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Prerequisites and Discussion Scope 

• From the course book [1],  discussing FJ depends 
on these topics:  
- Induction, grammars, semantics, evaluations, 

derviations, and typed BN.  

- The typing relation, λ-Calculus, typed λ-Calculus, 
simple extensions of λ-Calculus, and subtyping. 

• In the course book [1], these topics are discussed 
in chapters 2, 3, 5, 8, 9, 11, 15. 

• Execuse me! I can not engage in discussions 
outside this scope!  

 



FJ: What and Why? 1/2 

• FJ is a compact formal model that enables studying 
properties of Java and its extensions. 

• Formally: 
– FJ  is a subset of Java. 
– This subset includes key features of Java. 
– This subset excludes complex features of Java. 

• As a result: 
– We can apply well-understood theory to this subset, i.e. FJ. 
– Incrementally, we can apply the same theory to 

extensions, e.g. Generic FJ and Feature FJ. 

• Every FJ program is a functional Java Program. 



FJ: What and Why? 2/2 

• Applying the theory of type-safety on FJ focuses on these 
central features: 
– Mutually recursive class definition, Subtyping. 
– Object creation, Casting.  
– Field access. 
– Method invocation, override, recursion through “this” keyword. 

• Applying the theory of type-safety on FJ excludes these 
features: 
– Assignment, interfaces, overloading, using “super” keyword, null 

pointers, base types, abstract methods, inner classes, 
shadowing super class fields, access control, and exceptions 

– Other more advanced features, e.g. concurrency and reflection. 
 



Example FJ Program  1/3 

• Omitting the assignment 
defines pure functional FJ:  
– Objects only initialized via 

constructors. 
– No state modifications. 

• “=” and “super” only appear 
in a constructor.  

• The method setfst() returns a 
new object, but does not 
modify the existing one. 
 

 

Copied from reference [2] 



Example FJ Program  2/3 

• In a constructor, the 
order of parameters is 
the same as the order of 
the class fields: 

– Accessing a field is just 
selecting the constructor 
parameter that has the 
same order. 

Copied from reference [2] 



Example FJ Program  3/3 

• A value in FJ is a “new”-term. 
• In the course book [1], FJ uses “call-

by-value”. The reference paper [3] 
has another assumption: non-
deterministic beta reduction relation 
. 

• A method invocation looks up the 
method in the “new”-term that exists 
before its preceding ’.’: 
– Enabling method overriding. 

• A method invocation substitutes its 
parameters: 
– “this” is considered a variable and is 

substituted by the object itself. 
– Enabling recursion through “self”. 

Copied from reference [2] 



Type systems: Nominal vs. Structural. 1/2 

• Nominal type systems: 
– Type names are essential, e.g. used in a class table. 
– Subtyping is explicitly declared. 

• Structural type systems: 
–  type structures may be used in exchange with type names. 
– Subtyping is directly defined on the structures of types, 

e.g. T-RcdWidth on records subtyping, Chapter 11 in the 
course book [1]. 

• “Nominal vs. Structural” is a continuous discussion in 
the research community. 

• In this presentation, we focus on the advantages of 
nominal type system, as it is used by FJ.  



Type systems: Nominal vs. Structural. 2/2 

• Advantages of nominal type systems: 
– Easy run-time type tests, e.g. using “instanceof”. 
– It is simple to support: 

• Recursive types. 
• Mutually recursive types. 

– It is required to only check for once that a type is 
“structurally” a sub-type of another that is explicitly 
declared its “super” type. Then subtyping is checked from 
a type table. 

– It prevents ”spurious* subsumption” : a compiler 
”structurally” accepts a subtyping relation of two 
completely unrelated types. 

* spurious: fake, unreal 



FJ Syntax 1/5 

• A dashed term or class 
symbol: a list of ‘,’ 
separated terms or class 
symbols. 

• A dashed term or class 
symbol followed by ‘;’: a list 
of ‘;’ separated terms or 
class symbols. 

• A value in FJ is a “new”-
term. 

 

Copied from reference [2] 



FJ Syntax 2/5 

• In the method 
declaration, M, 𝑥  is 
bound in t. 

Copied from reference [2] 



FJ Syntax 3/5 

• CT is the ”class table”.  
• For sanity conditions of CT, see 

page 256 of the course book 
[1]. 

• Because of the CT sanity and 
explicit declaration of 
inheritance, i.e. subtyping: 
– class Object is assured to be 

the “top” of the class hierarchy. 
– No need for a “Top” rule. 
– The book answer to exercise 

19.4.1. 

 

Copied from reference [2] 



FJ Syntax 4/5 

• Lookups: fields, method 
type, and method body. 

• Note the role of the 
super class.  

 

Copied from reference [2] 



FJ Syntax 5/5 

• To override a method of a 
super class in a subclass, 
we must keep the same 
parameters and return 
types.  

 

Copied from reference [2] 



FJ Evaluation 1/2 

• In these computation evaluation rules, a 
non-well typed ”program” stucks when: 
– Attempting to access a field not in a 

class: field lookup fails. 
– Attempting to invoke a method not in a 

class: method lookup failes. 
– Solution: compiler’s job?  

• A well-typed program may stuck in 
evaluation using E-CastNew if C is not a 
subclass of D: 
– In the course book [1], chapter 15, page 

195,  run-time check is suggested to 
recover preservation. One suggest 
recovering mechanism is raising 
exceptions. 

– In chapter 19, exercise 19.4.4 suggests 
following chapter 14 to extend FJ with 
exceptions. 
 

Copied from reference [2] 



FJ Evaluation 2/2 

Copied from reference [2] 

• Congruence rules: 

 



FJ Typing 1/3 

Copied from reference [2] 



FJ Typing 2/3 

Copied from reference [2] 

• (A)(Object)newB() has two halves that 
both seem well typed:  
– one down-cast and another up-cast 
– but calling by value evaluates the term to 

a casting from a type that has no relation 
to the casting type. 

• We evaluated from a well-type term to 
an ill-typed, breaking preservation. 

• Just because such term is possible to 
exist:  
–  T-Scast exists so that type preservation 

proofs passes failed casting. 
– A type checker produces ”stupid warning” 

if it uses that rule. 

• A question: to make real use of T-
Dcast, do not we need to add a rule 
called: ”E-DownCastNew” and a run-
time type check like ”instanceof”?  



FJ Typing 3/3 

Copied from reference [2] 

• In ”M Ok in C”, 𝑡0, the 
body of m, is of type 
𝐸0, which is subclass of 
𝐶0, the type of the 
body of the same 
method in class D. 

• ”C Ok” defines the 
conditions that C must 
satisfy to be accepted 
as extending class D.  



FJ Soundness 1/2 

Copied from reference [2] 

• Given E-CastNew, a program 
with this term stucks. 

• For the current set of FJ 
evaluation rules, we redefine 
the progress property as:  

• E[(C)(new D(v))], with !(D <: C) means the next subterm to 
be reduced is to stuck at E-CastNew.  

– Solution: extend FJ with raising exceptions?  

• Proof is by industion on typing derivations: I attempted it 
execulding T-VAR and proving it for T-FIELD, ... etc. 

 

Copied from reference [2], 
with dashed part. 



FJ Soundness 2/2 

Copied from reference [2] 

• As disccused before, an apparent well-typed term may 
reduce to an ill-typed cast term.  

• T-SCast exists so that type preservation proofs passes such 
failed casting. 

• A type checker produces ”stupid warning” if it uses that 
rule. 

 



An extension: Generic FJ 

• If you are interested, lets go through pages 
408 to 415 on the reference paper [3]. 



Optional disucssion: detecting 
logical type errors with FJ? 

• Does FJ requires any extention to use it for 
detecting logical erros? 

• Or, is it enough to define a class of each logical 
type we are interested in? 
– Is not this similar to the solution based on single-

field variants in the course book [1], chapter 11, 
on page 139. 



Suggested excercises 

• Suggested excercise: 

– Should be simple: 19.4.5, 19.4.7. I alredy 
attempted them if any one is interested.  

– More demanding: 19.4.3, 19.4.4 


