Exercice 1 : Normal Forms (10 points)

Let V be the set of variables and A the set of A-terms.

Let A C A be the set of normal forms (N ={t € A |} € A:t —t'}).
We define inductively the subset A of A:

x eV €Y teN' x€VY tLeN o t,eN

(VAR) m (ABS))\.ft c Nl (APPH) €T tl N tn (= N’

neNn>0

Show that NV = N.

Hint: Show that if ¢ € A then t € N7 by induction on ¢t € A and that if t € N’ then t € N by
induction on the derivation t € N”.

Answer:

We first prove N/ € N and then prove N' C N”:
e let t € N’ and we prove that ¢t € A by induction.

— t = x then clearly t € N because variables are normal forms.
— t = Az.t’. By ABs ' € N’ and by induction hypothesis t € A/. Then clearly ¢ can’t
take any reduction steps so t € N/

—t=xty...t,. By APP, x € V and t;...t, € N'. By induction hypothesis t; ...t, €
N’ are also in V. Since none of the applications contains any redexes, t can’t take a
reduction step and therefore t € N

e let t € N and we prove that t € N’ by induction on the structure of ¢

— t =z and by rule VAR t € N/

— t = A\z.t’. Since t € N we have that also ¢’ can’t contain any redexes, so t’ € N/. By
induction hypothesis we have t' € N/ and by ABS we have t € N.

— t =ty tg. Since t € N and is a normal form, we have that ¢, t5 are also normal forms,
therefore t1,t9 € N. By induction hypothesis we have that t1,ty € N':
x t; = x, we have t = x ty and t € N/ by Appy.
* t1 = Az.t]. Impossible, since then ¢t = Az.t] t2 and that is a redex, but t € N.
¥ty =x t11...t1,. We have t = x t11...11, to and by APP, 1 t € N.

Exercice 2 : Typed Arithmetic Expressions (10 points)

We first recall the syntax for arithmetic expressions (TAPL, p.91):

t = terms: | v = values :
| true constant true | true true value
| false constant false | false false value
| if tthent elset condition | no numeric value
| 0 constant zero
| succt successor | nv = numeric values :
| predt predecessor | 0 zero value
| iszerot zero test | succ nv successor value

and the evaluation rules for numbers (TAPL, p.41):
t1 —]
(E-Succ) ! L
succ ty — succ by
(E-PREDZERO) pred 0 — 0 (E-ISZEROZERO) iszero 0 — true

(E-PrREDSUCC) pred (succ nvy) — nv1 (E-ISZEROSUCC) iszero (succ nvy) — false

t1 —) t1 —)

(E-PRED) (E-ISZERO) -

pred t; — pred t} iszero t; — iszero t)

Suppose we remove the E-PREDZERO rule.
Does progress still hold 7 What about preservation ?

Change the definition of values in the modified language such that both progress and preservation
hold. However, you are not allowed to reintroduce E-PREDZERO or to add another reduction
rule for terms of the form pred(z).

Answer:
Progress does not hold: pred 0: Nat is a well-typed term which is not a value and is stuck.

Preservation still holds because removing one evaluation rule just makes the original proof shorter
(one less case to prove).

We change the syntax for numeric values:

nv = pos positive
‘ neg negative
pos = 0 zero
‘ succ pos sSUCCessor
neg == 0 zero

‘ pred neg predecessor

We need to add a rule to deal with successors of negative numbers, one for iszero with negative
numbers, and also update rules that worked on nv to work on positives or negatives.:

E-SuccPRED E-PrREDSUCC
suce (pred negy) — negi pred (succ posy) — posy

E-ISZEROPRED - E-IsZrErOoSuUCC -
iszero (pred negy) — false iszero (succ posi;) — false

Exercice 3 : Option Types (10 points)

We extend the syntax for the simply typed A-calculus (TAPL, p.103) with option types in a
similar way as in Scala, e.g.

(\o: option Nat. o match {
case some X => X
case none => 0

}) some (succ 0)

The meaning of the above is that when o is an instance of some, the first branch is selected
and x takes the value carried inside 0. When o is an instance of none, the second branch is
evaluated. As a rule of thumb, the evaluation rules should match Scala’s behavior, like call-by-
value evaluation order and the usual meaning for match. The language should also allow you to
create values of both kinds.

Formalize this extension. Your solution should include a grammar extension (for terms, values
and types), evaluation rules and typing rules for the new terms. Typing rules should peserve
type safety and make it impossible to find two different types for the same term (uniqueness of
types). (There is no need to prove these properties).

Answer:
We propose the following syntax:

Terms
t = ... terms
some t some
none as T none: T
t match “{" case some x => t case none => t “}" match
Values
v =
none as T none values
some v some values
Types
T == ...
‘ Option T option types

Evaluation rules:

E-MATCHSOME

some v match { case some x =>t; case none => ta} — [z — v]ty

E-MATCHNONE
none as T match { case some xr => t1 case none => tg} — 1o

t—t
t match { case some x => t; case none => ta} —
t' match { case some x => t; case none => ta}

E-MATCH

t—t

some t — some t/

E-SOME

3

Typing rules:

r=¢:T T = Option S
T- T-N
SOMEB I'+ some t: Option T ONE I'noneasT :T

Fl‘t:OptiOTLT F,aﬁ:Tl_tliTl F'_tQ:Tl

T-MATCH
t match { case some x => t1 case none => to} : T

