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Slides begged, borrowed, and copied from the Type Systems course at EPFL.
Courtesy of Martin Odersky.
Some material also lifted from TAPL by Benjamin C. Pierce.
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Type Reconstruction
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substitutions

Substitution: mapping σ from type variables to types
eg. {T  Nat, U : X Nat, V : Bool  Bool}

extends naturally to mappings on

types:  

contexts:

type equations:        σ(S == T)  =  σ(S) == σ(T)
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solutions

How do we find a solution (or all solutions) for some (Г, t)? 
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constraint-based typing

Problem:
Given (Г, t) find solution (σ, T). 

Basic approach:

1. transform problem Г ├ t : T into set of equations (aka constraints)

 

2. compute the solutions for the equations
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constraint-based typing: equations
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constraint-based typing: equations
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constraint-based typing: equations
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constraint-based typing: equations
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constraint-based typing: equations
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constraint-based typing: equations
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constraint-based typing

Problem:
Given (Г, t) find solution (σ, T). 

Basic approach:

1. transform problem Г ├ t : T into set of equations (aka constraints)

 

2. compute the solutions for the equations

σ = unify(C)
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Constraint-based typing: unification

Recall: a substitution is a mapping from type variables to types.

Definition: A substitution σ unifies a set of equations “Si = Ti” iff  σSi = σTi for all i.

Problem: Given a set of equations C, find σ that unifies C.

Subproblem: There might be more than one.
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Constraint-based typing: unification
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recap

type checking
Given Г, t, and T, check whether  

type reconstruction
Given Г, and t, find T such that 

σ = unify(C)

(σ, σT) 
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two problems, two solutions

σ = unify(C)
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soundness and completeness

Soundness: If (σ, σT) is a solution for (Г, t, T, C), then it is also a solution 
for (Г, t).

(Theorem 22.3.5, p.323)

Completeness: If (σ, T) is a solution for (Г, t), then there is a solution (σ', σ'S)
for (Г, t, S, C) such that T = σ'S and σ = σ'|dom(σ).

(Theorem 22.3.7, p. 324)
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principal unifier

preorder substitutions based on their 'specificity':

σ ≤ σ' iff   exists γ such that  γ  σ = σ'

principal unifier for C:
some σ such that 
1. σ satisfies C and
2. for all σ' satisfying C, σ ≤ σ'

unification theorem: (22.4.5, p.328) 
1. unify(C) halts for all C
2. it only fails if there is no unifier for C
3. σ = unify(C) implies σ is a unifier for C
4. unify(C) is a principal unifier for C 
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principal types

principal solution, principal type: 
A solution (σ, T) of (Г, t, S, C) is a principal solution iff for all other solutions 
(σ', T) it is the case that σ ≤ σ'. T is then the principal type of t under Г.

(Def 22.5.1)

principal type theorem: 
If (Г, t, S, C) has a solution, it has a principal solution, and it's the one found by 
unify(C).

(Theorem 22.5.3)
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implicit type annotations
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(λx:A. xx)(λx:B. xx)

an odd case
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