Draft, December 18, 2000.

JastAdd—a Java-based system
for implementing frontends

Gorel Hedin, Eva Magnusson
Dept of Computer Science, Lund University, Sweden.
{gorel | eva}@cs.lth.se

Abstract We describe JastAdd, a Java-based system for specifying and imple-
menting the frontend parts of a compiler that follow parsing. The system is built
on top of a traditional Java parser generator which is used for parsing and tree-
building. JastAdd adds facilities for specifying and generating object-oriented
abstract syntax trees with both declarative behavior (using Reference Attributed
Grammars (RAGSs)) and imperative behavior (using ordinary Java code). The
behavior can be modularized into different aspects, e.g. name analysis, type
checking, etc., that are woven together into classes. This combination of object-
oriented ASTs and aspect-modularized behavior results in a system which is eas-
ier and safer to use than solutions based on, e.g., the Visitor pattern. We also
describe the implementation of the RAG evaluator (optimal recursive evaluation)
which is implemented very conveniently using Java classes, interfaces, and vir-
tual methods.

1 Introduction

Most existing compiler-compilers are focused on scanning and/or parsing and have
only rudimentary support for further front-end processing. Often, the support is limited
to simple semantic actions and tree-building during parsing. Systems supporting more
advanced front-end processing are usually based on dedicated formalisms like attribute
grammars and algebraic specifications. These systems often have their own specifica-
tion language and can be difficult to integrate with handwritten code, in particular
when it is desired to take full advantage of state-of-the-art object-oriented languages
like Java. In this paper we describe JastAdd, a simple yet flexible system which allows
static-semantic behavior to be implemented conveniently based on an object-oriented
abstract syntax tree. The behavior can be modularized into different aspects, e.g. name
analysis, type checking, intermediate code generation, etc., that are woven together
into the classes of the abstract syntax tree, using techniques related to aspect-oriented
programming [9] and subject-oriented programming [3]. A common alternative modu-
larization technique is to use the Visitor design pattern [2]. However, aspect weaving
has many advantages over the Visitor pattern, including full type checking of method
parameters and return values, and the possibility to associate not only methods but also
fields to classes.

When implementing the front-end of a translator, it is often desired to use a combi-
nation of declarative and imperative code, allowing results computed by declarative
modules to be accessed by imperative modules. For example, an imperative module
implementing a print-out of compile-time errors can access the error attributes com-



puted by a declarative module. In JastAdd, imperative modules are written in ordinary
Java code. For declarative modules, JastAdd supports Reference Attributed Grammars
(RAGS) [5]. This is an extension to attribute grammars that allows attributes to be ref-
erences to abstract syntax tree nodes, and attributes can be accessed remotely via such
references. RAGs allow name analysis to be specified in a simple way also for lan-
guages with complex scope mechanisms like inheritance in object-oriented languages.
The formalism makes it possible to use the AST itself as a symbol table, and to estab-
lish direct connections between identifier use sites and declaration sites. Further
behavior, whether declarative or imperative, can be specified easily by making use of
such connections. The RAG modules are specified in an extension to Java and are
translated to ordinary Java code by the system.

Our current version of the JastAdd system is built on top of the parser generator
JavaCC [7]. However, it is not specifically tied to JavaCC: the parser generator is used
only to parse the program and to build the abstract syntax tree. The definition of the
abstract syntax tree and the behavior modules are completely independent of JavaCC
and the system could as well have been based on any other parser generator for Java
such as CUP or ANTLR.

The tree building support in JavaCcC is a preprocessor to JavaCC called JJTree and
allows easy specification of what AST nodes to generate during parsing. JJTree also
supports automatic generation of AST classes. However, it does not merge handwritten
code in these classes with the generated code, so it relies on the programmer to modify
the generated code and update it by hand after changes to the grammar. This is a very
error-prone procedure and is completely avoided in JastAdd. In JastAdd, there is a dis-
tinction between generated and handwritten modules, and the programmer never has to
modify generated code. The AST classes are generated by JastAdd, rather than relying
on the JJTree facility for this. SableCC [1] is another Java-based system that has a sim-
ilar distinction between generated and handwritten modules, but SableCC relies on the
Visitor pattern for adding behavior, and supports only imperative specification of the
behavior (using ordinary Java code).

The attribute evaluator used in JastAdd is an optimal recursive evaluator that can
handle arbitrary acyclic attribute dependencies. If the dependencies contains cycles,
these are detected at attribute evaluation time. The evaluation technique is in principle
the same as the one used by many earlier systems such as Madsen [11], Jalili [6], and
Jourdan [8]: access to attribute values are replaced by functions that compute the
semantic function for the value and then cache the computed value for further
accesses. A cache-flag is used to keep track of if the value has been computed before
and is cached, and a cycle-flag is used to keep track of attributes involved in an evalua-
tion so that cyclic dependencies can be detected at evaluation time. Our implementa-
tion differs in its use of object-oriented programming for convenient coding of the
algorithm.

The rest of the paper is outlined as follows. Section 2 gives an overview by describ-
ing the overall architecture of the system. Section 3 describes the object-oriented ASTs
used in JastAdd. Section 4 describes how imperative code can be modularized accord-
ing to different aspects of compilation and woven together into complete classes. Sec-



tion 5 describes how RAGs can be used in JastAdd and section 6 how they are
translated to Java. Section 7 discusses related work and Section 8 concludes the paper.

2 System architecture

JastAdd contains two separate todlisig andJadd Jaddgenerates abstract syntax tree
classes based on a specification inastfile and weaves imperative aspect code writ-

ten in.jaddfiles into the generated AST class@sag compiles and weaves RAG mod-

ules written in .jrag files into Java implementations that contain the recursive
evaluator. The output frodragis a.jaddfile that is woven into the AST classes by the
Jaddtool. The traditional parser generator (in this case JJTree/JavaCC) is used for cre-
ating a parser that creates instances of the AST classes. Additional Java code is written
in order to put together the system, i.e., to call the parser and the various imperative

| Display.java | | Code.java |

| nameanalysis.jrag | | erroreporter.jadd |

| typecheck.jrag | codegen.jadd

jrag.jadd
//
LANG.ast @ Jadd

LANG jjt

LANGCompiler.java

ASTA java
ASTB.java—|
ASTC.java
LANGParser.java
O tool |:| generated file EI handwritten file ~——> input/output

Fig. 1. JastAdd architecture



behaviors. The declarative behaviors need not be called explicitly, since any code using
the defined attributes will implicitly start the recursive evaluation of those attributes.
Additional Java code can also be written that is used byrégeand.jadd modules.

Figure 1 shows an example of generating a compiler for a languAdis, using
the JastAdd system. Handwritten modules are shown with double borders and gener-
ated modules with single borders. The abstract syntadX MG is specified in the
LANG.astmodule. Declarative behavior is specified in two separate RAG modules:
nameanalysis.jraghat specifies name analysis, aygecheck.jraghat specifies type
checking. Both these modules make us®ADT.javg an ordinary Java module which
contains various abstract data types useful for name and type analysis. These data
types are written to have declarative interfaces (no visible side-effects) in order to not
conflict with the declarative semantics of the RAG modules. There are two imperative
modules: one for error reportingrroreporter.jadd and one for code generaticsgde-
gen.jadd Both these modules make use of attributes computed by the RAG modules.

| Display.java | | Code.java |
T T

| nameanalysis.jrag | | erroreporter.jadd |

| typecheck.jrag | codegen.jadd
jrag.jadd

= & @

LANGCompiler.java

ASTA java

r .
F— ASTB.Java—|
\l/— F— — o ASTC.java
LANGParserjaval| — — — — — — — T — o]
A —>B AcallsB A - —=>B  Acreates objects of B

Fig. 2. Module dependencies



They also make use of the auxiliary Java modésplay.java(for displaying error
messages) andode.java(classes for modelling the instructions). Tirag tool reads

the AST and RAG specifications and produces ajfdg.jadd as output which imple-
ments the behavior specified in the RAGs using the recursive evaluation algorithm. It
also produces a number of Java interfatem@va, that are used within the evaluation.
The Jaddtool reads the AST specification and all thadd files (including the one
generated byrag), and generates a number of AST clas#e3T*.java which include

the behavior given in thgaddfiles. The parse syntax fwANGis specified in the for-

mat required by the traditional parser generator tool, in this case in a file called
LANG.jjt. The parser generator generatddNGParser.javaa parser foLANGimple-
mented in Java. TheANG.jjtfile also includes directives for what AST objects to cre-
ate during different stages in parsing. Finallyy, a Java module called
LANGCompiler.javafunctions as the main program for the compiler and calls the
parser and the imperative behaviors. Figure 2 gives an overview of how the different
modules depend on each other.

3 Object-oriented abstract syntax trees

The basis for specification in JastAdd is an abstract context-free grammar. An abstract
grammar is essentially a simplification of a parsing grammar, leaving out the extra
nonterminals and productions that resolve parsing ambiguities and leaving out tokens
that do not carry semantic values. In addition, it is often useful to have fairly different
structure in the abstract and parsing grammars for certain language constructs. For
example, expressions can be conveniently expressed using EBNF rules in the parser,
but are more adequately described as binary trees in the abstract grammar. Also, pars-
ing-specific grammar transformations like left-factorization and elimination of left-
recursion for LL parsers are unnecessary in the abstract grammar. Things important to
abstract grammars (but unimportant to parsing grammars) include that behavior should
be easy to add to the AST and that traversal and access to subcomponents of the AST
should be easy and type safe.

In JastAdd, the abstract grammar is specified separately from the parsing grammar
in order to allow each of them to be designed as needed with regard to their different
purposes. This also makes JastAdd independent of the underlying parsing system used.

JastAdd makes use of an object-oriented notation for the abstract grammar. A non-
terminal is modelled as a superclass and the productions for the nonterminals are
named and modelled as subclasses. For example, a nontefeicialith productions
Decl - int ID and Decl - boolean ID can be modelled by a supercld3scl with
subclassemtDecl andBoolDecl. For nonterminals with a single production, both the
nonterminal and production are modelled by the same class. E.g., a nonteRranal
gram with a single productiorProgram - Block can be modelled by a single class
Program. In order to support easy traversal and access to subcomponents of an
abstract syntax tree node, JastAdd supports four different kinds of right-hand-sides for
a production clasdist (a list of components of the same typeptional(a single com-
ponent which is optionalfpken(a component which is a token with a semantic value),
andaggregatga set of named components which can be of different types).



3.1 Anexample: Tiny

Figure 3 shows Tiny.ast, a specification of an abstract grammar for Tiny, a small exam-
ple block-structured language. (The line-numbers written out to the left allow are not
part of the actual specification.) ClagStmt on line 5 is an example of an aggregate
class with three subcomponents (of tygesp, Stmt, and OptStmt respectively).
ClassCompoundStmt on line 8 is an example of a list classCampoundStmt node

will have zero or more subcomponents, all of ty§tent. ClassOptStmt on line 6 is an
example of an optional class: @ptStmt node will either have no subcomponent, or a
single subcomponent of typgtmt. ClassBoolDecl on line 10 is an example of a
token class: @oolDecl node will have a single subcomponent which is a token of
type ID. ClassStmt on line 3 is an example of a class without a right-hand side, corre-
sponding to an ordinary nonterminal. Cl&&tsnt serves as a superclass of the classes
BlockStmt, IfStmt, AssignStmt, andCompoundStmt on lines 4, 5, 7, and 8. Class
Stmt also has a modifierdbstract”. This means that the corresponding generated
Java class will also have the modifiaalstract”. This modifier is not strictly neces-
sary, but is useful is order to allow behavior in the form of Java method interfaces to be
added to the class, without having to supply default implementations.

From the .ast specification, the Jadd tool generates a set of Java classes with access
interface to their subcomponents. Figure 4 shows some of the generated classes to
exemplify the different kinds of access interfaces to classes with different kinds of sub-
components. Note that for an aggregate class with more than one subcomponent of the
same type, the components are automatically numbered, as for thaSTasid.

3.2 Additional superclasses

When adding behavior it is often found that certain behavior is relevant for several
classes that are unrelated from a parsing point of view. For example Shathand
Exp nodes may have use for amv attribute that models the environment of visible

Program ::= Block;

Block ::= Decl Stmt;

abstract Stmt;

BlockStmt : Stmt ::= Block;
IfStmt : Stmt ::= Exp Stmt OptStmt;
OptStmt ::= [Stmt];

AssignStmt : Stmt ::= IdUse Exp;
CompoundStmt : Stmt ::= Stmt*;
abstract Decl;

10 BoolDecl: Decl ::= <ID>;

11 IntDecl: Decl ::= <ID>;

12  abstract Exp;

13 IdUse : Exp ::=<ID>;

14  Add: Exp ::= Exp Exp;

OCoO~NOUDWNPRF

Fig. 3. Tiny.ast - specification of an abstract grammar for Tiny



abstract class ASTStmt { class ASTCompoundStmt {
} int getNumStmts() { ... }
ASTStmt getStmt(intk) { ... }

class ASTIfStmt extends ASTStmt { }
ASTEXxp getExp() { ... }
ASTStmt getStmt() { ... } class ASTBoolDecl extends ASTDecl {
ASTOptStmt getOptStmt() { ... } String getID() { ... }

} }

class ASTOptStmt { class ASTAdd extends ASTEXxp {
boolean hasStmt() { ... } ASTEXxp getExpl(){ ... }
ASTStmt getStmt() { ... } ASTEXxp getExp2() { ...}

} }

Fig. 4. Access interface for some of the AST classes generated from the .ast specification

identifiers. In Java, such sharing of behavior can be supported either by letting the
involved classes inherit from a common superclass or by letting them implement a
common interface. JastAdd supports both ways. Additional superclasses can be added
in the .ast specification. Typically, it is useful to introduce a superdagsthat is the
superclass of all other AST classes. This is done by adding a new @bsgdct

Any;” into the .ast specification and adding it as a superclass to all other classes that do
not already have a superclass.

Such additional superclasses allows common default behavior to be specified and
to be overridden in suitable subclasses. For example, default behavior for all nodes
might be to declare an attribuenv and to by default copy thenv value from each
node to its components by adding this behaviokty. AST classes that introduce new
scopes, e.@lock, can then override this behavior.

Java interfaces are more restricted in that they can include only method interfaces
and no default implementation. On the other hand, they are also more flexible, allow-
ing, e.g., selected AST classes to share a specific interface orthogonally to the class
hierarchy. Such selected interface implementation is specified as desired in the .jadd
files and will be discussed in Section 4.

3.3 Connection to JavaCC

Building the tree

To connect easily to JavaCC/JJTree, the AST classes generated by JastAdd are made
subclasses of a cla&mpleNode that is generated by JJTree. This allows JJTree to
create AST nodes but use its own implementatiorSimpleNode to connect the

nodes into a tree. However, the resulting tree is untyped in the sense that there is no
check that number and types of components of a given node are consistent with the
abstract grammar. The compiler writer must be careful to specify tree building actions

in JJTree to build the tree in the right way. If the tree is built in the wrong way, AST
access methods will fail since they use the primi@impleNode access methods and

then cast the result to the appropriate type. Specification of tree-building actions is



error-prone, in particular if the parsing and abstract tree differ in structure. To aid the
compiler writer, JastAdd generates a metlgyataxCheck() for each AST class
which can be called to check that a given tree actually follows the abstract grammar.

Token semantic values

When building the AST, information about the semantic values of tokens needs to be
included. To support this, JastAdd generates a set-method for each token class. For
example, for the token clagoolDecl, a methodvoid setID(String s) is generated.

This method can be called as an action during parsing in order to transmit the semantic
value to the AST.

Visitors

JJTree includes support for generating accept methods in AST classes to support pro-
gramming using the Visitor pattern. JastAdd generates the same methods so that pro-
gramming in this way is supported although JastAdd rather than JJTree is used for
AST class generation. A compiler writer may use this facility as well, although most
behavior is easier to code using aspect weaving. The visitor facility has been useful for
bootstrapping, implementing JastAdd itself. It is also useful when migrating an exist-
ing JJTree-based system to use JastAdd.

4 Weaving jadd files

Object-oriented languages lend themselves very nicely to implementation of compil-
ers. It is natural to model an abstract syntax tree using a class hierarchy where nonter-
minals are modelled as abstract superclasses and productions as specialized concrete
subclasses, as discussed in Section 3. Behavior can be implemented easily by introduc-
ing abstract methods on nonterminal classes and implement them in subclasses. How-
ever, a problem is that to make use of the object-oriented mechanisms, the class
hierarchy imposes a modularization based on language constructs whereas the com-
piler writer also wants to modularize based on aspects in the compiler, such as name
analysis, type checking, error reporting, code generation, and so on. Each AST class
needs to include the code related to all of the aspects and it is not possible to provide a
separate module for each of the aspects. This is a classical problem that has been dis-
cussed since the origins of object-oriented programming.

4.1  The Visitor pattern

The Visitor design pattern is one (partial) solution to this problem [2]. It allows a given
method that is common to all AST nodes to be factored out into a helper class called a
Visitor containing an abstraatisitC method for each AST class. All AST nodes

have knowledge of an abstraéisitor class to which they can delegate to the appropri-
ate visitC method. For example, for type checking, one could use this technique to
implement aTypeCheckingVisitor as a subclass to the abstragsitor class and
implement type checking in the visit methods. There are several limitations to this
approach, however. One is that only methods can be factored out; fields must still be



declared directly in the classes. For example, in type checking, one typically needs a
field type for each applied identifier, and this cannot be handled by the Visitor pattern.
Another drawback with the Visitor pattern is that the parameter and return types can
not be tailored to the different visitors - they must all share the same interface for the
visit methods. For example, for type checking expressions, a desired interface could be

Type typecheck(Type expectedType)

whereexpectedType contains the type expected from the context andypecheck
method returns the actual type of the expression. Using the Visitor pattern, this would
have to be modelled into visit methods

Obiject visitC(Object arg)

to conform to the generic visit method interface.

4.2  Class weaving

JastAdd uses class weaving for modularizing compiler aspects. For each aspect, the
appropriate fields and methods for the AST classes are written in a separate module, an
.jadd module. The Jadd tool reads all the .jadd modules and inserts the fields and meth-

typechecker.jadd unparser.jadd

import Display;
class IfStmt {

void typeCheck() { class Stmt {
getExp().typeCheck(“Boolean”); abstract void unparse(Display d);
getStmt().typeCheck(); }
getOptStmt().typeCheck();
class Exp {
} abstract void unparse(Display d);
}
class Exp {
abstract void typeCheck class Add {
(String expectedType); void unparse(Display d) {
} if (typeError)
d.showError(“type mismatch”);
class Add {
boolean typeError; }

void typeCheck(String expectedType) { }
getExpl().typeCheck(“int”);
getExp2().typeCheck(“int”™);
if (expectedType != “int”)
typeError = true;
else
typeError = false;

Fig. 5. Jadd files for typechecking and unparsing



ASTAdd.java

class ASTAdd extends ASTExp {
/I Access interface
ASTExp getExp1() { ... }
ASTExp getExp2() { ...}

/I From typechecker.jadd
boolean typeError;
void typeCheck(String expectedType) {
getExpl().typeCheck(“int”);
getExp2().typeCheck(“int”);
if (expectedType != “int”)
typeError = true;
else
typeError = false;

/I From unparser.jadd
void unparse(Display d) {

i'f“(typeError)
d.showError(“type mismatch”);

Fig. 6. Woven complete AST class

ods into the appropriate classes during the generation of the AST classes. This class
weaving approach does not support separate compilation of individual .jadd modules,

but on the other hand it allows a suitable modularization of the code and does not have
the limitations of the Visitor pattern.

The .jadd files use normal Java syntax. Each file simply consists of a list of class
declarations. For each class matching one of the AST classes, the corresponding fields
and methods are inserted into the generated AST class. It is not necessary to state the
superclass of the classes since that information is supplied by the .ast specification.
Figure 5 shows an example. One .jadd module performs typechecking for expressions
and another .jadd module implements an unparser which also reports type-checking
errors. The .jadd modules may use fields and methods in each other. This is illustrated
by the unparser module which uses the error fields computed by the type checking
module. The .jadd modules may freely use other Java classes. This is illustrated by the
unparsing module which imports a class Display. The import clause is transmitted to
all the generated AST classes. Note also that the .jadd modules use the generated AST
access interface described in Section 3. An example of a complete AST class gener-
ated by Jadd is shown in Figure 6.

10



4.3 Using the AST as a symbol table

In traditional compiler writing it is common to build symbol tables as large data struc-
tures, separate from the parse tree. The use of object-oriented ASTs makes it conve-
nient to use another approach where the AST itself is used as a symbol table. For fast
lookup, itis useful to add a hash table or some other fast collection structure. However,
the items in that collection can be references to declaration nodes in the AST. Once
lookup is done, the appropriate declaration reference can be stored in a field of the
applied identifier. To access the type of a declaration, simply add a method to all decla-
rations, returning the type of the declaration. Often, it is useful to allow such refer-
ences to denote both AST nodes and other ordinary Java objects. For example, a
missing declaration can be modelled by a static object MissingDeclaration. This is
easy to handle in Java by letting both the appropriate AST objects and the other objects
implement a common interface.

Using the AST itself as a symbol table is particularly powerful in combination with
the class weaving modularization technique. Often, different aspects or phases in com-
pilation need different information in the symbol table. Using .jadd files, the fields and
methods can be added to the “symbol table items” (i.e. AST classes) in separate mod-
ules, as desired. For example, a .jadd module for code generation module can add a
field for the activation record offset for each variable declaration, and a method for
computing that field.

5 Using Reference Attributed Grammars

In addition to imperative modules it is valuable to be able to state computations declar-
atively, both in order to achieve a clearer specification and to avoid explicit ordering of
the computations, thereby avoiding a source of errors that are often difficult to debug.
JastAdd supports the declarative formalism RAGs (Reference Attributed Gram-
mars) which fit nicely with object-oriented ASTs. The important extension in RAGs
(as compared to traditional attribute grammars) is the support for reference attributes.
The value of such an attribute is a reference to an object. In particular, agnoate
contain a reference attribute referring to another naddhe AST, arbitrarily far away
from q in the AST. This way arbitrary connections between nodes can be established,
and equations ig can access attributesiivia the reference attribute. Typically, this is
used for connecting applied identifiers with declarations. In a Java-based RAG system,
the type of a reference attribute can be either a class or an interface. This enables type-
safe yet flexible access to attributes in remote objects. The interface mechanism gives a
high degree of flexibility. For example, a reference attribuiéerScope of an inter-
face typeScope can be used for linking together language constructs that introduce
new scopes. Each such language construct,Bdagk, Method, Class, and so on,
simply implements th&cope interface, which may include, e.g., a functitwokup
for looking up declarations in that scope.
RAG modules are similar to Jadd modules in that different aspects can be specified
in different modules and they both consist of a list of AST class declarations that con-
tain information to be added to the complete AST classes. The RAG language is, how-

11
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ever, not ordinary Java, but a slightly extended and modified language. Each class
consists of a list of attribute declarations, method declarations, and equations. Attribute
declarations are written like field declarations, but with an additional modgier*or

“inh” to indicate if the attribute is a synthesized or inherited attribute. Java method call
syntax is used for accessing attributes, a(ymeans access the value of the attribute

a. Methods are written in the same way as in Java, but should contain no side-effects
that are visible outside the method. Equations are written like Java assignment state-
ments. The left-hand side can be either a synthesized attribute in the node itself
(declared in its class or any superclass), or an inherited attribute of a component. For
access to components, the generated access interface for ASTs is used (that was
described in Section 3), e.getStmt() for accessing th&tmt component of a node.
Equations for synthesized attributes can be written directly as part of the attribute dec-
laration (using the syntax of variable initialization in Java).

5.1  An example: name analysis

Figure 7 shows an example of a RAG module for name analysis of the language Tiny.
(Line numbers are not part of the actual specification.) All blocks, statements, and
expressions have an inherited attribetev representing the environment of visible
declarations. Theenv attribute is a reference to the closest encloddtgck node,
except for the outermo®lock node whoseenv is null, see the equations on lines 2
and 6. All otheenv definitions are trivial copy equations, e.g., on lines 22 and 23.

class Program { 25 class Decl {
getBlock().env = null; 26 syn String name;
; 27 k%
class Block { 28 class Exp {
inh Block env; 29 inh Block env;
getStmt().env = this; 30 }
ASTDecl lookup(String name) { 31 class Add {
return 32 getExpl().env = env();
(getDecl().name().equals(name)) 33 getExp2().env = env();
? getDecl() 34
2 (env() == null) ? null 35 class IdUse {
. env().lookup(name); 36 inh Block env;
} 37 syn Decl myDecl = env().lookup(name);
; 38 name = getlD();
class Stmt { 39
inh Block env; 40 class IntDecl {
; 41 name = getlD();
class BlockStmt { 42 ;
getBlock().env = env(); 43  class BoolDecl {
44 name = getlD();
class AssignStmt { 45 ;

getldUse().env = env();
getExp().env = env();

Fig. 7. RAG module for name analysis



The goal of the name analysis is to define a connection from keliéde node to
the appropriat®ecl node (or tonull if there is no such declaration). This is done by a
synthesized reference attributeyDecl declared and defined at line 37. Usual block
structure with name shadowing is implemented by the mekbaiLip on Block (lines
7-13). It is first checked if the identifier is declared locally, and if not, the enclosing
blocks are searched by recursive calls to lookup.

Thelookup method is an ordinary Java method, but has been coded as a function,
containing only a return statement and no other imperative code. As an alternative, it is
possible to code it imperatively using ordinary if-statements. However, it is good prac-
tice to stay with function-oriented code as far as possible, using only a few idioms for
simulating, e.g., let-expressions. Arbitrary imperative code can be used as well, but
then it is up to the programmer to make sure the code has no externally visible side-
effects.

The example has been written to be self-contained and straight-forward to under-
stand. For a realistic language several changes could be done. The copy equations for
env could be factored out into a common superclaeyg, thereby making the specifi-
cation substantially more concise. Rather than uBilogk as the type oénv, an inter-
face Env with a functionlookup could be introduced. This would allow the language
to be easily extended with other block constructs, e.g. procedures with parameters.
Instead of usingull to represent the empty environment, a static object for the empty
environment could be defined. Similar changes could be done fomtjigecl
attribute. A more realistic language would also allow several declarations per block,

1 class Decl {

2 syn String type;

3

4 class BoolDecl {

5 type = "boolean";

6 ;

7 class IntDecl {

8 type ="int";

9 ;

10 class Exp {

11 syn String type;

12 ;

13 class IdUse {

14 type = (myDecl()==null) ? null
15 . (myDecl().type()==null) ? null
16 - myDecl().type()
17 %

18 class Stmt {

19 syn boolean typekError;

20 ;

21 c’Iass AssignStmt {
22 typeError = !getldUse().type().equals(getExp().type());
23k

Fig. 7. A RAG module for type checking
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rather than a single one as in Tiny. The solution is easily generalized to take care of
that.

5.2  Example continued: type checking

Figure 7 shows a type checking module that usegniBecl attribute computed by
the name analysis. This is a typical example of how convenient it is to use the AST
itself as a symbol table and to extend the elements as needed in separate modules. The
type checking module extend®ecl with a new synthesized attributgpe (line 2).
This new attribute is accessedloiUse in order to define itdype attribute (line 14).
The types of expressions are then used as usual to do type checking as shown for the
AssignStmt (line 22).

Again, the example is written to be self-contained and straight-forward to read. For
a realistic language, the types would typically be represented in way that would allow
for more efficient comparison than strings, for example as integer constants or as refer-
ences to type objects, maybe using imported Java code and adding more interfaces to
the AST classes. The imported Java code must, however, be written with care to supply
methods without externally visible side-effects. A more realistic example would also
have better error handling, e.g., not considering the use of undeclared identifiers as
type checking errors.

Itis illustrative to compare the RAG type checker with the imperative one sketched
in Section 4.2. By not having to code the order of computation the specification
becomes much more concise and simpler to read than the imperative type checker.

6 Translating RAG modules

The Jrag tool translates RAG modules to ordinary Java code, weaving together the
code of all RAG modules and producing a Jadd file. Attribute evaluation is imple-
mented simply by realizing all attributes as functions and letting them return the right
hand side of their defining equations, caching the value after it has been computed the
first time, and checking for circularities during evaluation. This implementation is par-
ticularly convenient in Java where methods, overriding, and interfaces are used for the
realization. In the following we show the core parts of the translation, namely how to
translate synthesized and inherited attributes and their defining equations for abstract
and aggregate AST classes.

6.1 Synthesized attributes

Synthesized attributes correspond exactly to Java methods. A declaration of a synthe-
sized attribute is translated to an abstract method declaration with the same name. For
example, recall the declaration of tigpe attribute in clas®ecl of Figure 7

class ASTDecl {
syn String type;
}
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This attribute declaration is translated to

class ASTDecl {
abstract String type();

}

Equations defining the attribute are translated to implementations of the abstract
method. For example, recall the equations definingtype attribute inIntDecl and
BoolDecl of Figure 7.

class ASTIntDecl {
type = “int”;

class ASTBoolDecl {
type = “boolean”;

}

These equations are translated as follows.

class ASTIntDecl {
String type() {
return “int”;
}
}

class ASTBoolDecl {
String type() {
return “boolean”;
}
}

6.2 Inherited attributes

An inherited attribute is defined by an equation in the father node. To represent this in
Java, we add an interfaé@therOfX for each clasX declaring an inherited attribute.
Each class which has components of typmust implement this interface. The inter-
face contains abstract methods for computing the inherited attributes. In addition,
methods for the inherited attribute ¥fare added tX. These methods call the corre-
sponding method of the father node in an appropriate way.

For example, recall the declaration of the inherited attrilarte in classStmt in
Figure 7. BottBlock andIfStmt haveStmt components and define tkav attribute of
those components:

class ASTStmt {
inh Block env;

}
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class ASTBIlock {
getStmt().env = this;
}

class ASTIfStmt {
getStmt().env = env();

SinceASTStmt contains declarations of inherited attributes, an interface is generated
as follows:

interface FatherOfStmt {
ASTBIlock Stmt_env(ASTStmt theStmt);
}

The Block and IfStmt classes must implement this interface. The implementation
should evaluate the right-hand side of the appropriate equation and return that value.
The translated code looks as follows.

class ASTBIlock implements FatherOfStmt {
ASTBIlock Stmt_env(ASTStmt theStmt) {
return this;
}
}

class ASTIfStmt implements FatherOfStmt {
ASTBIlock Stmt_env(ASTStmt theStmt) {
return env();
}
}

The parametatheStmt was not needed in this case, since both these classes had only a
single component of typ&tmt. However, in general, an aggregate class may have
more than one component of the same type and equations defining the inherited
attributes of those components in different ways. For example, an aggregate class
Example ::= Stmt Stmt could have the following equations:

class Example {
getStmtl1().env = env();
getStmt2().env = null;

}

The translation oExample needs to take the parameter into account to handle both
equations:

class Example implements FatherOfStmt{
ASTBIlock Stmt_env(ASTStmt theStmt) {
if (theStmt==getStmt1())
return env();
else
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return null;

}
}

Finally, a method is added f8tmt to give access to the attribute value. The metjjted
GetParent() is generated by JJTree (in the supercl@sapleNode) and is used to
access the parent of tf&mt node. The cast is safe since all AST nodes v8tmt
components must implement thatherOfStmt interface (this is checked by Jrag).

class ASTStmt {
ASTBIlock env() {
return ((FatherOfStmt) jjtGetParent()).Stmt_env(this);
}
}

6.3  Generalizations

The translation described above can be easily generalized to handle lists, optionals,
caching of computed values (to achieve optimal evaluation), and circularity checks (to
detect cyclic attribute dependencies and thereby avoid endless recursion).

7 Related work

The weaving technique used here is related to current trends in object-oriented com-
puting like aspect-oriented programming [9], subject-oriented programming [3], and
fragment modularization [10]. These techniques are all aimed at modularization of
code orthogonally to the normal code structure and supporting this using general tech-
niques. JastAdd’s weaving technique relies on the same basic ideas, but is much sim-
pler and light-weight, using an ad hoc weaver for our particular problem
(modularization of ASTS).

The idea of using object-oriented ASTs is probably as old as object-orientation
itself. The use of it in attribute grammars has been reported before [4]. There are sev-
eral compiler tools that use OO ASTSs, e.g. the metaprogramming system (MPS) of the
BETA system [12]. MPS has certain support for aspect modularization through the
BETA fragment system which allows methods to be factored out into different aspects.
However, fields can usually not be factored out in order to be able to handle separate
compilation.

Another example of a compiler tool using OO ASTs is SableCC [1] which is a
Java-based system using an LL-parser generator. The goals of SableCC are similar to
those of JastAdd, including supporting a fully typed OO AST in Java and strict separa-
tion of handwritten and generated code. However, SableCC provides support only for
Visitor-based modularization.
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8 Conclusion

We have presented a simple yet very flexible and safe system for writing compiler
frontends in Java. Its main features are Java-based OO ASTs (decoupled from parsing
grammars), aspect-modularized code, and support for both imperative and declarative
code, the latter by means of RAGs. We find this combination very useful for writing
practical translators in an easy way. We are currently in the process of bootstrapping
the system using itself, and will also use it in a course on compiler construction in the
spring of 2001.
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