Type Systems

07 - Type Reconstruction

Jorn W. Janneck

Computer Science Dept.
Lund University

Slides begged, borrowed, and copied from the Type Systems course at EPFL.
Courtesy of Martin Odersky.
Some material also lifted from TAPL by Benjamin C. Pierce.

Type Reconstruction

Type Checking and Type Reconstruction

We now come to the question of type checking and type

reconstruction.
Type checking: Given I', £ and T, check whether I' = ¢: 7T

Type reconstruction: Given I' and ¢, find a type T such that
' =¢:7T

Type checking and reconstruction seem difficult since parameters in

lambda calculus do not carry their types with them.

Type reconstruction also suffers from the problem that a term can

have many types.

Idea: : We construct all type derivations in parallel, reducing type

reconstruction to a unification problem.

substitutions

Substitution: mapping o from type variables to types
eg. {T : Nat, U : X —> Nat, V : Bool — Bool}

extends naturally to mappings on

T if X~T)eo
types: 7l B { X if X is not in the domain of o
o (Nat) = Nat
o (Bool) = Bool
U(T1—>T2) = O'T1 —*O'Tz
contexts: OX1:T1,...,Xn:Ty) = (X1:0Tq,...,Xpn:0Ty).

type equations: o(S==T) = o(S) ==0o(T)

22.1.2 THEOREM [PRESERVATION OF TYPING UNDER TYPE SUBSTITUTION]: If o is any
type substitutionandI' =t : T, then o'+~ ot : oT. O

solutions

22.2.1 DEFINITION: Let I' be a context and t a term. A solution for (I',t) is a pair
(o0,T) such thatol'+ ot : T. O

How do we find a solution (or all solutions) for some (I, t)?

constraint-based typing

Problem:
Given (I, t) find solution (o, T).

Basic approach:

1. transform problem I |t : T into set of equations (aka constraints)

I't:T |[x C

2. compute the solutions for the equations

constraint-based typing: equations

[t :T |x C

x:Tel (CT-VAR)
-VAR
T-x:T |lg {}
[x:Ti -t =T |x C
B] (CT-ABS)

I'Ax:T1.t2 : TH—=T2 |x C
I'—t; 1 T |x1C1 't i1 T» |x2 C2
XiNXo=X1nFV(Tr)=XoNFV(T;) =0
Xé& Xy, Xo, Ty, To, C1, Co, T, £y, O1 T2
C'=CuCuUi{T, =Tr—X}
-ttt X Ixuxux C

(CT-AprP)
I'—0:Nat | {} (CT-ZERO)
't :T |x C
C'=CuU{T = Nat}
(CT-Succ)

[+ succ t; : Nat |x C’

't :T |x C
C' = Cu{T = Nat}
I'—predt; : Nat |[x C’

't :T |x C
C' = CuU{T = Nat}

(CT-PRED)

(CT-ISZERO)

I'—1iszero t; : Bool |x ('
'+~ true : Bool |g {} (CT-TRUE)
I false : Bool |z {} (CT-FALSE)

't :T1 Ix, Gh
't T2 |x, C F'Ft3:T3 |x; C3
X1, X2, X3 nonoverlapping
(- O N esme R N {Tl = BOO],TQ = Tj;}

I'—1ift; thentyelset3 : T2 |x,uxoux; C

(CT-IF)

Figure 22-1: Constraint typing rules

constraint-based typing: equations Tt : T |x C

[— true : Bool |z {} (CT-TRUE)

[- false : Bool |g {} (CT-FALSE)

[0 :Nat |g {} (CT-ZERO)

constraint-based typing: equations Tt : T |x C

't o T |xC
C'=Cu{T = Nat}

, (CT-Succ)
[~ succ t; : Nat |x C
'ty : T |[x C
C' = Cu{T = Nat}
(CT-PRED)

[—predt; : Nat |y C’

'ty :T |[x C
C' = C uU{T = Nat}

[—1iszero t; : Bool |y C’

(CT-ISZERO)

constraint-based typing: equations Tt : T |x C

x:T el (CT-VAR)
-VAR
'—x:T |g {}
'x:T{ =1t : Ty |[x C
(CT-ABS)

[Ax:Ty1.t> : T1—=T> [x C

constraint-based typing: equations Tt : T |x C

't 1 Ty |}{1 Cq
't : Ty |x, '—t3:T3 |x; C3
X1, X2, X3 nonoverlapping
(N CGu(Cru(C3 U {Tl = BOO],TQ = Tg}
'—1if t; thent2elset3 : T2 |x,ux,ux; C
(CT-IF)

constraint-based typing: equations Tt : T |x C

'ty i1 T, |}{1C1 | I o B |x2 (>
X1NXo=X1NFVT2) = XoNnFV(T1) =0
Ll'f X1, Xo, Ty, To, Gy, (o, T, £, Or t>
(i — CiuUCruU{T; =Tr—X}
=1t t2 1 X [xyuxuixy €
N (CT-App)

constraint-based typing

Problem:
Given (I, t) find solution (o, T).

Basic approach:

1. transform problem I |t : T into set of equations (aka constraints)

I't:T |[x C

2. compute the solutions for the equations

o = unify(C)

Constraint-based typing: unification

Recall: a substitution is a mapping from type variables to types.

Definition: A substitution o unifies a set of equations “S, = T,” iff oS, = oT, for all i.

Problem: Given a set of equations C, find o that unifies C.

Subproblem: There might be more than one.

Constraint-based typing: unification

unify(C) = if C =@, then []
elselet {S=T}uC' =Cin
ifS=T
then unify(C’)
elseif S =X and X ¢ FV(T)
then unify([X — T]C") o [X — T]
elseif T=X and X ¢ FV(S)
then unify([X — S]C’) o [X — S]
elseif S=S;1—-S, and T=T;-T>
then unify(C’ U {S; =Ty, S» = T»})

se
fail

Figure 22-2: Unificationalgorithm

recap

type checking type reconstruction
Given I, t, and T, check whether Given I', and t, find T such that
[—t:T

[t T E> [t :T |x C E> o = unify(C)

(0, 0T)

two problems, two solutions

22.2.1 DEFINITION: Let I be a context and t a term. A solution for (I',t) is a pair
(0,T) suchthatoT' ot : T. O

't :T E> 't :T |[x C E> o = unify(C)

22.3.4 DEFINITION: Suppose thatI' - t : S | C. A solution for (I',t,S, C) is a pair
(o, T) such that o satisfies C and oS =T. O

soundness and completeness

Soundness: If (o, oT) is a solution for (', t, T, C), then it is also a solution
for (I, t).

(Theorem 22.3.5, p.323)

Completeness: If (o, T) is a solution for (I, t), then there is a solution (¢, ¢'S)
for (', t, S, C) such that T = 0'S and 6 = 0’| 4om(q).

(Theorem 22.3.7, p. 324)

principal unifier

preorder substitutions based on their 'specificity":

o <0o'iff existsysuchthat y°o=o0"

principal unifier for C:
some o such that
1. o satisfies C and
2. for all ¢’ satisfying C, o0 < ¢'

unification theorem: (22.4.5, p.328)
1. unify(C) halts for all C
2. it only fails if there is no unifier for C
3. 0 = unify(C) implies o is a unifier for C
4. unify(C) is a principal unifier for C

principal types

principal solution, principal type:
A solution (o, T) of (I', t, S, C) is a principal solution iff for all other solutions

(o', T) it is the case that o < 0'. T is then the principal type of t under I'.

(Def 22.5.1)

principal type theorem:
If (I, t, S, C) has a solution, it has a principal solution, and it's the one found by

unify(C).

(Theorem 22.5.3)

implicit type annotations

X¢E X [x: Xt :T |[x C
' Ax.ty @ X=T |xupy C

(CT-ABSINF)

an odd case

(AX:A. XX)(AX:B. xx)

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

