
Polymorphism

Dzmitry Sledneu

April 25, 2012



Motivation

Identity function

idNat = λx : Nat. x

idBool = λx : Bool . x

Abstraction principle

Each significant piece of functionality in a program should be
implemented in just one place.
Abstracting out varying parts (varying parts are the types).



Polymorphism

Definition
Functions which can be applied to arguments of many types are
called polymorphic (poly = many, morph = form).



Forms of polymorphism

I Parametric or universal polymorphism (generic types): The
ability to instantiate type variables.

I Inclusion or subtype polymorphism: The ability to treat a
value of subtype as a value of one of its supertypes.

I Ad-hoc polymorphism or overloading: The ability to define
several versions of the same function name, with different
types.



Universal polymorphism

Two forms:

1. Explicit or predicative (e.g. let-polymorphism): Type T
containing a type variable X may not be used in such a way
that X is instantiated to a polymorphic type.

2. Implicit or impredicative (e.g. System F): Type variable X in
type T can be instantiated to any type (including T itself).



Let bindings

Definition
let x = t1 in t2

def
= (λx : T1. t2) t1

(Evaluate the expression t1 and bind the name x to the resulting
value while evaluating t2).

Γ ` t1 : T1 Γ, x : T1 ` t2 : T2

Γ ` let x = t1 in t2 : T2
(T-LET)



Identity function

This works:

let idNat = λx : Nat → Nat. x in

let idBool = λx : Bool → Bool . x in

let a = idNat 1 in

let b = idBool True

This doesn’t:

let id = λx : X . x in

let a = id 1 in

let b = id True



Let-polymorphism

Associate a different variable X with each use of id :

Γ ` t1 : T1 Γ ` [x 7→ t1]t2 : T2

Γ ` let x = t1 in t2 : T2
(T-LETPOLY)

Γ ` [x 7→ t1]t2 : T2 |X C
Γ ` let x = t1 in t2 : T2 |X C (CT-LETPOLY)

let x = t1 in t2 → [x 7→ t1]t2 (E-LET)

Now this works:

let id = λx . x in

let a = id 1 in

let b = id True



System F

New form of abstraction:

λX . t

New form of application:

t[T ]

New reduction rules:

(λX . t12)[T2] → [X 7→ T2]t12 (E-TAPPTABS)

t1 → t ′1
t1[T2] → t ′1[T2]

(E-TAPP)



New typing rules

Γ,X ` t2 : T2

Γ ` λX . t2 : ∀X .T2
(T-TABS)

Γ ` t1 : ∀X .T12

Γ ` t1[T2] : [X 7→ T2]T12
(T-TAPP)



Example

Identity function

id = λX . λx : X . x

Typing

id : ∀X . X → X

id [Nat] : Nat → Nat

id [Bool ] : Bool → Bool

Evaluation

id [Nat] 0 → 0

id [Bool ] True → True



Basic properties

Theorem (Preservation)

If Γ ` t : T and t → t ′, then Γ ` t ′ : T.

Proof.
Left as an exercise.

Theorem (Progress)

If t is a closed, well-typed term, then either t is a value or else
there is some t ′ with t → t ′.

Proof.
Left as an exercise.

Theorem (Strong normalization)

Every reduction path starting from a well-typed term is guaranteed
to terminate.



Type erasure

Definition

erase(x) =x

erase(λx : T1. t2) =λx . erase(t2)

erase(t1 t2) =erase(t1) erase(t2)

erase(λX . t2) =erase(t2)

erase(t1[T2]) =erase(t1)

(Erase all type annotations).



Partial erasure

Definition

erasep(x) =x

erasep(λx : T1. t2) =λx : T1. erasep(t2)

erasep(t1 t2) =erasep(t1) erasep(t2)

erasep(λX . t2) =λX . erasep(t2)

erasep(t1[T2]) =erasep(t1)[]

(Erase all type applications arguments).



Type reconstruction undecidability

Type reconstruction

A term y in the untyped lambda-calculus is typable in System F if
there is some well-typed term x such that erase(x) = y .

Theorem (Wells, 1994)

It is undecidable whether, given a closed term y of the untyped
lambda-calculus, there is some well-typed term x in System F such
that erase(x) = y.

Theorem (Boehm, 1985)

It is undecidable whether, given a closed term y in which type
applications are marked but the arguments are omitted, there is
some well-typed System F term x such that erasep(x) = y.



THE END


