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Type Reconstruction




Type Checking and Type Reconstruction

We now come to the question of type checking and type

reconstruction.
Type checking: Given I', £ and T, check whether I' = ¢: 7T

Type reconstruction: Given I' and ¢, find a type T such that
' =¢:7T

Type checking and reconstruction seem difficult since parameters in

lambda calculus do not carry their types with them.

Type reconstruction also suffers from the problem that a term can

have many types.

Idea: : We construct all type derivations in parallel, reducing type

reconstruction to a unification problem.



substitutions

Substitution: mapping o from type variables to types
eg. {T : Nat, U : X —> Nat, V : Bool — Bool}

extends naturally to mappings on

T if X~T)eo
types: 7l B { X if X is not in the domain of o
o (Nat) = Nat
o (Bool) = Bool
U(T1—>T2) = O'T1 —*O'Tz
contexts: OX1:T1,...,Xn:Ty) = (X1:0Tq,...,Xpn:0Ty).

type equations: o(S==T) = o(S) ==0o(T)

22.1.2 THEOREM [PRESERVATION OF TYPING UNDER TYPE SUBSTITUTION]: If o is any
type substitutionandI' =t : T, then o'+~ ot : oT. O



solutions

22.2.1 DEFINITION: Let I' be a context and t a term. A solution for (I',t) is a pair
(o0,T) such thatol'+ ot : T. O

How do we find a solution (or all solutions) for some (I, t)?



constraint-based typing

Problem:
Given (I, t) find solution (o, T).

Basic approach:

1. transform problem I |t : T into set of equations (aka constraints)

I't:T |[x C

2. compute the solutions for the equations



constraint-based typing: equations

[t :T |x C

x:Tel (CT-VAR)
-VAR
T-x:T |lg {}
[x:Ti -t =T |x C
B ] (CT-ABS)

I'Ax:T1.t2 : TH—=T2 |x C
I'—t; 1 T |x1C1 't i1 T» |x2 C2
XiNXo=X1nFV(Tr)=XoNFV(T;) =0
Xé& Xy, Xo, Ty, To, C1, Co, T, £y, O1 T2
C'=CuCuUi{T, =Tr—X}
-ttt X Ixuxux C

(CT-AprP)
I'—0:Nat | {} (CT-ZERO)
't :T |x C
C'=CuU{T = Nat}
(CT-Succ)

[+ succ t; : Nat |x C’

't :T |x C
C' = Cu{T = Nat}
I'—predt; : Nat |[x C’

't :T |x C
C' = CuU{T = Nat}

(CT-PRED)

(CT-ISZERO)

I'—1iszero t; : Bool |x ('
'+~ true : Bool |g {} (CT-TRUE)
I false : Bool |z {} (CT-FALSE)

't :T1 Ix, Gh
't T2 |x, C F'Ft3:T3 |x; C3
X1, X2, X3 nonoverlapping
(- O N esme R N {Tl = BOO],TQ = Tj;}

I'—1ift; thentyelset3 : T2 |x,uxoux; C

(CT-IF)

Figure 22-1: Constraint typing rules



constraint-based typing: equations Tt : T |x C

[ — true : Bool |z {} (CT-TRUE)

[ - false : Bool |g {} (CT-FALSE)

[0 :Nat |g {} (CT-ZERO)



constraint-based typing: equations Tt : T |x C

't o T |xC
C'=Cu{T = Nat}

, (CT-Succ)
[~ succ t; : Nat |x C
'ty : T |[x C
C' = Cu{T = Nat}
(CT-PRED)

[ —predt; : Nat |y C’

'ty :T |[x C
C' = C uU{T = Nat}

[ —1iszero t; : Bool |y C’

(CT-ISZERO)



constraint-based typing: equations Tt : T |x C

x:T el (CT-VAR)
-VAR
'—x:T |g {}
'x:T{ =1t : Ty |[x C
(CT-ABS)

[ Ax:Ty1.t> : T1—=T> [x C



constraint-based typing: equations Tt : T |x C

't 1 Ty |}{1 Cq
't : Ty |x, '—t3:T3 |x; C3
X1, X2, X3 nonoverlapping
(N CGu(Cru(C3 U {Tl = BOO],TQ = Tg}
'—1if t; thent2elset3 : T2 |x,ux,ux; C
(CT-IF)




constraint-based typing: equations Tt : T |x C

'ty i1 T, |}{1C1 | I o B |x2 (>
X1NXo=X1NFVT2) = XoNnFV(T1) =0
Ll'f X1, Xo, Ty, To, Gy, (o, T, £, Or t>
(i — CiuUCruU{T; =Tr—X}
=1t t2 1 X [xyuxuixy €
N (CT-App)




constraint-based typing

Problem:
Given (I, t) find solution (o, T).

Basic approach:

1. transform problem I |t : T into set of equations (aka constraints)

I't:T |[x C

2. compute the solutions for the equations

o = unify(C)



Constraint-based typing: unification

Recall: a substitution is a mapping from type variables to types.

Definition: A substitution o unifies a set of equations “S, = T,” iff oS, = oT, for all i.

Problem: Given a set of equations C, find o that unifies C.

Subproblem: There might be more than one.



Constraint-based typing: unification

unify(C) = if C =@, then [ ]
elselet {S=T}uC' =Cin
ifS=T
then unify(C’)
elseif S =X and X ¢ FV(T)
then unify([X — T]C") o [X — T]
elseif T=X and X ¢ FV(S)
then unify([X — S]C’) o [X — S]
elseif S=S;1—-S, and T=T;-T>
then unify(C’ U {S; =Ty, S» = T»})

se
fail

Figure 22-2: Unificationalgorithm



recap

type checking type reconstruction
Given I, t, and T, check whether Given I', and t, find T such that
[—t:T

[t T E> [t :T |x C E> o = unify(C)

(0, 0T)



two problems, two solutions

22.2.1 DEFINITION: Let I be a context and t a term. A solution for (I',t) is a pair
(0,T) suchthatoT' ot : T. O

't :T E> 't :T |[x C E> o = unify(C)

22.3.4  DEFINITION: Suppose thatI' - t : S | C. A solution for (I',t,S, C) is a pair
(o, T) such that o satisfies C and oS =T. O



soundness and completeness

Soundness: If (o, oT) is a solution for (', t, T, C), then it is also a solution
for (I, t).

(Theorem 22.3.5, p.323)

Completeness: If (o, T) is a solution for (I, t), then there is a solution (¢, ¢'S)
for (', t, S, C) such that T = 0'S and 6 = 0’| 4om(q).

(Theorem 22.3.7, p. 324)



principal unifier

preorder substitutions based on their 'specificity":

o <0o'iff existsysuchthat y°o=o0"

principal unifier for C:
some o such that
1. o satisfies C and
2. for all ¢’ satisfying C, o0 < ¢'

unification theorem: (22.4.5, p.328)
1. unify(C) halts for all C
2. it only fails if there is no unifier for C
3. 0 = unify(C) implies o is a unifier for C
4. unify(C) is a principal unifier for C



principal types

principal solution, principal type:
A solution (o, T) of (I', t, S, C) is a principal solution iff for all other solutions

(o', T) it is the case that o < 0'. T is then the principal type of t under I'.

(Def 22.5.1)

principal type theorem:
If (I, t, S, C) has a solution, it has a principal solution, and it's the one found by

unify(C).

(Theorem 22.5.3)



implicit type annotations

X¢E X [x: Xt :T |[x C
' Ax.ty @ X=T |xupy C

(CT-ABSINF)



an odd case

(AX:A. XX)(AX:B. xx)
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