specified in two separate RAG modu
nameanalysis.jragthat specifies name analysis, andtypecheck.jragthat specifies type
checking. Both these modules make use ofDADT.java, an ordinary Java module which
contains various abstract data types useful for name and type analysis. These
types are written to have declarative interfaces (no visible side-effects) in order to
conflict with the declarative semantics of the RAG modules. There are two impera
modules: one for error reporting,erroreporter.jadd, and one for code generation,code-
gen.jadd. Both these modules make use of attributes computed by the RAG modu

Fig. 2. Module dependencies

DADT.java

nameanalysis.jrag

typecheck.jrag

LANG.ast Jrag

Display.java Code.java

erroreporter.jadd

codegen.jadd

Jadd

LANG.jjt

JJTree/
JavaCC

LANGParser.java

LANGCompiler.java

ASTA.java

ASTB.java

jrag.jadd

ASTC.java

A B A calls B A B A creates objects of B
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They also make use of the auxiliary Java modulesDisplay.java(for displaying error
messages) andCode.java(classes for modelling the instructions). TheJrag tool reads
the AST and RAG specifications and produces a filejrag.jadd as output which imple-
ments the behavior specified in the RAGs using the recursive evaluation algorith
also produces a number of Java interfaces,I*.java, that are used within the evaluation
The Jadd tool reads the AST specification and all the.jadd files (including the one
generated byJrag), and generates a number of AST classes,AST*.java, which include
the behavior given in the.jaddfiles. The parse syntax forLANG is specified in the for-
mat required by the traditional parser generator tool, in this case in a file ca
LANG.jjt. The parser generator generatesLANGParser.java, a parser forLANG imple-
mented in Java. TheLANG.jjt file also includes directives for what AST objects to cre
ate during different stages in parsing. Finally, a Java module cal
LANGCompiler.java, functions as the main program for the compiler and calls t
parser and the imperative behaviors. Figure 2 gives an overview of how the diffe
modules depend on each other.

3 Object-oriented abstract syntax trees

The basis for specification in JastAdd is an abstract context-free grammar. An abs
grammar is essentially a simplification of a parsing grammar, leaving out the e
nonterminals and productions that resolve parsing ambiguities and leaving out to
that do not carry semantic values. In addition, it is often useful to have fairly differ
structure in the abstract and parsing grammars for certain language constructs
example, expressions can be conveniently expressed using EBNF rules in the p
but are more adequately described as binary trees in the abstract grammar. Also,
ing-specific grammar transformations like left-factorization and elimination of le
recursion for LL parsers are unnecessary in the abstract grammar. Things importa
abstract grammars (but unimportant to parsing grammars) include that behavior sh
be easy to add to the AST and that traversal and access to subcomponents of th
should be easy and type safe.

In JastAdd, the abstract grammar is specified separately from the parsing gram
in order to allow each of them to be designed as needed with regard to their diffe
purposes. This also makes JastAdd independent of the underlying parsing system

JastAdd makes use of an object-oriented notation for the abstract grammar. A
terminal is modelled as a superclass and the productions for the nonterminal
named and modelled as subclasses. For example, a nonterminalDecl with productions
Decl → int ID andDecl → boolean ID can be modelled by a superclassDecl with
subclassesIntDecl andBoolDecl. For nonterminals with a single production, both th
nonterminal and production are modelled by the same class. E.g., a nonterminalPro-
gram with a single productionProgram → Block can be modelled by a single clas
Program. In order to support easy traversal and access to subcomponents o
abstract syntax tree node, JastAdd supports four different kinds of right-hand-side
a production class:list (a list of components of the same type),optional(a single com-
ponent which is optional),token(a component which is a token with a semantic value
andaggregate (a set of named components which can be of different types).
5
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3.1 An example: Tiny

Figure 3 shows Tiny.ast, a specification of an abstract grammar for Tiny, a small ex
ple block-structured language. (The line-numbers written out to the left allow are
part of the actual specification.) ClassIfStmt on line 5 is an example of an aggregat
class with three subcomponents (of typesExp, Stmt, and OptStmt respectively).
ClassCompoundStmt on line 8 is an example of a list class: aCompoundStmt node
will have zero or more subcomponents, all of typeStmt. ClassOptStmt on line 6 is an
example of an optional class: anOptStmt node will either have no subcomponent, or
single subcomponent of typeStmt. ClassBoolDecl on line 10 is an example of a
token class: aBoolDecl node will have a single subcomponent which is a token
type ID. ClassStmt on line 3 is an example of a class without a right-hand side, cor
sponding to an ordinary nonterminal. ClassStmt serves as a superclass of the class
BlockStmt, IfStmt, AssignStmt, andCompoundStmt on lines 4, 5, 7, and 8. Class
Stmt also has a modifier “abstract”. This means that the corresponding generate
Java class will also have the modifier “abstract”. This modifier is not strictly neces-
sary, but is useful is order to allow behavior in the form of Java method interfaces t
added to the class, without having to supply default implementations.

From the .ast specification, the Jadd tool generates a set of Java classes with
interface to their subcomponents. Figure 4 shows some of the generated class
exemplify the different kinds of access interfaces to classes with different kinds of s
components. Note that for an aggregate class with more than one subcomponent
same type, the components are automatically numbered, as for the classASTAdd.

3.2 Additional superclasses

When adding behavior it is often found that certain behavior is relevant for sev
classes that are unrelated from a parsing point of view. For example, bothStmt and
Exp nodes may have use for anenv attribute that models the environment of visibl

Fig. 3. Tiny.ast - specification of an abstract grammar for Tiny

1 Program ::= Block;
2 Block ::= Decl Stmt;
3 abstract Stmt;
4 BlockStmt : Stmt ::= Block;
5 IfStmt : Stmt ::= Exp Stmt OptStmt;
6 OptStmt ::= [Stmt];
7 AssignStmt : Stmt ::= IdUse Exp;
8 CompoundStmt : Stmt ::= Stmt*;
9 abstract Decl;
10 BoolDecl: Decl ::= <ID>;
11 IntDecl : Decl ::= <ID>;
12 abstract Exp;
13 IdUse : Exp ::= <ID>;
14 Add : Exp ::= Exp Exp;
15 ...
6
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identifiers. In Java, such sharing of behavior can be supported either by letting
involved classes inherit from a common superclass or by letting them impleme
common interface. JastAdd supports both ways. Additional superclasses can be
in the .ast specification. Typically, it is useful to introduce a superclassAny that is the
superclass of all other AST classes. This is done by adding a new class “abstract
Any;” into the .ast specification and adding it as a superclass to all other classes th
not already have a superclass.

Such additional superclasses allows common default behavior to be specified
to be overridden in suitable subclasses. For example, default behavior for all n
might be to declare an attributeenv and to by default copy theenv value from each
node to its components by adding this behavior toAny. AST classes that introduce new
scopes, e.g.Block, can then override this behavior.

Java interfaces are more restricted in that they can include only method inter
and no default implementation. On the other hand, they are also more flexible, a
ing, e.g., selected AST classes to share a specific interface orthogonally to the
hierarchy. Such selected interface implementation is specified as desired in the
files and will be discussed in Section 4.

3.3 Connection to JavaCC

Building the tree
To connect easily to JavaCC/JJTree, the AST classes generated by JastAdd are
subclasses of a classSimpleNode that is generated by JJTree. This allows JJTree
create AST nodes but use its own implementation inSimpleNode to connect the
nodes into a tree. However, the resulting tree is untyped in the sense that there
check that number and types of components of a given node are consistent wit
abstract grammar. The compiler writer must be careful to specify tree building act
in JJTree to build the tree in the right way. If the tree is built in the wrong way, A
access methods will fail since they use the primitiveSimpleNode access methods and
then cast the result to the appropriate type. Specification of tree-building action

Fig. 4. Access interface for some of the AST classes generated from the .ast specifica

abstract class ASTStmt {
}

class ASTIfStmt extends ASTStmt {
ASTExp getExp() { ... }
ASTStmt getStmt() { ... }
ASTOptStmt getOptStmt() { ... }

}

class ASTOptStmt {
boolean hasStmt() { ... }
ASTStmt getStmt() { ... }

}

class ASTCompoundStmt {
int getNumStmts() { ... }
ASTStmt getStmt(int k) { ... }

}

class ASTBoolDecl extends ASTDecl {
String getID() { ... }

}

class ASTAdd extends ASTExp {
ASTExp getExp1() { ... }
ASTExp getExp2() { ...}

}

7
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error-prone, in particular if the parsing and abstract tree differ in structure. To aid
compiler writer, JastAdd generates a methodsyntaxCheck() for each AST class
which can be called to check that a given tree actually follows the abstract gramm

Token semantic values
When building the AST, information about the semantic values of tokens needs t
included. To support this, JastAdd generates a set-method for each token clas
example, for the token classBoolDecl, a methodvoid setID(String s) is generated.
This method can be called as an action during parsing in order to transmit the sem
value to the AST.

Visitors
JJTree includes support for generating accept methods in AST classes to suppor
gramming using the Visitor pattern. JastAdd generates the same methods so tha
gramming in this way is supported although JastAdd rather than JJTree is use
AST class generation. A compiler writer may use this facility as well, although m
behavior is easier to code using aspect weaving. The visitor facility has been usefu
bootstrapping, implementing JastAdd itself. It is also useful when migrating an ex
ing JJTree-based system to use JastAdd.

4 Weaving jadd files

Object-oriented languages lend themselves very nicely to implementation of com
ers. It is natural to model an abstract syntax tree using a class hierarchy where no
minals are modelled as abstract superclasses and productions as specialized co
subclasses, as discussed in Section 3. Behavior can be implemented easily by intr
ing abstract methods on nonterminal classes and implement them in subclasses.
ever, a problem is that to make use of the object-oriented mechanisms, the
hierarchy imposes a modularization based on language constructs whereas the
piler writer also wants to modularize based on aspects in the compiler, such as n
analysis, type checking, error reporting, code generation, and so on. Each AST
needs to include the code related to all of the aspects and it is not possible to prov
separate module for each of the aspects. This is a classical problem that has bee
cussed since the origins of object-oriented programming.

4.1 The Visitor pattern

The Visitor design pattern is one (partial) solution to this problem [2]. It allows a giv
method that is common to all AST nodes to be factored out into a helper class cal
Visitor containing an abstractvisitC method for each AST classC. All AST nodes
have knowledge of an abstractVisitor class to which they can delegate to the approp
ate visitC method. For example, for type checking, one could use this techniqu
implement aTypeCheckingVisitor as a subclass to the abstractVisitor class and
implement type checking in the visit methods. There are several limitations to
approach, however. One is that only methods can be factored out; fields must st
8
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declared directly in the classes. For example, in type checking, one typically nee
field type for each applied identifier, and this cannot be handled by the Visitor patte
Another drawback with the Visitor pattern is that the parameter and return types
not be tailored to the different visitors - they must all share the same interface for
visit methods. For example, for type checking expressions, a desired interface cou

Type typecheck(Type expectedType)

whereexpectedType contains the type expected from the context and thetypecheck
method returns the actual type of the expression. Using the Visitor pattern, this w
have to be modelled into visit methods

Object visitC(Object arg)

to conform to the generic visit method interface.

4.2 Class weaving

JastAdd uses class weaving for modularizing compiler aspects. For each aspec
appropriate fields and methods for the AST classes are written in a separate modu
.jadd module. The Jadd tool reads all the .jadd modules and inserts the fields and

Fig. 5. Jadd files for typechecking and unparsing

typechecker.jadd

...
class IfStmt {

void typeCheck() {
getExp().typeCheck(“Boolean”);
getStmt().typeCheck();
getOptStmt().typeCheck();

}
};

class Exp {
abstract void typeCheck

(String expectedType);
}
}

class Add {
boolean typeError;
void typeCheck(String expectedType) {

getExp1().typeCheck(“int”);
getExp2().typeCheck(“int”);
if (expectedType != “int”)

typeError = true;
else

typeError = false;
}

}
...

unparser.jadd

import Display;

class Stmt {
abstract void unparse(Display d);

}

class Exp {
abstract void unparse(Display d);

}

class Add {
void unparse(Display d) {

...
if (typeError)

d.showError(“type mismatch”);
...

}
}

...
9
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ods into the appropriate classes during the generation of the AST classes. This
weaving approach does not support separate compilation of individual .jadd mod
but on the other hand it allows a suitable modularization of the code and does not
the limitations of the Visitor pattern.

The .jadd files use normal Java syntax. Each file simply consists of a list of c
declarations. For each class matching one of the AST classes, the corresponding
and methods are inserted into the generated AST class. It is not necessary to sta
superclass of the classes since that information is supplied by the .ast specific
Figure 5 shows an example. One .jadd module performs typechecking for expres
and another .jadd module implements an unparser which also reports type-che
errors. The .jadd modules may use fields and methods in each other. This is illust
by the unparser module which uses the error fields computed by the type chec
module. The .jadd modules may freely use other Java classes. This is illustrated b
unparsing module which imports a class Display. The import clause is transmitte
all the generated AST classes. Note also that the .jadd modules use the generate
access interface described in Section 3. An example of a complete AST class g
ated by Jadd is shown in Figure 6.

Fig. 6. Woven complete AST class

ASTAdd.java

class ASTAdd extends ASTExp {
// Access interface
ASTExp getExp1() { ... }
ASTExp getExp2() { ...}

// From typechecker.jadd
boolean typeError;
void typeCheck(String expectedType) {

getExp1().typeCheck(“int”);
getExp2().typeCheck(“int”);
if (expectedType != “int”)

typeError = true;
else

typeError = false;
}

// From unparser.jadd
void unparse(Display d) {

...
if (typeError)

d.showError(“type mismatch”);
...

}

}

10
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4.3 Using the AST as a symbol table

In traditional compiler writing it is common to build symbol tables as large data str
tures, separate from the parse tree. The use of object-oriented ASTs makes it c
nient to use another approach where the AST itself is used as a symbol table. Fo
lookup, it is useful to add a hash table or some other fast collection structure. How
the items in that collection can be references to declaration nodes in the AST. O
lookup is done, the appropriate declaration reference can be stored in a field o
applied identifier. To access the type of a declaration, simply add a method to all d
rations, returning the type of the declaration. Often, it is useful to allow such re
ences to denote both AST nodes and other ordinary Java objects. For examp
missing declaration can be modelled by a static object MissingDeclaration. Th
easy to handle in Java by letting both the appropriate AST objects and the other ob
implement a common interface.

Using the AST itself as a symbol table is particularly powerful in combination w
the class weaving modularization technique. Often, different aspects or phases in
pilation need different information in the symbol table. Using .jadd files, the fields a
methods can be added to the “symbol table items” (i.e. AST classes) in separate
ules, as desired. For example, a .jadd module for code generation module can
field for the activation record offset for each variable declaration, and a method
computing that field.

5 Using Reference Attributed Grammars

In addition to imperative modules it is valuable to be able to state computations de
atively, both in order to achieve a clearer specification and to avoid explicit orderin
the computations, thereby avoiding a source of errors that are often difficult to de

JastAdd supports the declarative formalism RAGs (Reference Attributed Gr
mars) which fit nicely with object-oriented ASTs. The important extension in RA
(as compared to traditional attribute grammars) is the support for reference attrib
The value of such an attribute is a reference to an object. In particular, a nodeq can
contain a reference attribute referring to another noder in the AST, arbitrarily far away
from q in the AST. This way arbitrary connections between nodes can be establis
and equations inq can access attributes inr via the reference attribute. Typically, this is
used for connecting applied identifiers with declarations. In a Java-based RAG sys
the type of a reference attribute can be either a class or an interface. This enables
safe yet flexible access to attributes in remote objects. The interface mechanism g
high degree of flexibility. For example, a reference attributeouterScope of an inter-
face typeScope can be used for linking together language constructs that introd
new scopes. Each such language construct, e.g.Block, Method, Class, and so on,
simply implements theScope interface, which may include, e.g., a functionlookup
for looking up declarations in that scope.

RAG modules are similar to Jadd modules in that different aspects can be spec
in different modules and they both consist of a list of AST class declarations that c
tain information to be added to the complete AST classes. The RAG language is,
11
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ever, not ordinary Java, but a slightly extended and modified language. Each
consists of a list of attribute declarations, method declarations, and equations. Attr
declarations are written like field declarations, but with an additional modifier “syn” or
“ inh” to indicate if the attribute is a synthesized or inherited attribute. Java method
syntax is used for accessing attributes, e.g.a() means access the value of the attribu
a. Methods are written in the same way as in Java, but should contain no side-ef
that are visible outside the method. Equations are written like Java assignment s
ments. The left-hand side can be either a synthesized attribute in the node
(declared in its class or any superclass), or an inherited attribute of a componen
access to components, the generated access interface for ASTs is used (tha
described in Section 3), e.g.getStmt() for accessing theStmt component of a node.
Equations for synthesized attributes can be written directly as part of the attribute
laration (using the syntax of variable initialization in Java).

5.1 An example: name analysis

Figure 7 shows an example of a RAG module for name analysis of the language
(Line numbers are not part of the actual specification.) All blocks, statements,
expressions have an inherited attributeenv representing the environment of visible
declarations. Theenv attribute is a reference to the closest enclosingBlock node,
except for the outermostBlock node whoseenv is null, see the equations on lines 2
and 6. All otherenv definitions are trivial copy equations, e.g., on lines 22 and 23.

class Program {
getBlock().env = null;

};
class Block {

inh Block env;
getStmt().env = this;
ASTDecl lookup(String name) {

return
(getDecl().name().equals(name))

? getDecl()
: (env() == null) ? null

: env().lookup(name);
}

};
class Stmt {

 inh Block env;
};
class BlockStmt {

 getBlock().env = env();
}
class AssignStmt {

getIdUse().env = env();
getExp().env = env();

}

25 class Decl {
26 syn String name;
27 };
28 class Exp {
29  inh Block env;
30 }
31 class Add {
32 getExp1().env = env();
33 getExp2().env = env();
34 }
35 class IdUse {
36 inh Block env;
37 syn Decl myDecl = env().lookup(name
38 name = getID();
39 }
40 class IntDecl {
41 name = getID();
42 };
43 class BoolDecl {
44 name = getID();
45 };

Fig. 7. RAG module for name analysis
12
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The goal of the name analysis is to define a connection from eachIdUse node to
the appropriateDecl node (or tonull if there is no such declaration). This is done by
synthesized reference attributemyDecl declared and defined at line 37. Usual bloc
structure with name shadowing is implemented by the methodlookup on Block (lines
7-13). It is first checked if the identifier is declared locally, and if not, the enclos
blocks are searched by recursive calls to lookup.

The lookup method is an ordinary Java method, but has been coded as a func
containing only a return statement and no other imperative code. As an alternative
possible to code it imperatively using ordinary if-statements. However, it is good p
tice to stay with function-oriented code as far as possible, using only a few idioms
simulating, e.g., let-expressions. Arbitrary imperative code can be used as well
then it is up to the programmer to make sure the code has no externally visible
effects.

The example has been written to be self-contained and straight-forward to un
stand. For a realistic language several changes could be done. The copy equatio
env could be factored out into a common superclassAny, thereby making the specifi-
cation substantially more concise. Rather than usingBlock as the type ofenv, an inter-
faceEnv with a functionlookup could be introduced. This would allow the languag
to be easily extended with other block constructs, e.g. procedures with parame
Instead of usingnull to represent the empty environment, a static object for the em
environment could be defined. Similar changes could be done for themyDecl
attribute. A more realistic language would also allow several declarations per bl

1 class Decl {
2 syn String type;
3 }
4 class BoolDecl {
5 type = "boolean";
6 };
7 class IntDecl {
8 type = "int";
9 };
10 class Exp {
11 syn String type;
12 };
13 class IdUse {
14 type = (myDecl()==null) ? null
15 : (myDecl().type()==null) ? null
16 : myDecl().type()
17 };
18 class Stmt {
19 syn boolean typeError;
20 };
21 class AssignStmt {
22 typeError = !getIdUse().type().equals(getExp().type());
23 };
24 ....

Fig. 7. A RAG module for type checking
13
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5.2 Example continued: type checking

Figure 7 shows a type checking module that uses themyDecl attribute computed by
the name analysis. This is a typical example of how convenient it is to use the A
itself as a symbol table and to extend the elements as needed in separate module
type checking module extendsDecl with a new synthesized attributetype (line 2).
This new attribute is accessed inIdUse in order to define itstype attribute (line 14).
The types of expressions are then used as usual to do type checking as shown f
AssignStmt (line 22).

Again, the example is written to be self-contained and straight-forward to read.
a realistic language, the types would typically be represented in way that would a
for more efficient comparison than strings, for example as integer constants or as r
ences to type objects, maybe using imported Java code and adding more interfa
the AST classes. The imported Java code must, however, be written with care to su
methods without externally visible side-effects. A more realistic example would a
have better error handling, e.g., not considering the use of undeclared identifie
type checking errors.

It is illustrative to compare the RAG type checker with the imperative one sketc
in Section 4.2. By not having to code the order of computation the specifica
becomes much more concise and simpler to read than the imperative type check

6 Translating RAG modules

The Jrag tool translates RAG modules to ordinary Java code, weaving togethe
code of all RAG modules and producing a Jadd file. Attribute evaluation is imp
mented simply by realizing all attributes as functions and letting them return the r
hand side of their defining equations, caching the value after it has been compute
first time, and checking for circularities during evaluation. This implementation is p
ticularly convenient in Java where methods, overriding, and interfaces are used fo
realization. In the following we show the core parts of the translation, namely how
translate synthesized and inherited attributes and their defining equations for ab
and aggregate AST classes.

6.1 Synthesized attributes

Synthesized attributes correspond exactly to Java methods. A declaration of a sy
sized attribute is translated to an abstract method declaration with the same nam
example, recall the declaration of thetype attribute in classDecl of Figure 7

class ASTDecl {
syn String type;

}

14



tract

is in

-
tion,
-

This attribute declaration is translated to

class ASTDecl {
abstract String type();

}

Equations defining the attribute are translated to implementations of the abs
method. For example, recall the equations defining thetype attribute inIntDecl and
BoolDecl of Figure 7.

class ASTIntDecl {
type = “int”;

class ASTBoolDecl {
type = “boolean”;

}

These equations are translated as follows.

class ASTIntDecl {
String type() {

return “int”;
}

}

class ASTBoolDecl {
String type() {

return “boolean”;
}

}

6.2 Inherited attributes

An inherited attribute is defined by an equation in the father node. To represent th
Java, we add an interfaceFatherOfX for each classX declaring an inherited attribute.
Each class which has components of typeX must implement this interface. The inter
face contains abstract methods for computing the inherited attributes. In addi
methods for the inherited attribute ofX are added toX. These methods call the corre
sponding method of the father node in an appropriate way.

For example, recall the declaration of the inherited attributeenv in classStmt in
Figure 7. BothBlock andIfStmt haveStmt components and define theenv attribute of
those components:

class ASTStmt {
inh Block env;

}

15
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class ASTBlock {
getStmt().env = this;

}

class ASTIfStmt {
getStmt().env = env();

}

SinceASTStmt contains declarations of inherited attributes, an interface is genera
as follows:

interface FatherOfStmt {
ASTBlock Stmt_env(ASTStmt theStmt);

}

The Block and IfStmt classes must implement this interface. The implementati
should evaluate the right-hand side of the appropriate equation and return that v
The translated code looks as follows.

class ASTBlock implements FatherOfStmt {
ASTBlock Stmt_env(ASTStmt theStmt) {

return this;
}

}

class ASTIfStmt implements FatherOfStmt {
ASTBlock Stmt_env(ASTStmt theStmt) {

return env();
}

}

The parametertheStmt was not needed in this case, since both these classes had o
single component of typeStmt. However, in general, an aggregate class may ha
more than one component of the same type and equations defining the inhe
attributes of those components in different ways. For example, an aggregate
Example ::= Stmt Stmt could have the following equations:

class Example {
getStmt1().env = env();
getStmt2().env = null;

}

The translation ofExample needs to take the parameter into account to handle b
equations:

class Example implements FatherOfStmt{
ASTBlock Stmt_env(ASTStmt theStmt) {

if (theStmt==getStmt1())
return env();

else
16
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return null;
}

}

Finally, a method is added toStmt to give access to the attribute value. The methodjjt-
GetParent() is generated by JJTree (in the superclassSimpleNode) and is used to
access the parent of theStmt node. The cast is safe since all AST nodes withStmt
components must implement theFatherOfStmt interface (this is checked by Jrag).

class ASTStmt {
ASTBlock env() {

return ((FatherOfStmt) jjtGetParent()).Stmt_env(this);
}

}

6.3 Generalizations

The translation described above can be easily generalized to handle lists, optio
caching of computed values (to achieve optimal evaluation), and circularity check
detect cyclic attribute dependencies and thereby avoid endless recursion).

7 Related work

The weaving technique used here is related to current trends in object-oriented
puting like aspect-oriented programming [9], subject-oriented programming [3],
fragment modularization [10]. These techniques are all aimed at modularizatio
code orthogonally to the normal code structure and supporting this using general
niques. JastAdd’s weaving technique relies on the same basic ideas, but is much
pler and light-weight, using an ad hoc weaver for our particular proble
(modularization of ASTs).

The idea of using object-oriented ASTs is probably as old as object-orienta
itself. The use of it in attribute grammars has been reported before [4]. There are
eral compiler tools that use OO ASTs, e.g. the metaprogramming system (MPS) o
BETA system [12]. MPS has certain support for aspect modularization through
BETA fragment system which allows methods to be factored out into different aspe
However, fields can usually not be factored out in order to be able to handle sep
compilation.

Another example of a compiler tool using OO ASTs is SableCC [1] which is
Java-based system using an LL-parser generator. The goals of SableCC are sim
those of JastAdd, including supporting a fully typed OO AST in Java and strict sep
tion of handwritten and generated code. However, SableCC provides support onl
Visitor-based modularization.
17
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8 Conclusion

We have presented a simple yet very flexible and safe system for writing comp
frontends in Java. Its main features are Java-based OO ASTs (decoupled from pa
grammars), aspect-modularized code, and support for both imperative and decla
code, the latter by means of RAGs. We find this combination very useful for writ
practical translators in an easy way. We are currently in the process of bootstrap
the system using itself, and will also use it in a course on compiler construction in
spring of 2001.
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