
Benefits of
Feature-Oriented Block Diagram Programming

Niklas Fors and Görel Hedin

Department of Computer Science, Lund University, Sweden
(niklas.fors|gorel.hedin)@cs.lth.se

May 26, 2017

Abstract. Feature-oriented block diagram programming is a new way
to program automation systems. It allows feature libraries to be created
that support multiple variants with a high degree of code reuse. From the
library specification, a feature wizard is automatically derived in which
the user easily can get the desired variant by selecting appropriate fea-
tures. This reports evaluates the benfits of using this new approach with
respect to engineering- and testing costs on two benchmark examples.

1 Introduction

Automation programming of process industry plants is often done using function
block diagrams in the style of the 61131-3 IEC standard [1]. A diagram consists of
several function blocks whose input and output ports are wired to form a data-
flow network. Examples of languages following this idea include Mathwork’s
Simulink [2] and ABB’s ControlBuilder [3]. The programs for a plant typically
consist of hundreds of such diagrams, each with tens or hundreds of wired blocks.

By constructing libraries of diagram types, for example for motors, tanks,
and other aggregate parts of a plant, it is possible to encode and reuse engi-
neering knowledge and reuse it for several plants, or in several places in the
same plant. However, there are often many possible variants of such aggregate
parts. For example, a motor may have one or two speeds, and it may optionally
include detection of a minimal fluid level. A tank may have optional heating
and agitation, etc. While the different variants are similar to each other, it is
difficult to capture the variability in a library of an ordinary diagram language.
Until recently, there were only two main approaches to this problem. One was
to manually create each specific variant by instantiating and wiring subcompo-
nents, and the other one was to create a complex template library type that
captures all variants, and use boolean selectors to turn on or off parts to get
the desired variant. Both these approaches have severe drawbacks. The manual
approach requires a large engineering effort. The template approach results in
complex diagrams that are difficult to understand, and a non-trivial engineering
effort to set the selectors in the right way.

A recent approach, feature-oriented block diagram programming [4], intro-
duces a number of new language constructs to solve this problem, allowing vari-
ants to be expressed as combinations of features, and allowing features to be

v1

v2

v3

v4

v5

v6

Fig. 1. Six variants (v1-v6) of a simple block diagram.

expressed in libraries. This allows a specific variant to be very easily created by
selecting a number of optional features for a base diagram. The approach has
been implemented in an open-source prototype language and tool, Bloqqi [5].

In this report, we analyze the benefits of the new approach with regards to
engineering effort and testing. We begin by reviewing feature-oriented block di-
agram programming, contrasting it to earlier approaches for handling variants
(section 2). We will then introduce two benchmark examples: a simple one with
tank control, and a more complex one with PID and cascade control (section
3). In section 4, we introduce metrics for evaluating engineering costs, and com-
pare the methods on the benchmark examples. In section 5, we discuss how
features can be used for test coverage of block diagram libraries. Finally, Section
6 concludes the report.

2 Block diagram variants

Figure 1 shows a simple block diagram in 6 different variants. The base variant
v1 contains a local block a:A (block name a of block type A) connected to another
block b:B. In v2, the block type of a is replaced with a similar block type A1,
and in v3 by another similar block type A2. In v4, an extra block f:F has been
added between a:A and b:B, and v5 and v6 show the combinations of v2 and
v4, and v3 and v4 respectively.

We can view each variant as a combination of features, and depict all possi-
ble variants in a feature diagram [6, 7], see Figure 2. A feature diagram depicts
mandatory features (a in this case), alternative features (A1 and A2 are alter-
native block types to A), and optional features (like f). Mandatory features are
only depicted if they have selectable subfeatures. This is why f is depicted but
not b, although b is also a mandatory feature. The total number of variants is
all possible combinations of selected or not selected features (3 ∗ 2 = 6 in this
case).

In a normal block diagram language, we would need to manually construct the
desired variant from scratch using an editor. If a specific variant is often used,

2

D

f a

A A1 A2

Fig. 2. Feature diagram representing the variants in Figure 1. Optional features are
depicted with white circles and mandatory features with black circles. Alternative
features are depicted with dashed lines.

Fig. 3. Using the template approach to support all variants in Figure 1 in one diagram.
The parameters par1 and par2 are used to decide what features to use.

we could create a library type for it, and instantiate it, instead of redrawing
the diagram for each use. However, as the number of alternative and optional
features increases, the number of possible variants increases combinatorially, so
storing them all in a library is not a viable solution.

A possible solution for supporting all variants by a library, is to use a template
approach. In this approach, a library type is created that contains all features,
as well as extra parameters and logic that is used to select what part of the
diagram is actually used. Figure 3 shows an example. This library type can be
instantiated, and by passing 2 to par1, and true to par2, this would correspond
to variant v6 in Figure 1.

The template approach has several drawbacks:

– the diagram is more complex than the individual variants
– we cannot immediately see which variant is used
– the diagram is inefficient, because it needs to contain all the logic, even if

only some of it is actually used
– the diagram is not extensible: if we come to think of a new optional feature

we would like to add, we cannot do so without changing the library type

The language Bloqqi [4], is a function block diagram language that has spe-
cific constructs to explicitly support features and variants. Figure 4 shows the
Bloqqi code for the A, B, F example. Here, the diagram type (block type) D con-
tains an a:A and a b:B block. Subtyping is used to obtain alternatives: A1 and A2
are subtypes to A. The feature f:F is added through an intercept mechanism [8]
that allows a connection to be specialized by letting it go via two other ports. In

3

diagramtype D {

a: A;

b: B;

connect(a.out, b.in);

}

diagramtype A(=> out: Int) { ... }

diagramtype A1 extends A { ... }

diagramtype A2 extends A { ... }

diagramtype B(in: Int) { ... }

diagramtype F(in: Int => out: Int) { ... }

wiring F[=>v: Int] {

intercept v with F.in, F.out;

}

recommendation D {

replaceable a;

f: F[b.in];

}

Fig. 4. Bloqqi code defining the variants in Figure 1 as features using recommendations.

this case, the connection flowing into b.in (port in on block b) is specialized by
going via the in and out ports of the f block. The recommendation construct
says that f is an optional feature for D, and if it is selected, it is added to the D
diagram by intercepting the A→B connection.

The user constructs a desired variant of the base diagram D by selecting in
an automatically generated wizard, see Figure 5. The wizard is analogous to
the feature diagram, showing alternative and optional features as check boxes.
By selecting A2 and F we get a diagram corresponding to v6. Figure 6 shows
both the visual and the textual representation of the diagram variant. Visually,
the base diagram is depicted using dashed lines (indicating the mandatory parts
that cannot be changed). Textually, the selected features are represented as an
anonymous subtype of D. The user can bring up the wizard again and change
the selection, if desired.

The feature-oriented approach combines the advantages of the manual and
template approaches, and avoids their drawbacks. In particular:

– the visualization of each diagram variant is as simple as if it had been created
manually.

– it is immediately clear which variant is used.
– it is much quicker to create the diagram variant (simply click a few check

boxes) than if we would have had to create the diagram manually.
– it is much easier to create the diagram variant through the wizard, since we

do not have to know exactly how to wire the individual components. For
example, the filter F always goes between A and B.

– the diagram is efficient, since it contains only the logic actually used.

4

Fig. 5. Automatically derived feature wizard from the Bloqqi code specified in Figure 4.
The selected features correspond to the variant v6.

d: D {

f: F[b.in];

redeclare a: A2;

};

Fig. 6. Automatically generated Bloqqi program when selecting the features in the
wizard (Figure 5) corresponding to the variant v6.

– all variants are encoded in library types. We can easily change to another
variant by bringing up the wizard again.

– we can easily extend the library without changing it. For example, we can
add a new subtype A3. It will automatically appear in the wizard.

In the following, we will present a number of realistic libraries using the
feature-based approach. We will evaluate the engineering cost as compared to
the manual and the template approach, and we will discuss how the features can
be used in testing.

3 Benchmark examples

To evaluate the feature-oriented approach, we have developed two library types.
One smaller, Tank for tank control, with optional valves and agitation, and one
larger, Loop for control loops with P/PI/PD/PID control, cascade control, and
filters. Figures 7 and 8 show the feature diagrams for these library types. The
Tank and Loop types capture 48 and 1800 distinct variants, respectively.

5

Tank

agitator heater pump2 valve2 valve

valve

AdvancedValve Valve

AdvancedValve Valve

Fig. 7. Feature diagram for the Tank library.

Loop

override slave master

Override TunableOverride filter controller

Filter MinZeroFilter derivative feedForward integral

filter controller

Filter MinZeroFilter derivative feedForward integral

Fig. 8. Feature diagram for the Control loop library.

4 Engineering costs

To estimate engineering costs, we introduce a metric based on the number of
edit operations needed to construct a diagram. For the manual approach, this
includes creating each block, parameter and connection in the diagram, and
we count the sum of these. For the feature selection approach, we count each
box checked in the wizard. The results are shown in Table 1. Even with few
features selected, the cost is much lower for the feature-oriented approach than
the manual approach, and as more features are used, the win is even greater.

The comparison is crude since it does not take into account the knowledge
needed to perform the operations. For the manual approach, knowledge is needed
to select the appropriate block to instantiate, and to select between which ports
to draw connections. For the feature-based approach, much less knowledge is
needed, since it is only necessary to understand the different features, and not
exactly how they are implemented using blocks and connections. Therefore, the
actual difference between using the manual approach and the feature-based ap-
proach is greater than the metric shows.

5 Testing

A process control system needs to be tested thoroughly before taken into opera-
tion. By using reusable libraries in an application, as opposed to constructing the
whole system from scratch, the test burden can be reduced significantly. How-
ever, it is then important that the library itself is well tested. Complete testing

6

Feature Manual

Example Selections Edits Parameters Blocks Connections

Tanknone 0 21 4 7 10
Tankexample 2 44 7 14 23
Tankall 6 69 10 23 36
Loopnone 0 11 4 2 5
Loopexample 3 40 8 11 21
Loopall 13 85 15 25 45

Table 1. Comparison between using the feature wizard and manually constructing
a variant. Three variants are compared for each library: none, example and all. The
variant none corresponds to the base diagram with no features selected, example with
some of the features selected and all with all features selected. The features selected
for Tankexample are {agitator, pump2} and the features selected for Loopexample are
{derivative, feedForward, integral} for the master controller.

is typically not feasible since the number of possible uses is much too large. In-
stead, some level of test coverage is typically aimed for. It is also desirable that
the tests are related to each other in such a way that it is easy to pinpoint an
error when tests fail.

To measure how complete testing is, it is useful to make use of test coverage
metrics.

We propose to use the feature-oriented constructs of Bloqqi to formulate
coverage criteria for libraries. We consider the construction of test models to
test the library, where each test model is a type variant (characterized by a set
of selected features).

Feature coverage A suite of test models has full feature coverage when each
alternative or optional feature is present in at least one model, and absent
in at least one model.

Order coverage A connection interaction occurs when two features f1 and f2
include an interception on the same connection. In Bloqqi, each such pair
needs to be ordered, so that it is clear in what order the features intercept
the connection. This can be done using before statements. If more than
two features intercept the same connection, it is sufficient to declare enough
before statements so that all features are ordered. For example, if we declare
f1 before f2, and f2 before f3, then implicitly, f1 is before f3. A suite of
test models has full order coverage if, for each before statement (f before
g), there is a model including both f and g.

Feature coverage is a very basic coverage criterion in that it does not take
feature interaction into account at all. Order coverage is also very basic in that
it considers only the most explicit interactions between two features. On top of
these criteria, more elaborate criteria can be formulated to take more implicit
interactions into account. For example, we could consider all pairs of features,
or triplets of features, etc. Or we could consider all combinations of features
intercepting the same connection, etc.

7

Number of test cases

Library Variants MaxAlt EachFeature

Tank 48 3 7
Loop 1800 3 14

Table 2. The number of test cases for the test generation methods MaxAlt and
EachFeature.

The coverage metrics can be fulfilled in many different ways. For example for
feature coverage, it would be sufficient with one test model that includes no fea-
tures, and an additional n models where n is the largest number of alternatives
for a single feature of the tested type. Another way of getting feature coverage
would be to have one test model that includes no features, and an additional
model for each alternative and optional feature, including other features only as
necessary. The former suite (called MaxAlt) would be good for testing feature
interactions, but the latter suite (called EachFeature) would be good for pin-
pointing errors that have to do with a single feature. The number of test cases
in these suites for the libraries Tank and Loop are shown in Table 2. As we can
see in the table, the number of variants is much higher than the number of test
cases in the test suites.

There are thus many opportunities to explore the use of features to generate
test models for libraries.

6 Concluding discussion

We have in this report evaluated the benefits of using feature-oriented block
diagram programming on two benchmark library examples. We have created
variants using the derived feature wizard and compared it to creating the vari-
ants manually. The number of editing operations is on average a magnitude
higher in the manual case compared to the number of selections in the feature
wizard. This indicates that the feature wizard is much easier to use and that
it reduces engineering costs. We believe that these numbers underestimate the
savings since selecting features in a feature wizard is much easier than creating
blocks and connections manually, since the latter requires much more detailed
domain knowledge.

We have also described how features can be used for testing and introduced
two test coverage metrics: feature coverage and order coverage. We have then
described two ways to generate test suites from feature models that fulfill the
metric feature coverage, where the number of test cases is proportional to the
number of features. Generating test suites like this would not be possible using
the template approach described earlier, since it is impossible to know which of
the parameters that are used for feature selection.

8

Acknowledgments

This work has been done within the project Feature-Oriented Automation Pro-
gramming, 2016-03414, a project supported by the strategic innovation program
Process Industrial IT and Automation (PiiA), financed by VINNOVA, Sweden’s
innovation agency.

References

1. Karl-Heinz John and Michael Tiegelkamp. IEC 61131-3: programming industrial
automation systems: concepts and programming languages, requirements for pro-
gramming systems, decision-making aids. Springer Science & Business Media, 2010.

2. MathWorks. Simulink documentation, r2017a edition.
3. ControlBuilder. Compact Product Suite. Compact Control Builder AC 800M. Prod-

uct Guide. Version 6.0. ABB, 2016. Available from abb.com. Document number:
3BSE041586-600 A.

4. Niklas Fors and Görel Hedin. Bloqqi: Modular feature-based automation program-
ming. In 2016 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2016, Amsterdam, The Nether-
lands, November 2-4, 2016, pages 57–73, 2016.

5. Niklas Fors. The Design and Implementation of Bloqqi - A Feature-Based Diagram
Programming Language. PhD thesis, Lund University, October 2016.

6. Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Pe-
terson. Feature-oriented domain analysis (foda) feasibility study. Technical report,
DTIC Document, 1990.

7. Sven Apel and Christian Kästner. An overview of feature-oriented software devel-
opment. Journal of Object Technology, 8(5):49–84, 2009.

8. Niklas Fors and Görel Hedin. Intercepting dataflow connections in diagrams with
inheritance. In IEEE Symposium on Visual Languages and Human-Centric Com-
puting, pages 21–24, 2014.

9

