
Scala -- from Adam and Eve
(lots of Apples, a few Snakes)

Christian.Soderberg@cs.lth.se

19 mars 2012

Goals

▸ To give an overview of some of Scala's basic concepts.
▸ To illustrate some of the features you're likely to come across
when using combinator parsers.

Background

▸ Scala can be understood from a few different (and partly
orthogonal) perspectives:

▸ It's scalable -- hence its name (it's meant to be expandable
within itself).

▸ It combines object-oriented features with functional
programming features.

▸ It makes a serious effort to 'simplify' things for the
programmer.

Scalable

▸ The language specification is quite small.
▸ A flexible syntax enables designers to write embedded DSL:s
(like the combinator parsers).

▸ Citation (Odersky, in a discussion thread last month):
``Scala is emphatically not about adding syntax to
remove boilerplate. That's not in its genes. It's about
finding a small syntax kernel of powerful abstractions
that avoid boilerplate from the start. So, while adding
features might be an easy sell in the short run, it
would dilute the idea of what Scala is supposed to
be.''

OOP and/or FP

▸ Odersky seems to be anxious not to take sides -- he pushes
the community to pursue both OOP and FP.

▸ There is undeniably a bend towards using constants and
immutability.

No static, and no primitive array

▸ We have no static keyword, instead:
▸ A class describes objects.
▸ An object accompanies the class -- it's called its companion

object.

▸ There is an array class, but it's declared Array[T], just as lists
are declared List[T] -- the arrays are not 'built-ins' (as in
Java).

Example

.
Exempel
..
......Implement the "hello, world"-program.

Declarations and type annotations

▸ Scala is statically typed, but the compiler often infers types
for us.

▸ We use 'Pascal style' declarations:

name: type

▸ Postfix type annotations plays very well with type inference
(also, Wirth was Odersky's PhD supervisor ,).

val:s and var:s

▸ We declare variables using var, and constants using val:

val n: Int = 10
var sum: Int = 0

▸ We don't have to declare the types when they can be
inferred:

val n = 10
var sum = 0
for (term <- 1 to n) {

sum += term
}

▸ var:s are surprisingly few and far between.

Every value is an object

▸ We don't have to differentiate between primitive types and
reference types -- every value is an object, and 1 + 2 is just
shorthand for 1.+(2)

▸ The syntax rules allows us to skip dots, parentheses and
semicolons in many places. We could also sometimes chose
between using {} and ().

▸ There are quite a few methods defined on numbers, such as:

val indianaPi = math.Pi.toInt
val scale = 0 to 11
val biggest = a max b
println(42.toHexString)

Overview of classes

Values are all around

▸ The if-statement has a value:

val smallest = if (a < b) a else b

▸ Blocks have values (their last calculated value):

val gauss = {
var sum = 0
for (term <- 1 to 100)

sum += term
sum

}

▸ The Scala counterpart to Java's void is called Unit, and its
only value is (). A block with a closing Unit-statement (such
as println) has the value (), which, of course, is of type Unit.

Defining methods

▸ We define methods using the def keyword:

def square(x: Double): Double = x * x

▸ We don't have to declare return types when they can be
inferred (they usually can be, except for when dealing with
recursive methods):

def arithmeticSum(n: Int) = {
var sum = 0
for (term <- 1 to n)

sum += term
sum

}
def factorial(n: Int): Int =

if (n < 2) 1 else n * factorial(n-1)

More on methods

▸ Methods can be nested to any depth.
▸ We can access names bound in enclosing blocks.
▸ Parameters are read-only.
▸ We can return tuples (of any arity up to 22):

def minmidmax(a: Int, b: Int, c: Int) = {
val smallest = a min b min c
val biggest = a max b max c
(smallest,
a + b + c - smallest - biggest,
biggest)

}
val (a, b, c) = minmidmax(5, 2, 4)
println("%d, %d, %d".format(a, b, c))

Functions

▸ We define lambda expressions using the =>-operator, eg. we
can define λx.x2 as (x: Double) => x * x

▸ We can save such a function in a variable

val square = (x: Double) => x * x

and can then use it as in:

val area = square(side)

▸ The type of square can be written:

(Double) => Double

which can be simplified into:

Double => Double

Functions are values

▸ Functions are actually objects with an apply-method.
▸ Using some syntactic sugaring, the compiler allows us to
write

square(a) + square(b)

instead of

square.apply(a).+(square.apply(b))

▸ Collections can be seen as partial functions, where the
apply(Int)-method gives us values:

for (k <- 0 until args.size)
println(args(k))

Functions/methods as parameters

▸ Using what's called η-expansion, Scala converts methods into
functions, so we could use them almost interchangeably.

▸ We could send a function/method as a parameter to other
functions:

def tabulate(f: Int => Int,
min: Int, max: Int) = {

for (k <- min to max)
println("%3d: %5d".format(k, f(k)))

}
def cube(n: Int) = n * n * n
tabulate(cube, 1, 10)

Scala's collections

▸ Scala's standard collections come in three flavors:
▸ immutable (default)
▸ mutable
▸ parallell

▸ Each flavor has sequences, sets, maps, etc.
▸ By using collections and higher order functions we can solve
many problems suprisingly easily.

Collections and functions

▸ To map a function, such as square, over the elements of a
sequence, we can write:

(1 to 10).map((p: Int) => square(p))

▸ The type of p can be inferred by the compiler):

(1 to 10).map(p => square(p))

▸ We can replace the occurence of one parameter with _, as in:

(1 to 10).map(square(_))

▸ This can be simplified even further, into:

(1 to 10).map(square)

▸ We can use both proper functions and methods as
parameters to map (thanks to the η-conversion).

scala.collection.immutable

scala.collection.mutable

Some methods on Seq[A]

▸ map[B](f: (A) => B): Seq[B]

▸ filter(p: (A) => Boolean): Seq[A]

▸ foreach(f: (A) => Unit): Unit

▸ find(p: (A) => Boolean): Option[A]

▸ reduce[A1 >: A](op: (A1, A1) => B): B

▸ sum: A

Creating and using collections

val smallPrimes = Seq(2, 3, 5, 7, 11)
val capitals = Map(

"Sweden" -> "Stockholm",
"Denmark" -> "Copenhagen",
"Norway" -> "Oslo")

val squares = (1 to 10).map(v => (v, sq(v))).toMap
def isSmallPrime(n: Int) = smallPrimes.contains(n)
val letters = "Sequence of Chars".toSeq

Example

.
Exempel
..

......

Use the Scala REPL to calculate

10

∑
k=1

k2

Implicit conversions

▸ Scala uses Java Strings.
▸ There is a collection class StringOpswith many nice methods
on strings -- if we want to use one of them on a String-object,
Scala makes an implicit conversion into a StringOps-object.

▸ This way we can treat strings as sequences of Chars.
▸ Using implicit conversions we can seemingly add metods to
any class.

Example

.
Exempel
..

......

Write a program which prints all palindromes given on the com-
mand line (hint: String:s are collections).

Example

.
Exempel
..
......Write a program which prints all perfect numbers less than 10000.

Example

.
Exempel
..
......Write a program which prints the first four perfect numbers.

Avoiding null-pointers

▸ Some methods, such as

find(p: (A) => Boolean)

may or may not return a value -- such methods usually have
the return type Option[A].

▸ An Option-value may be either:
▸ None: which is just nothing.
▸ Some(value): in which case value is the found value.

▸ We can check the return-value using a match-statement.

Some match-statements

▸ Matching String:s:

val capital = country match {
case "Sweden" => "Stockholm"
case "Denmark" => "Copenhagen"
case "Norway" => "Oslo"

}

▸ Checking Option:s:

args.map(_.toInt).find(isPerfect) match {
case Some(value) =>

println(value + " is perfect")
case None =>

println("found no perfect value")
}

Using Option

▸ We don't have to use match-statements to check our Options,
instead we can use map, filter, etc:

println(args
.find(isPalindrome)
.filter(_.length < 5)
.map(_.toUpperCase)
.getOrElse("none found"))

Traits

▸ A trait can be described as either:
▸ a class without constructor, or
▸ an interface, with implemented methods and/or attributes.

▸ Traits can be extended and mixed together in what looks like
multiple inheritence -- using a technique called linearization
Scala avoids the diamond problem.

▸ Traits are convenient for modularizing our code, we can split
it into traits and mix them together as we need them.

Regular classes

▸ A Scala class looks a lot like a Java class, but its body can be
seen as a constructor returning this.

▸ The parameters are not attributes, but they will be available
inside the class.

▸ Parameters marked with val or varwill be accesible from
outside.

▸ We extend a class or trait using extends or with.

case-classes

▸ By marking our classes with the prefix case, we get:
▸ A factory method for the class -- we can create a new instance
without writing new.

▸ All parameters gets a val prefix.
▸ We get reasonable default definitions for toString, hasCode
and equals.

▸ Case classes are great for matching.

Arithmetic expressions

abstract class Expr
case class Number(value: Double) extends Expr
case class Add(lhs: Expr, rhs: Expr) extends Expr
case class Sub(lhs: Expr, rhs: Expr) extends Expr
case class Mul(lhs: Expr, rhs: Expr) extends Expr
case class Div(lhs: Expr, rhs: Expr) extends Expr

Evaluating arithmetic expressions

def eval(e: Expr): Double = e match {
case Number(value) => value
case Add(lhs, rhs) => eval(lhs) + eval(rhs)
case Sub(lhs, rhs) => eval(lhs) - eval(rhs)
case Mul(lhs, rhs) => eval(lhs) * eval(rhs)
case Div(lhs, rhs) => eval(lhs) / eval(rhs)

}

Parsers

▸ A parser is an object extending Input => ParseResult[T]

▸ We define one method per production in our grammar, each
method is its own parser.

▸ The parsers have methods like ~, |, etc. for composing and
alternatives.

▸ If we call the ^^-method for any production, we can convert
the parsed String into an AST-node.

Example -- a very simple calculator

⟨expr⟩ ::= <term> { '+' <term> }

⟨term⟩ ::= <factor> { '*' <factor> }

⟨factor⟩ ::= <floatingPointNumber> | '(' <expr> ')'

Just parsing

trait ArithmeticParser extends JavaTokenParsers {

def expr: Parser[Any] =
term ~ rep("+" ~ term)

def term: Parser[Any] =
factor ~ rep("*" ~> factor)

def factor: Parser[Any] =
floatingPointNumber | "(" ~ expr ~ ")"

}

Building an AST

def expr: Parser[Expr] =
term ~ rep("+" ~ term) ^^ {

case term ~ following =>
following.map{case s~e => e}.

foldLeft(term)(Add(_,_))
}

def term: Parser[Expr] =
factor ~ rep("*" ~> factor) ^^ {

case factor ~ following =>
following.foldLeft(factor)(Mul(_,_))

}
def factor: Parser[Expr] =

floatingPointNumber ^^ {x => Number(x.toDouble)}
| "(" ~> expr <~ ")" ^^ {x => x}

Running our calculator

object Calculator
extends App with ArithmeticParser {

parseAll(expr, args(0)) match {
case Success(e, _) =>

println(eval(e))
case Failure(msg, _) =>

println("Syntax error: " + msg)
}

}

T h e E n d

