
Recursive types

Course on type systems, session #11, 120516.
linus@cs.lth.se



The need for recursive types

I Counter = { get: Counter → Nat, inc: Counter → Unit }
I ListOfNat = <nil: Unit, pair: { head: Nat, tail: ListOfNat }>
I List T = <nil: Unit, pair: { head: T, tail: List T }>

<nil, pair>

Unit {head, tail}

Nat <nil, pair>

Unit {head, tail}

Nat ...



Anonymous recursive types
Just like fix produces anonymous recursive functions, we’ll use
µ to produce anonymous recursive types.

ListOfNat = µ X. <nil: Unit, pair: { head: Nat, tail: X }>

”ListOfNat is defined as the infinite type which satisfies the
equation:

X = <nil: Unit, pair: { head: Nat, tail: X }>”

<nil, pair>

Unit {head, tail}

Nat



Example code for ListOfNat (1/2)

nil = <nil=unit> as ListOfNat;

cons = λh:Nat. λt:ListOfNat.
<pair={head=h,tail=t}> as ListOfNat;

isnil = λl:ListOfNat. case l of

<nil=u> ⇒ true

| <pair=p> ⇒ false;

head = λl:ListOfNat. case l of

<nil=u> ⇒ 0

| <pair=p> ⇒ p.head;

tail = λl:ListOfNat. case l of

<nil=u> ⇒ l

| <pair=p> ⇒ p.tail;



Example code for ListOfNat (2/2)

sumlist = fix (λs:ListOfNat→Nat. λl:ListOfNat.
if isnil l

then 0

else plus (head l) (s (tail l)));



Infinite types – finite values

The type ListOfNat is infinite (circular), but we cannot create
infinite data structures due to call-by-value semantics.

What about termination?



Recap

I Remember: STLC took away the ability to express the
fixed-point combinator (fix), so we had to add it as a
primitive.

Stuck Terminating Non-terminating
λ No Yes Yes
λ + extensions Yes Yes Yes
STLC No Some No
STLC + fix No Yes Yes



Recap

I Remember: STLC took away the ability to express the
fixed-point combinator (fix), so we had to add it as a
primitive.

Stuck Terminating Non-terminating
λ No Yes Yes
λ + extensions Yes Yes Yes
STLC No Some No
STLC + fix No Yes Yes
STLC + µ No Yes Yes



fix revisited

fix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y));

I x must be of an arrow type whose domain is the type of x
itself: ((... → X) → X) → X

T = U→V

fix = λf: T→T.
(λx:(µA. A→T). f (λy:(µA. A→T). x x y))
(λx:(µA. A→T). f (λy:(µA. A→T). x x y));

fix : (T→T) → T

Rest eyes here −→



fix revisited

fix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y));

I x must be of an arrow type whose domain is the type of x
itself: ((... → X) → X) → X

T = U→V

fix = λf: T→T.
(λx:(µA. A→T). f (λy:(µA. A→T). x x y))
(λx:(µA. A→T). f (λy:(µA. A→T). x x y));

fix : (T→T) → T

Rest eyes here −→



fix revisited

fix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y));

I x must be of an arrow type whose domain is the type of x
itself: ((... → X) → X) → X

T = U→V

fix = λf: T→T.
(λx:(µA. A→T). f (λy:(µA. A→T). x x y))
(λx:(µA. A→T). f (λy:(µA. A→T). x x y));

fix : (T→T) → T

Rest eyes here −→



Hungry functions

Hungry = µA. Nat → A;

Nat → Nat → Nat → Nat → ...

I Hungry functions accept any number of arguments.

I Not particularly useful unless we support side-effects:

cout << "Hello, " << "world!";

vs.

hungryPrinter "Hello, " "world!"



Objects

I Unlike the objects of last week, these will be immutable.

I Methods may return new objects.

I In the following example, get is a field.

Counter = µC. {get: Nat, inc: Unit→C};

c = let newCounter = fix (

λf: {x: Nat}→Counter.

λs: {x: Nat}.

{get = s.x,

inc = λ_:Unit. f {x=succ(s.x)}})

in newCounter {x=0};



An interpreter for untyped λ-calculus

I Every value is a function taking values to values.

D = µX. X→X;

I Explicit folding/unfolding:

lam = λf: D→D. f as D;
ap = λf: D. λa: D. f a;

encode[x] = x

encode[λx.M] = lam(λx : D. encode[M])
encode[M N] = ap encode[M] encode[N]



An interpreter for the extended λ-calculus

The book then extends this interpreter to support the extended
λ-calculus (λ + Nat) in terms of D, lam and ap.

In order for this interpreter to be well-typed, we have to decide
what should happen when a Nat is applied (as if it were a
function) to some value.

ap = λf: D. λa: D. case f of

<nat=n> ⇒ divergeD unit

| <fn=f> ⇒ f a;

divergeD = λ_:Unit. fixT (λx: T. x);

Hence, stuckness is reintroduced.

What was the point of a type system again? Discuss!



Equivalence (1/2)

Given that

ListOfNat = µ X. <nil: Unit, pair: { head: Nat, tail: X }>

are the following two types the same?

I ListOfNat

I <nil: Unit, pair: { head: Nat, tail: ListOfNat }>



Equivalence (2/2)

Two approaches:

I Equi-recursive: Yes, they are the same type. We don’t need
to change any definitions, safety theorems or proofs.

I A typechecker for an equi-recursive type system is difficult to
implement, because it mustn’t get lost in circular data
structures. We’ll have trouble adding some features to the
language (e.g. type operators).

I Iso-recursive: No, they are different but isomorphic. We add
fold and unfold primitives to the language (sometimes
called roll and unroll).

μX.T [X→μX.T] T
unfold[μX.T]

fold[μX.T]



New rules for the iso-recursive approach (1/3)

t ::= ...
fold[T] t
unfold[T] t

v ::= ...
fold[T] v

T ::= ...
X
µX. T



New rules for the iso-recursive approach (2/3)

unfold[S ] (fold[T ] v1)→ v1

(E-UnfldFld)

t1 → t ′1
fold[T ] t1 → fold[T ] t ′1

(E-Fld)

t1 → t ′1
unfold[T ] t1 → unfold[T ] t ′1

(E-Unfld)



New rules for the iso-recursive approach (3/3)

U = µX .T1 Γ ` t1 : [X 7→ U]T1

Γ ` fold[U]t1 : U

(T-Fld)

U = µX .T1 Γ ` t1 : U

Γ ` unfold[U]t1 : [X 7→ U]T1

(T-Unfld)



Hiding fold/unfold

In real languages, fold and unfold are inserted automatically
based on the lexical context.

I Insert an implicit fold every time a constructor is used.

I Insert an implicit unfold in every case statement.

As a consequence of hiding the primitives from the programmer,
some code constructs are illegal. For instance, in Haskell, only
algebraic datatypes may be recursive – not type aliases.

data List1 = Nil | Pair Int List1 -- OK

type List2 = (Int, List2) -- Not allowed

Can we still express the fixed-point combinator? Discuss!



Java is iso-recursive

References in Java provide the barrier between the recursive levels.

I Insert an implicit fold every time a constructor is used.

I Insert an implicit unfold every time we look inside something
using the ”.” operator.

Reference Object
unfold[μX.T]

fold[μX.T]



Subtyping – intuition

Suppose we have types for all
the integers (Nat) and all the
even integers (Even).

Even <: Nat

Now we introduce two function types:

I F = µX. Nat → { value: Even, func: X }
I G = µX. Even → { value: Nat, func: X }

Is F a subtype of G?

Remember :
T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2



Subtyping – equi-recursive approach

For equi-recursive type systems, this is tricky.

The bulk of chapter 21 explains the theoretical foundations of
equi-recursive typecheckers.

We will skip it today.



Subtyping – iso-recursive approach

The Amber rule, named after the Amber programming language
(1986).

Σ,X <: Y ` S <: T

Σ ` µX .S <: µY .T

(S-Amber)

(X <: Y ) ∈ Σ

Σ ` X <: Y

(S-Assumption)

(We also extend the regular subtyping rules to pass along Σ.)



If you think about it long enough, you’ll see that it’s
obvious.

– Saul Gorn


