
Featherweight Java, FJ

Type Systems Course,

Spring 2012, Computer Science dept.,
Lund University

Amr Ergawy
23 May 2012

Outline

• References.
• Prerequisites and Discussion Scope.
• FJ: What and Why?
• Type systems: Nominal vs. Structural.
• FJ details: syntax, evaluation, and typing.
• FJ soundness: progress and preservation.
• An extension: Generic FJ.
• Optional disucssion: detecting logical type errors

with FJ?
• Suggested excercises.

References

1. Types and Programming Languages, Benjamin C. Pierce.

2. Slides from week 13 of the course Software
foundations course given at EPFL by Martin Odersky.

3. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001.
Featherweight Java: a minimal core calculus for Java and
GJ. ACM Trans. Program. Lang. Syst. 23, 3 (May 2001), 396-
450. DOI=10.1145/503502.503505
http://doi.acm.org/10.1145/503502.503505.

http://lampwww.epfl.ch/teaching/archive/type_systems/2010/project.html
http://lampwww.epfl.ch/teaching/archive/type_systems/2010/project.html
http://www.epfl.ch/

Prerequisites and Discussion Scope

• From the course book [1], discussing FJ depends
on these topics:
- Induction, grammars, semantics, evaluations,

derviations, and typed BN.

- The typing relation, λ-Calculus, typed λ-Calculus,
simple extensions of λ-Calculus, and subtyping.

• In the course book [1], these topics are discussed
in chapters 2, 3, 5, 8, 9, 11, 15.

• Execuse me! I can not engage in discussions
outside this scope!

FJ: What and Why? 1/2

• FJ is a compact formal model that enables studying
properties of Java and its extensions.

• Formally:
– FJ is a subset of Java.
– This subset includes key features of Java.
– This subset excludes complex features of Java.

• As a result:
– We can apply well-understood theory to this subset, i.e. FJ.
– Incrementally, we can apply the same theory to

extensions, e.g. Generic FJ and Feature FJ.

• Every FJ program is a functional Java Program.

FJ: What and Why? 2/2

• Applying the theory of type-safety on FJ focuses on these
central features:
– Mutually recursive class definition, Subtyping.
– Object creation, Casting.
– Field access.
– Method invocation, override, recursion through “this” keyword.

• Applying the theory of type-safety on FJ excludes these
features:
– Assignment, interfaces, overloading, using “super” keyword, null

pointers, base types, abstract methods, inner classes,
shadowing super class fields, access control, and exceptions

– Other more advanced features, e.g. concurrency and reflection.

Example FJ Program 1/3

• Omitting the assignment
defines pure functional FJ:
– Objects only initialized via

constructors.
– No state modifications.

• “=” and “super” only appear
in a constructor.

• The method setfst() returns a
new object, but does not
modify the existing one.

Copied from reference [2]

Example FJ Program 2/3

• In a constructor, the
order of parameters is
the same as the order of
the class fields:

– Accessing a field is just
selecting the constructor
parameter that has the
same order.

Copied from reference [2]

Example FJ Program 3/3

• A value in FJ is a “new”-term.
• In the course book [1], FJ uses “call-

by-value”. The reference paper [3]
has another assumption: non-
deterministic beta reduction relation
.

• A method invocation looks up the
method in the “new”-term that exists
before its preceding ’.’:
– Enabling method overriding.

• A method invocation substitutes its
parameters:
– “this” is considered a variable and is

substituted by the object itself.
– Enabling recursion through “self”.

Copied from reference [2]

Type systems: Nominal vs. Structural. 1/2

• Nominal type systems:
– Type names are essential, e.g. used in a class table.
– Subtyping is explicitly declared.

• Structural type systems:
– type structures may be used in exchange with type names.
– Subtyping is directly defined on the structures of types,

e.g. T-RcdWidth on records subtyping, Chapter 11 in the
course book [1].

• “Nominal vs. Structural” is a continuous discussion in
the research community.

• In this presentation, we focus on the advantages of
nominal type system, as it is used by FJ.

Type systems: Nominal vs. Structural. 2/2

• Advantages of nominal type systems:
– Easy run-time type tests, e.g. using “instanceof”.
– It is simple to support:

• Recursive types.
• Mutually recursive types.

– It is required to only check for once that a type is
“structurally” a sub-type of another that is explicitly
declared its “super” type. Then subtyping is checked from
a type table.

– It prevents ”spurious* subsumption” : a compiler
”structurally” accepts a subtyping relation of two
completely unrelated types.

* spurious: fake, unreal

FJ Syntax 1/5

• A dashed term or class
symbol: a list of ‘,’
separated terms or class
symbols.

• A dashed term or class
symbol followed by ‘;’: a list
of ‘;’ separated terms or
class symbols.

• A value in FJ is a “new”-
term.

Copied from reference [2]

FJ Syntax 2/5

• In the method
declaration, M, 𝑥 is
bound in t.

Copied from reference [2]

FJ Syntax 3/5

• CT is the ”class table”.
• For sanity conditions of CT, see

page 256 of the course book
[1].

• Because of the CT sanity and
explicit declaration of
inheritance, i.e. subtyping:
– class Object is assured to be

the “top” of the class hierarchy.
– No need for a “Top” rule.
– The book answer to exercise

19.4.1.

Copied from reference [2]

FJ Syntax 4/5

• Lookups: fields, method
type, and method body.

• Note the role of the
super class.

Copied from reference [2]

FJ Syntax 5/5

• To override a method of a
super class in a subclass,
we must keep the same
parameters and return
types.

Copied from reference [2]

FJ Evaluation 1/2

• In these computation evaluation rules, a
non-well typed ”program” stucks when:
– Attempting to access a field not in a

class: field lookup fails.
– Attempting to invoke a method not in a

class: method lookup failes.
– Solution: compiler’s job?

• A well-typed program may stuck in
evaluation using E-CastNew if C is not a
subclass of D:
– In the course book [1], chapter 15, page

195, run-time check is suggested to
recover preservation. One suggest
recovering mechanism is raising
exceptions.

– In chapter 19, exercise 19.4.4 suggests
following chapter 14 to extend FJ with
exceptions.

Copied from reference [2]

FJ Evaluation 2/2

Copied from reference [2]

• Congruence rules:

FJ Typing 1/3

Copied from reference [2]

FJ Typing 2/3

Copied from reference [2]

• (A)(Object)newB() has two halves that
both seem well typed:
– one down-cast and another up-cast
– but calling by value evaluates the term to

a casting from a type that has no relation
to the casting type.

• We evaluated from a well-type term to
an ill-typed, breaking preservation.

• Just because such term is possible to
exist:
– T-Scast exists so that type preservation

proofs passes failed casting.
– A type checker produces ”stupid warning”

if it uses that rule.

• A question: to make real use of T-
Dcast, do not we need to add a rule
called: ”E-DownCastNew” and a run-
time type check like ”instanceof”?

FJ Typing 3/3

Copied from reference [2]

• In ”M Ok in C”, 𝑡0, the
body of m, is of type
𝐸0, which is subclass of
𝐶0, the type of the
body of the same
method in class D.

• ”C Ok” defines the
conditions that C must
satisfy to be accepted
as extending class D.

FJ Soundness 1/2

Copied from reference [2]

• Given E-CastNew, a program
with this term stucks.

• For the current set of FJ
evaluation rules, we redefine
the progress property as:

• E[(C)(new D(v))], with !(D <: C) means the next subterm to
be reduced is to stuck at E-CastNew.

– Solution: extend FJ with raising exceptions?

• Proof is by industion on typing derivations: I attempted it
execulding T-VAR and proving it for T-FIELD, ... etc.

Copied from reference [2],
with dashed part.

FJ Soundness 2/2

Copied from reference [2]

• As disccused before, an apparent well-typed term may
reduce to an ill-typed cast term.

• T-SCast exists so that type preservation proofs passes such
failed casting.

• A type checker produces ”stupid warning” if it uses that
rule.

An extension: Generic FJ

• If you are interested, lets go through pages
408 to 415 on the reference paper [3].

Optional disucssion: detecting
logical type errors with FJ?

• Does FJ requires any extention to use it for
detecting logical erros?

• Or, is it enough to define a class of each logical
type we are interested in?
– Is not this similar to the solution based on single-

field variants in the course book [1], chapter 11,
on page 139.

Suggested excercises

• Suggested excercise:

– Should be simple: 19.4.5, 19.4.7. I alredy
attempted them if any one is interested.

– More demanding: 19.4.3, 19.4.4

