# Polymorphism

Dzmitry Sledneu

April 25, 2012

### Motivation

### Identity function

 $idNat = \lambda x : Nat. x$ 

 $idBool = \lambda x$ : Bool. x

### Abstraction principle

Each significant piece of functionality in a program should be implemented in just one place.

Abstracting out varying parts (varying parts are the types).

# Polymorphism

#### **Definition**

Functions which can be applied to arguments of many types are called polymorphic (poly = many, morph = form).

## Forms of polymorphism

- ► Parametric or universal polymorphism (generic types): The ability to instantiate type variables.
- ▶ Inclusion or subtype polymorphism: The ability to treat a value of subtype as a value of one of its supertypes.
- Ad-hoc polymorphism or overloading: The ability to define several versions of the same function name, with different types.

# Universal polymorphism

#### Two forms:

- 1. Explicit or predicative (e.g. let-polymorphism): Type *T* containing a type variable *X* may not be used in such a way that *X* is instantiated to a polymorphic type.
- 2. Implicit or impredicative (e.g. System F): Type variable X in type T can be instantiated to any type (including T itself).

## Let bindings

#### Definition

let  $x = t_1$  in  $t_2 \stackrel{def}{=} (\lambda x : T_1. t_2) t_1$  (Evaluate the expression  $t_1$  and bind the name x to the resulting value while evaluating  $t_2$ ).

$$\frac{\Gamma \vdash t_1 : T_1 \quad \Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : T_2} \quad (\text{T-LET})$$

# Identity function

#### This works:

let 
$$idNat=\lambda x:Nat\to Nat.\ x$$
 in 
$${\rm let}\ idBool=\lambda x:Bool\to Bool.\ x\ {\rm in}$$
 
$${\rm let}\ a=idNat\ 1\ {\rm in}$$
 
$${\rm let}\ b=idBool\ True$$

#### This doesn't:

let 
$$id = \lambda x : X$$
.  $x$  in let  $a = id \ 1$  in

let b = id True

## Let-polymorphism

Associate a different variable X with each use of id:

$$\frac{\Gamma \vdash t_1 : T_1 \quad \Gamma \vdash [x \mapsto t_1]t_2 : T_2}{\Gamma \vdash \text{ let } x = t_1 \text{ in } t_2 : T_2} \quad \text{(T-LETPOLY)}$$

$$\frac{\Gamma \vdash [x \mapsto t_1]t_2 : T_2 \mid_{\mathcal{X}} \mathcal{C}}{\Gamma \vdash \text{ let } x = t_1 \text{ in } t_2 : T_2 \mid_{\mathcal{X}} \mathcal{C}} \quad \text{(CT-LETPOLY)}$$

$$\text{let } x = t_1 \text{ in } t_2 \to [x \mapsto t_1]t_2 \quad \text{(E-LET)}$$

#### Now this works:

let 
$$id = \lambda x$$
.  $x$  in 
$$\text{let } a = id \ 1 \text{ in}$$

let b = id True

# System F

New form of abstraction:

$$\lambda X$$
.  $t$ 

New form of application:

New reduction rules:

$$(\lambda X.\ t_{12})[T_2] 
ightarrow [X \mapsto T_2]t_{12} \quad ext{(E-TAPPTABS)}$$
  $rac{t_1 
ightarrow t_1'}{t_1[T_2] 
ightarrow t_1'[T_2]} \quad ext{(E-TAPP)}$ 

# New typing rules

$$\frac{\Gamma, X \vdash t_2 : T_2}{\Gamma \vdash \lambda X. \ t_2 : \forall X. T_2} \quad \text{(T-TABS)}$$

$$\frac{\Gamma \vdash t_1 : \forall X. T_{12}}{\Gamma \vdash t_1 [T_2] : [X \mapsto T_2] T_{12}} \quad \text{(T-TAPP)}$$

# Example

## Identity function

$$id = \lambda X. \ \lambda x : X. \ x$$

## **Typing**

$$id: \forall X.\ X \rightarrow X$$
 $id[Nat]: Nat \rightarrow Nat$ 
 $id[Bool]: Bool \rightarrow Bool$ 

## **Evaluation**

$$id[\textit{Nat}] \ 0 o 0$$
  $id[\textit{Bool}] \ \textit{True} o \textit{True}$ 

## Basic properties

## Theorem (Preservation)

If  $\Gamma \vdash t : T$  and  $t \rightarrow t'$ , then  $\Gamma \vdash t' : T$ .

#### Proof.

Left as an exercise.

### Theorem (Progress)

If t is a closed, well-typed term, then either t is a value or else there is some t' with  $t \to t'$ .

#### Proof.

Left as an exercise.

### Theorem (Strong normalization)

Every reduction path starting from a well-typed term is guaranteed to terminate.

## Type erasure

#### Definition

```
erase(x) = x

erase(\lambda x : T_1. t_2) = erase(t_2)

erase(t_1 t_2) = erase(t_1) erase(t_2)

erase(\lambda X. t_2) = erase(t_2)

erase(t_1[T_2]) = erase(t_1)
```

(Erase all type annotations).

### Partial erasure

#### Definition

```
\begin{array}{lll} \mathit{erase}_p(x) & = x \\ \mathit{erase}_p(\lambda x : T_1. \ t_2) & = \lambda x : T_1. \ \mathit{erase}_p(t_2) \\ \mathit{erase}_p(t_1 \ t_2) & = \mathit{erase}_p(t_1) \ \mathit{erase}_p(t_2) \\ \mathit{erase}_p(\lambda X. \ t_2) & = \lambda X. \ \mathit{erase}_p(t_2) \\ \mathit{erase}_p(t_1[T_2]) & = \mathit{erase}_p(t_1)[] \end{array}
```

(Erase all type applications arguments).

# Type reconstruction undecidability

### Type reconstruction

A term y in the untyped lambda-calculus is typable in System F if there is some well-typed term x such that erase(x) = y.

### Theorem (Wells, 1994)

It is undecidable whether, given a closed term y of the untyped lambda-calculus, there is some well-typed term x in System F such that erase(x) = y.

## Theorem (Boehm, 1985)

It is undecidable whether, given a closed term y in which type applications are marked but the arguments are omitted, there is some well-typed System F term x such that  $erase_p(x) = y$ .

