Type Systems 07 - Type Reconstruction

Jörn W. Janneck

Computer Science Dept.

Lund University

Type Reconstruction

Type Checking and Type Reconstruction

We now come to the question of type checking and type reconstruction.

```
Type checking: Given \Gamma, t and T, check whether \Gamma \vdash t : T

Type reconstruction: Given \Gamma and t, find a type T such that \Gamma \vdash t : T
```

Type checking and reconstruction seem difficult since parameters in lambda calculus do not carry their types with them.

Type reconstruction also suffers from the problem that a term can have many types.

Idea: : We construct all type derivations in parallel, reducing type reconstruction to a unification problem.

substitutions

Substitution: mapping σ from type variables to types

eg. $\{T : Nat, U : X \rightarrow Nat, V : Bool \rightarrow Bool\}$

extends naturally to mappings on

types:
$$\sigma(X) = \begin{cases} T & \text{if } (X \mapsto T) \in \sigma \\ X & \text{if } X \text{ is not in the domain of } \sigma \end{cases}$$
$$\sigma(\text{Nat}) = \text{Nat}$$
$$\sigma(\text{Bool}) = \text{Bool}$$
$$\sigma(T = T) = \sigma(T = \sigma(T))$$

$$\sigma(\mathsf{T}_1 \!\to\! \mathsf{T}_2) \quad = \quad \sigma\mathsf{T}_1 \to \sigma\mathsf{T}_2$$

contexts:
$$\sigma(x_1:T_1,\ldots,x_n:T_n)=(x_1:\sigma T_1,\ldots,x_n:\sigma T_n).$$

type equations:
$$\sigma(S == T) = \sigma(S) == \sigma(T)$$

22.1.2 Theorem [Preservation of typing under type substitution]: If σ is any type substitution and $\Gamma \vdash t : T$, then $\sigma\Gamma \vdash \sigma t : \sigma T$.

solutions

22.2.1 DEFINITION: Let Γ be a context and t a term. A *solution* for (Γ, t) is a pair (σ, T) such that $\sigma\Gamma \vdash \sigma t : T$.

How do we find a solution (or all solutions) for some (Γ, t) ?

constraint-based typing

Problem:

Given (Γ, t) find solution (σ, T) .

Basic approach:

1. transform problem $\Gamma \mid t$: T into set of equations (aka constraints)

$$\Gamma \vdash \mathsf{t} : \mathsf{T} \mid_{\mathcal{X}} C$$

2. compute the solutions for the equations

constraint-based typing: equations

$$\Gamma \vdash \mathsf{t} : \mathsf{T} \mid_{\mathcal{X}} C$$

$$\frac{x: T \in \Gamma}{\Gamma \vdash x: T \mid_{\varnothing} \{\}} \qquad (CT-VAR)$$

$$\frac{\Gamma, x: T_1 \vdash t_2 : T_2 \mid_{X} C}{\Gamma \vdash \lambda x: T_1 \vdash t_2 : T_2 \mid_{X} C} \qquad (CT-ABS)$$

$$\frac{\Gamma \vdash t_1 : T_1 \mid_{X_1} C_1 \qquad \Gamma \vdash t_2 : T_2 \mid_{X_2} C_2}{\Gamma \vdash t_1 : T_1 \mid_{X_1} C_1 \qquad \Gamma \vdash t_2 : T_2 \mid_{X_2} C_2}$$

$$\frac{X_1 \cap X_2 = X_1 \cap FV(T_2) = X_2 \cap FV(T_1) = \varnothing}{X \notin X_1, X_2, T_1, T_2, C_1, C_2, \Gamma, t_1, \text{ or } t_2}$$

$$\frac{C' = C_1 \cup C_2 \cup \{T_1 = T_2 \rightarrow X\}}{\Gamma \vdash t_1 : t_2 : X \mid_{X_1 \cup X_2 \cup \{X\}} C'}$$

$$\Gamma \vdash t_1 : T_1 \mid_{X_1} C_1$$

$$\Gamma \vdash t_2 : T_2 \mid_{X_2} C_2 \qquad \Gamma \vdash t_3 : T_3 \mid_{X_3} C_3$$

$$X_1, X_2, X_3 \text{ nonoverlapping}$$

$$\Gamma \vdash t_1 : T \mid_{X} C$$

$$C' = C \cup \{T = \text{Nat}\}$$

$$\Gamma \vdash t_2 : T_2 \mid_{X_2} C_2 \qquad \Gamma \vdash t_3 : T_3 \mid_{X_3} C_3$$

$$X_1, X_2, X_3 \text{ nonoverlapping}$$

$$C' = C_1 \cup C_2 \cup C_3 \cup \{T_1 = \text{Bool}, T_2 = T_3\}$$

$$\Gamma \vdash \text{ if } t_1 \text{ then } t_2 \text{ else } t_3 : T_2 \mid_{X_1 \cup X_2 \cup X_3} C'$$

$$\Gamma \vdash \text{ if } t_1 \text{ then } t_2 \text{ else } t_3 : T_2 \mid_{X_1 \cup X_2 \cup X_3} C'$$

$$\Gamma \vdash \text{ if } t_1 \text{ then } t_2 \text{ else } t_3 : T_2 \mid_{X_1 \cup X_2 \cup X_3} C'$$

Figure 22-1: Constraint typing rules

 $\Gamma \vdash \mathsf{true} : \mathsf{Bool} \mid_{\varnothing} \{\}$

(CT-True)

 $\Gamma \vdash \mathsf{false} : \mathsf{Bool} \mid_{\varnothing} \{\}$

(CT-FALSE)

 $\Gamma \vdash 0 : Nat \mid_{\varnothing} \{\}$

(CT-ZERO)

$$\frac{\Gamma \vdash \mathsf{t}_1 : \mathsf{T} \mid_{\mathcal{X}} C}{C' = C \cup \{\mathsf{T} = \mathsf{Nat}\}}$$

$$\frac{C \vdash \mathsf{succ} \; \mathsf{t}_1 : \mathsf{Nat} \mid_{\mathcal{X}} C'}{\Gamma \vdash \mathsf{succ} \; \mathsf{t}_1 : \mathsf{Nat} \mid_{\mathcal{X}} C'}$$
(CT-Succ)

$$\frac{\Gamma \vdash \mathsf{t}_1 : \mathsf{T} \mid_{\mathcal{X}} C}{C' = C \cup \{\mathsf{T} = \mathsf{Nat}\}}$$

$$\frac{C' = \mathsf{C} \cup \{\mathsf{T} = \mathsf{Nat}\}}{\Gamma \vdash \mathsf{pred} \; \mathsf{t}_1 : \mathsf{Nat} \mid_{\mathcal{X}} C'}$$
 (CT-PRED)

$$\frac{\Gamma \vdash \mathsf{t}_1 : \mathsf{T} \mid_{\mathcal{X}} C}{C' = C \cup \{\mathsf{T} = \mathsf{Nat}\}}$$

$$\frac{C' = \mathsf{C} \cup \{\mathsf{T} = \mathsf{Nat}\}}{\Gamma \vdash \mathsf{iszero} \; \mathsf{t}_1 : \mathsf{Bool} \mid_{\mathcal{X}} C'} \; (\mathsf{CT}\text{-}\mathsf{IsZero})$$

$$\Gamma \vdash \mathsf{t} : \mathsf{T} \mid_{\mathcal{X}} C$$

$$x:T \in \Gamma$$

$$\Gamma \vdash x:T \mid_{\emptyset} \{\}$$

(CT-VAR)

$$\frac{\Gamma, x: T_1 \vdash t_2 : T_2 \mid_{\mathcal{X}} C}{\Gamma \vdash \lambda x: T_1 . t_2 : T_1 \rightarrow T_2 \mid_{\mathcal{X}} C}$$

(CT-ABS)

$$\Gamma \vdash \mathsf{t} : \mathsf{T} \mid_{\mathcal{X}} C$$

$$\Gamma \vdash \mathsf{t}_1 : \mathsf{T}_1 \mid_{\mathcal{X}_1} C_1$$
 $\Gamma \vdash \mathsf{t}_2 : \mathsf{T}_2 \mid_{\mathcal{X}_2} C_2 \quad \Gamma \vdash \mathsf{t}_3 : \mathsf{T}_3 \mid_{\mathcal{X}_3} C_3$
 $\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_3 \text{ nonoverlapping}$
 $C' = C_1 \cup C_2 \cup C_3 \cup \{\mathsf{T}_1 = \mathsf{Bool}, \mathsf{T}_2 = \mathsf{T}_3\}$

 $\Gamma \vdash \text{if } \mathsf{t}_1 \text{ then } \mathsf{t}_2 \text{ else } \mathsf{t}_3 : \mathsf{T}_2 \mid \chi_1 \cup \chi_2 \cup \chi_3 \in \mathcal{C}'$ (CT-IF)

$$\Gamma \vdash \mathsf{t}_1 : \mathsf{T}_1 \mid_{\mathcal{X}_1} C_1 \quad \Gamma \vdash \mathsf{t}_2 : \mathsf{T}_2 \mid_{\mathcal{X}_2} C_2$$
 $\mathcal{X}_1 \cap \mathcal{X}_2 = \mathcal{X}_1 \cap FV(\mathsf{T}_2) = \mathcal{X}_2 \cap FV(\mathsf{T}_1) = \emptyset$
 $X \notin \mathcal{X}_1, \, \mathcal{X}_2, \, \mathsf{T}_1, \, \mathsf{T}_2, \, C_1, \, C_2, \, \Gamma, \, \mathsf{t}_1, \, \mathsf{or} \, \mathsf{t}_2$
 $C' = C_1 \cup C_2 \cup \{\mathsf{T}_1 = \mathsf{T}_2 \rightarrow \mathsf{X}\}$

 $\Gamma \vdash \mathsf{t}_1 \; \mathsf{t}_2 \; : \mathsf{X} \mid \chi_1 \cup \chi_2 \cup \{\mathsf{X}\} \; C'$

(CT-APP)

constraint-based typing

Problem:

Given (Γ, t) find solution (σ, T) .

Basic approach:

1. transform problem $\Gamma \mid t : T$ into set of equations (aka constraints)

$$\Gamma \vdash \mathsf{t} : \mathsf{T} \mid_{\mathcal{X}} C$$

2. compute the solutions for the equations

$$\sigma = \text{unify}(C)$$

Constraint-based typing: unification

Recall: a substitution is a mapping from type variables to types.

Definition: A substitution σ unifies a set of equations " $S_i = T_i$ " iff $\sigma S_i = \sigma T_i$ for all i.

Problem: Given a set of equations C, find σ that unifies C.

Subproblem: There might be more than one.

Constraint-based typing: unification

```
unify(C) = \text{ if } C = \emptyset, \text{ then } [\ ]
\text{else let } \{S = T\} \cup C' = C \text{ in }
\text{ if } S = T
\text{ then } unify(C')
\text{else if } S = X \text{ and } X \notin FV(T)
\text{ then } unify([X \mapsto T]C') \circ [X \mapsto T]
\text{else if } T = X \text{ and } X \notin FV(S)
\text{ then } unify([X \mapsto S]C') \circ [X \mapsto S]
\text{else if } S = S_1 \rightarrow S_2 \text{ and } T = T_1 \rightarrow T_2
\text{ then } unify(C' \cup \{S_1 = T_1, S_2 = T_2\})
\text{else } fail
```

Figure 22-2: Unification algorithm

recap

type checking

Given Γ, t, and T, check whether

type reconstruction

Given Γ , and t, find T such that

$$\Gamma \vdash \mathsf{t} : \mathsf{T}$$

$$\Gamma \vdash \mathsf{t} : \mathsf{T} \qquad \qquad \Gamma \vdash \mathsf{t} : \mathsf{T} \mid_{\mathcal{X}} C \qquad \qquad \sigma = \mathsf{unify}(C)$$

$$(\sigma, \sigma\mathsf{T})$$

two problems, two solutions

22.2.1 Definition: Let Γ be a context and t a term. A *solution* for (Γ, t) is a pair (σ, T) such that $\sigma\Gamma \vdash \sigma t$: T.

$$\Gamma \vdash \mathsf{t} : \mathsf{T} \qquad \qquad \Gamma \vdash \mathsf{t} : \mathsf{T} \mid_{\mathcal{X}} C \qquad \qquad \sigma = \mathsf{unify}(C)$$

22.3.4 DEFINITION: Suppose that $\Gamma \vdash t : S \mid C$. A *solution* for (Γ, t, S, C) is a pair (σ, T) such that σ satisfies C and $\sigma S = T$.

soundness and completeness

Soundness: If $(\sigma, \sigma T)$ is a solution for (Γ, t, T, C) , then it is also a solution for (Γ, t) .

(Theorem 22.3.5, p.323)

Completeness: If (σ, T) is a solution for (Γ, t) , then there is a solution $(\sigma', \sigma'S)$ for (Γ, t, S, C) such that $T = \sigma'S$ and $\sigma = \sigma'|_{dom(\sigma)}$.

(Theorem 22.3.7, p. 324)

principal unifier

preorder substitutions based on their 'specificity':

 $\sigma \le \sigma'$ iff exists γ such that $\gamma \circ \sigma = \sigma'$

principal unifier for C:

some σ such that

- 1. σ satisfies C and
- 2. for all σ' satisfying C, $\sigma \leq \sigma'$

unification theorem: (22.4.5, p.328)

- 1. unify(C) halts for all C
- 2. it only fails if there is no unifier for C
- 3. σ = unify(C) implies σ is a unifier for C
- 4. unify(C) is a principal unifier for C

principal types

principal solution, principal type:

A solution (σ, T) of (Γ, t, S, C) is a *principal solution* iff for all other solutions (σ', T) it is the case that $\sigma \le \sigma'$. T is then the *principal type* of t under Γ .

(Def 22.5.1)

principal type theorem:

If (Γ, t, S, C) has a solution, it has a principal solution, and it's the one found by unify(C).

(Theorem 22.5.3)

implicit type annotations

$$\frac{\mathsf{X} \notin \mathcal{X} \qquad \Gamma, \, \mathsf{x} \colon \mathsf{X} \vdash \mathsf{t}_1 \, \colon \mathsf{T} \quad |_{\mathcal{X}} \, C}{\Gamma \vdash \lambda \mathsf{x} \colon \mathsf{t}_1 \, \colon \mathsf{X} \to \mathsf{T} \quad |_{\mathcal{X} \cup \{\mathsf{X}\}} \, C}$$

(CT-ABSINF)

an odd case

 $(\lambda x:A. xx)(\lambda x:B. xx)$