
Type Systems
07 – Type Reconstruction

Jörn W. Janneck

Computer Science Dept.

Lund University

2

Slides begged, borrowed, and copied from the Type Systems course at EPFL.
Courtesy of Martin Odersky.
Some material also lifted from TAPL by Benjamin C. Pierce.

3

Type Reconstruction

4

5

substitutions

Substitution: mapping σ from type variables to types
eg. {T  Nat, U : X Nat, V : Bool  Bool}

extends naturally to mappings on

types:

contexts:

type equations: σ(S == T) = σ(S) == σ(T)

6

solutions

How do we find a solution (or all solutions) for some (Г, t)?

7

constraint-based typing

Problem:
Given (Г, t) find solution (σ, T).

Basic approach:

1. transform problem Г ├ t : T into set of equations (aka constraints)

2. compute the solutions for the equations

8

constraint-based typing: equations

9

constraint-based typing: equations

10

constraint-based typing: equations

11

constraint-based typing: equations

12

constraint-based typing: equations

13

constraint-based typing: equations

14

constraint-based typing

Problem:
Given (Г, t) find solution (σ, T).

Basic approach:

1. transform problem Г ├ t : T into set of equations (aka constraints)

2. compute the solutions for the equations

σ = unify(C)

15

Constraint-based typing: unification

Recall: a substitution is a mapping from type variables to types.

Definition: A substitution σ unifies a set of equations “Si = Ti” iff σSi = σTi for all i.

Problem: Given a set of equations C, find σ that unifies C.

Subproblem: There might be more than one.

16

Constraint-based typing: unification

17

recap

type checking
Given Г, t, and T, check whether

type reconstruction
Given Г, and t, find T such that

σ = unify(C)

(σ, σT)

18

two problems, two solutions

σ = unify(C)

19

soundness and completeness

Soundness: If (σ, σT) is a solution for (Г, t, T, C), then it is also a solution
for (Г, t).

(Theorem 22.3.5, p.323)

Completeness: If (σ, T) is a solution for (Г, t), then there is a solution (σ', σ'S)
for (Г, t, S, C) such that T = σ'S and σ = σ'|dom(σ).

(Theorem 22.3.7, p. 324)

20

principal unifier

preorder substitutions based on their 'specificity':

σ ≤ σ' iff exists γ such that γ  σ = σ'

principal unifier for C:
some σ such that
1. σ satisfies C and
2. for all σ' satisfying C, σ ≤ σ'

unification theorem: (22.4.5, p.328)
1. unify(C) halts for all C
2. it only fails if there is no unifier for C
3. σ = unify(C) implies σ is a unifier for C
4. unify(C) is a principal unifier for C

21

principal types

principal solution, principal type:
A solution (σ, T) of (Г, t, S, C) is a principal solution iff for all other solutions
(σ', T) it is the case that σ ≤ σ'. T is then the principal type of t under Г.

(Def 22.5.1)

principal type theorem:
If (Г, t, S, C) has a solution, it has a principal solution, and it's the one found by
unify(C).

(Theorem 22.5.3)

22

implicit type annotations

23

(λx:A. xx)(λx:B. xx)

an odd case

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

