Type Reconstruction and Polymorphism

Week 9
December 20

Martin Odersky

Type Checking and Type Reconstruction

We now come to the question of type checking and type
reconstruction.

Type checking: Given I, t and T, check whether " - ¢:T

Type reconstruction: Given I" and ¢, find a type T such that
r=t¢:T

Type checking and reconstruction seem difficult since parameters in
lambda calculus do not carry their types with them.

Type reconstruction also suffers from the problem that a term can
have many types.

Idea: : We construct all type derivations in parallel, reducing type
reconstruction to a unification problem.

From Judgements to Equations

TP : Judgement — Equations

TP F t:T) =
caset of

x : {(x) =T}

Ax.t’ . let a,bfresh in
{la—=b)=T} U
TP(T,x:a - t':b)

tt . let a fresh in
TPIT Ft:a—T) U
TP F ¢ :a)

3
Constants

Constants are treated as variables in the initial environment.

However, we have to make sure we create a new instance of their type

as follows:

newlnstance(Vay, ..., a,.S) =
let by, ..., b, fresh in
[b1/a1, ..., bp/a,lS

TP F t:T) =
caset of

x : {newlnstance(I'(x)) =T}

Soundness and Completeness |

Definition: In general, a type reconstruction algorithm A assigns to
an environment I'and a term ¢ a set of types A(L',¢).

The algorithm is sound if for every type T" € A(I',t) we can prove the
judgement I' - ¢:T.

The algorithm is complete if for every provable judgement I' F ¢ : T
we have that 7' € A(T, t).

Theorem: TP is sound and complete. Specifically:

L' Ft:T iff 3b.[T/a)EQNS
where
a is a new type variable
EQNS=TP(I F t:a)
b= tv(EQNS)\tv(T)

Here, tv denotes the set of free type varibales (of a term, and

environment, an equation set).

Type Reconstruction and Unification

Problem: : Transform set of equations

{T; =Ui}i=1,...m

into equivalent substitution

where type variables do not appear recursively on their right hand sides
(directly or indirectly). That is:

a; tv(T})) forj=1,....,nk=j,...,n

Substitutions

A substitution s is an idempotent mapping from type variables to types

which maps all but a finite number of type variables to themselves.
We often represent a substitution is as set of equations a = T with a
not in tv(T).
Substitutions can be generalized to mappings from types to types by
definining

s(T —U) = sT —sU

s(KITy, ..., T]) = KJ[sTh, ..., sT,]

Substitutions are idempotent mappings from types to types, i.e.
S(s(T) = s(T). (why?)

The ooperator denotes composition of substitutions (or other
functions): (fog)x = f(gz).

A Unification Algorithm

We present an incremental version of Robinson’s algorithm (1965).

mgu . (Type = Type) — Subst — Subst
mgu(T =U) s = mgu'(sT =sU) s
mgu'(a = a) s = s

gu'(a=T) s = sU{a=T} ifa & tu(T)
mgu’(T =a)s = sU{a=T} ifad tv(T)
mgu' (T - T =U —-U")s = (mgu(T'=U")omgu(T =U)) s
mgu (K[Ty, ..., T, = KUy, ..., Uy]) s

= (mgu(Tn =Un)o...omgu(Ty = U1)) s
mgu' (T =U) s = error in all other cases
9

Soundness and Completeness of Unification

Definition: A substitution u is a unifier of a set of equations

{T; = U;}iz=1,... m if uT; = uUj;, for all i. It is a most general unifier if
for every other unifier v/ of the same equations there exists a
substitution s such that v’ = sou.

Theorem: Given a set of equations FQNS. If EQN S has a unifier
then mgu EQN S {} computes the most general unifier of EQNS. If
EQNS has no unifier then mgu EQN S {} fails.

10

From Judgements to Substitutions

TP : Judgement — Subst — Subst
TP + t:7) =
caset of
x : mgu(newlnstance(T'x) =T
Ax.t’ . lett,u fresh in
mgu((t —u) =T) o
TP(T,x:t F t':u)
tt . lettfresh in
TP F t:a—T) o
TP F ¢ :a)

11

Soundness and Completeness Il

One can show by comparison with the previous algorithm:

Theorem: TP is sound and complete. Specifically:

D'Et:T iff T=r(s(t))
where
t is a new type variable
s=TP (T F t:t){}
7 is a substitution on tv(s t)\tv(s I')

12

Strong Normalization

Question: Can () be given a type?

Q = (Azaz)Az.zz):?

What about Y7
Self-application is not typable!

In fact, we have more:

Theorem: (Strong Normalization) If t: T, then there is a value
V such that t —=* V.

Corollary: Simply typed lambda calculus is not Turing complete.

13

Polymorphism

In the simply typed lambda calculus, a term can have many types.
But a variable or parameter has only one type.

Example:
(Ar.xzx)(Ay.y)

is untypable. But if we substitute actual parameter for formal, we
obtain

(A\y-y)(Ay.y) 1a—a
Functions which can be applied to arguments of many types are called

polymorphic.

14

Polymorphism in Programming

Polymorphism is essential for many program patterns.
Example: ensuremath{itboxmap

def map f xs =
if (isEmpty (xs)) nil
else cons (f (head xs)) (map (f, tail xs))

names: List[String]
nums : List[Int]

map toUpperCase names

map increment nums

Without a polymorphic type for ensuremath{itboxmap one of the last
two lines is always illegal!

15

Forms of Polymorphism

Polymorphism means “having many forms”.
Polymorphism also comes in several forms.

e Universal polymorphism, sometimes also called generic types: The
ability to instantiate type variables.

e Inclusion polymorphism, sometimes also called subtyping: The
ability to treat a value of a subtype as a value of one of its
supertypes.

e Ad-hoc polymorphism, sometimes also called overloading: The
ability to define several versions of the same function name, with
different types.

We first concentrate on universal polymorphism.

Two basic approaches: explicit or implicit.

16

Explicit Polymorphism

We introduce a polymorphic type Va.T', which can be used just as any
other type.

We then need to make introduction and elimination of V's explicit.
Typing rules:
I' - t:Ya.T r-t¢:T

(VE) (VI)
I' = t[U]:[U/a|T I' - Aa.t:VaT

17

We also need to give all parameter types, so programs become verbose.
Example:

def map [al [b] (£f: a \(\Arrow\) b) (xs: List[al) =
if (isEmpty [al (xs)) nil [al
else cons [b] (f (head [a] xs)) (map [al[b]l (£, tail [a] xs))

names: List[String]

nums : List[Int]

map [String] [String] toUpperCase names

map [Int] [Int] increment nums

18

Implicit Polymorphism

Implicit polymorphism does not require annotations for parameter
types or type instantations.

Idea: In addition to types (as in simply typed lambda calculus), we
have a new syntactic category of type schemes. Syntax:

Type Scheme S = T | Va.S

Type schemes are not fully general types; they are used only to type
named values, introduced by a ensuremath{itboxval construct.

The resulting type system is called the Hindley/Milner system, after its
inventors. (The original treatment uses ensuremath{itboxlet...in...
rather than ensuremathf{itboxval...;...).

19

Hindley/Milner Typing rules

(VAR) T,z : STV + z: S (x & dom(I"))

'k t:VaT Lk ¢:T a ¢ tv(T)
(VE) (VI)
I'-t:[U/aT I' - t:VaT

'+-t¢:8 Dx:S +Ht:T

(LET)
'k letx=tint : T

The other two rules are as in simply typed lambda calculus:

Fx:T F t:U '+-M:T—-U T'+ N:T
(=D (—E)
P+ Xet: T —U ' MN:U

20

Hindley/Milner in Programming Languages

Here is a formulation of the map example in the Hindley/Milner

system.

let map = λf.λxs in
if (isEmpty (xs)) nil
else cons (f (head xs)) (map (£, tail xs))

// names: List[String]
// nums : List[Int]

// map : \foralla.\forallb.(a \rightarrow b) $\rightarrowd

map toUpperCase names

map increment nums

21

Limitations of Hindley/Milner

Hindley/Milner still does not parameter types to be polymorphic. l.e.
(Ar.xzx)(Ay.y)
is still ill-typed, even though the following is well-typed:
let id = \y.y in id id

With explicit polymorphism the expression could be completed to a

well-typed term:

(Aa. Xz : (Va : a — a).zla — al(z[a]))(Ab.Ay.y)

22

The Essence of let

We regard
letx =tint

as a shorthand for
[t/x]t’

We use this equivalence to get a revised Hindley/Milner system.

Definition: Let HM' be the type system that results if we replace
rule (LET) from the Hindley/Milner system HM by:

TFt:T T F [t/at U
' - letx=t int' : U

(LET)

23

Theorem: I Fgyp t:SIffT Fyaypy 08

The theorem establishes the following connection between the
Hindley/Milner system and the simply typed lambda calculus F7:

Corollary: Let t* be the result of expanding all let's in ¢ according
to the rule

letz=tint' — [t/z]t/
Then
F"H]y[t:T = F}_Fl t* . T

Furthermore, if every let-bound name is used at least once, we also
have the reverse:

r l_Fl t*:T = T Fypy t:T

24

Principal Types

Definition: A type T is a generic instance of a type scheme
S =Vay ...V, T" if there is a substitution s on a7, ..., a,, such
that 7' = sT”. We write in this case S < T.

Definition: A type scheme S’ is a generic instance of a type
scheme S iff for all types T

S'<T = S<T

We write in this case S < §’.

25

Definition: A type scheme S is principal (or: most general) for I'
and t iff

e[t:S
e ' ¢:5 implies § <5

26

Definition: A type system TS has the principal typing property iff,
whenever I' Fpg t: .5 then there exists a principal type scheme for I'
and t¢.

Theorem:
1. HM' without let has the p.t.p.
2. HM’ with let has the p.t.p.
3. HM has the p.t.p.

Proof sketch: (1.): Use type reconstruction result for the simply typed
lambda calculus. (2.): Expand all let's and apply (1.). (3.): Use
equivalence between HM and HM'.

These observations could be used to come up with a type
reconstruction algorithm for H M. But in practice one takes a more
direct approach.

27

Type Reconstruction for Hindley/Milner

Type reconstruction for the Hindley/Milner system works as for simply
typed lambda calculus. We only have to add a clause for let

expressions:

28

TP : Judgement — Subst — Subst

TP b t:T)s=

caset of

let x =ty inty : leta,b fresh in
let sy =TP (' F t;:a)in
TP (I'yxz:gen(s; I',sya) b ty:0) 51

where gen(I', T') = Vtv(T)\tv(I').T.

29

