
Exercice 1 : Normal Forms (10 points)

Let V be the set of variables and Λ the set of λ-terms.

Let N ⊂ Λ be the set of normal forms (N = {t ∈ Λ | @t′ ∈ Λ : t → t′}).
We de�ne inductively the subset N ′ of Λ:

(Var)
x ∈ V
x ∈ N ′ (Abs)

x ∈ V t ∈ N ′

λx.t ∈ N ′ (Appn)
x ∈ V t1 ∈ N ′ · · · tn ∈ N ′

x t1 · · · tn ∈ N ′ n ∈ N, n > 0

Show that N ′ = N .

Hint: Show that if t ∈ N then t ∈ N ′ by induction on t ∈ Λ and that if t ∈ N ′ then t ∈ N by

induction on the derivation t ∈ N ′.

Answer:

We �rst prove N ′ ⊂ N and then prove N ⊂ N ′:

• let t ∈ N ′ and we prove that t ∈ N by induction.

� t = x then clearly t ∈ N because variables are normal forms.

� t = λx.t′. By Abs t′ ∈ N ′ and by induction hypothesis t′ ∈ N . Then clearly t can't
take any reduction steps so t ∈ N

� t = x t1 . . . tn. By Appn x ∈ V and t1 . . . tn ∈ N ′. By induction hypothesis t1 . . . tn ∈
N ′ are also in N . Since none of the applications contains any redexes, t can't take a

reduction step and therefore t ∈ N

• let t ∈ N and we prove that t ∈ N ′ by induction on the structure of t

� t = x and by rule Var t ∈ N ′

� t = λx.t′. Since t ∈ N we have that also t′ can't contain any redexes, so t′ ∈ N . By

induction hypothesis we have t′ ∈ N ′ and by Abs we have t ∈ N .

� t = t1 t2. Since t ∈ N and is a normal form, we have that t1, t2 are also normal forms,

therefore t1, t2 ∈ N . By induction hypothesis we have that t1, t2 ∈ N ′:

∗ t1 = x, we have t = x t2 and t ∈ N ′ by App1.

∗ t1 = λx.t′
1. Impossible, since then t = λx.t′

1 t2 and that is a redex, but t ∈ N .

∗ t1 = x t11 . . . t1n. We have t = x t11 . . . t1n t2 and by Appn+1 t ∈ N ′.

Exercice 2 : Typed Arithmetic Expressions (10 points)

We �rst recall the syntax for arithmetic expressions (TAPL, p.91):

t ::= terms : v ::= values :
| true constant true | true true value
| false constant false | false false value
| if t then t else t condition | nv numeric value
| 0 constant zero
| succ t successor nv ::= numeric values :
| pred t predecessor | 0 zero value
| iszero t zero test | succ nv successor value

and the evaluation rules for numbers (TAPL, p.41):

(E-Succ)
t1 −→ t′

1

succ t1 −→ succ t′
1

(E-PredZero) pred 0 −→ 0 (E-IsZeroZero) iszero 0 −→ true

(E-PredSucc) pred (succ nv1) −→ nv1 (E-IsZeroSucc) iszero (succ nv1) −→ false

(E-Pred)
t1 −→ t′

1

pred t1 −→ pred t′
1

(E-IsZero)
t1 −→ t′

1

iszero t1 −→ iszero t′
1

Suppose we remove the E-PredZero rule.

Does progress still hold ? What about preservation ?

Change the de�nition of values in the modi�ed language such that both progress and preservation

hold. However, you are not allowed to reintroduce E-PredZero or to add another reduction

rule for terms of the form pred(x).

Answer:

Progress does not hold: pred 0 : Nat is a well-typed term which is not a value and is stuck.

Preservation still holds because removing one evaluation rule just makes the original proof shorter

(one less case to prove).

We change the syntax for numeric values:

nv ::= pos positive
neg negative

pos ::= 0 zero
succ pos successor

neg ::= 0 zero
pred neg predecessor

We need to add a rule to deal with successors of negative numbers, one for iszero with negative

numbers, and also update rules that worked on nv to work on positives or negatives.:

E-SuccPred
succ (pred neg1) → neg1

E-PredSucc
pred (succ pos1) → pos1

E-IsZeroPred
iszero (pred neg1) → false

E-IsZeroSucc
iszero (succ pos1) → false

2

Exercice 3 : Option Types (10 points)

We extend the syntax for the simply typed λ-calculus (TAPL, p.103) with option types in a

similar way as in Scala, e.g.

(\o: option Nat. o match {

case some x => x

case none => 0

}) some (succ 0)

The meaning of the above is that when o is an instance of some, the �rst branch is selected

and x takes the value carried inside o. When o is an instance of none, the second branch is

evaluated. As a rule of thumb, the evaluation rules should match Scala's behavior, like call-by-

value evaluation order and the usual meaning for match. The language should also allow you to

create values of both kinds.

Formalize this extension. Your solution should include a grammar extension (for terms, values

and types), evaluation rules and typing rules for the new terms. Typing rules should peserve

type safety and make it impossible to �nd two di�erent types for the same term (uniqueness of

types). (There is no need to prove these properties).

Answer:

We propose the following syntax:

Terms

t ::= . . . terms
some t some
none as T none: T
t match �{� case some x => t case none => t �}� match

Values

v ::= . . .
none as T none values
some v some values

Types

T ::= . . .
Option T option types

Evaluation rules:

E-MatchSome
some v match { case some x => t1 case none => t2} → [x 7→ v]t1

E-MatchNone
none as T match { case some x => t1 case none => t2} → t2

E-Match
t → t′

t match { case some x => t1 case none => t2} →
t′ match { case some x => t1 case none => t2}

E-Some
t → t′

some t → some t′

3

Typing rules:

T-Some
Γ ` t : T

Γ ` some t : Option T
T-None

T = Option S

Γ ` none as T : T

T-Match
Γ ` t : Option T Γ, x : T ` t1 : T1 Γ ` t2 : T1

t match { case some x => t1 case none => t2} : T2

4

