
Type%Systems%%
Seminar%6%
Mehmet%Ali%Arslan%%

%
Slides%mostly%“borrowed”%from%Mar:n%Odersky%

Plan

PREVIOUSLY: unit, sequencing, let, pairs, sums

TODAY:

1. recursion

2. state

3. ???

NEXT: exceptions?
NEXT: polymorphic (not so simple) typing

Recursion

Recursion%in%untyped%%%%@calculus%%

! %We%apply%a%fixed%point+combinator+to%a%generator+
func:on%

! %%

�

fix = �f. (�x. f (�y. x x y)) (�x. f (�y. x x y))

Example%@%Factorial%

!  !

!  !
! %whiteboard…!

g = �fct. (�n. if realeq n c0 then c1

else (times n(fct (prd (prd n)));

factorial = fix g;

Recursion%in%STLC%

! %%the%term%%%%%%%%%%%%%%%%%%in%fix+can%not%be%typed%in%STLC%
! %so%we%add%it%as%a%primi:ve%

fix = �f. (�x. f (�y. x x y)) (�x. f (�y. x x y))

Example

ff = �ie:Nat!Bool.

�x:Nat.
if iszero x then true

else if iszero (pred x) then false

else ie (pred (pred x));

iseven = fix ff;

iseven 7;

New syntactic forms

t ::= ... terms

fix t fixed point of t

New evaluation rules t �! t0

fix (�x:T1.t2)
�! [x 7! (fix (�x:T1.t2))]t2

(E-FixBeta)

t1 �! t01
fix t1 �! fix t01

(E-Fix)

New typing rules � ` t : T

� ` t1 : T1!T1

� ` fix t1 : T1
(T-Fix)

A more convenient form

letrec x:T1=t1 in t2
def
= let x = fix (�x:T1.t1) in t2

letrec iseven : Nat!Bool =

�x:Nat.
if iszero x then true

else if iszero (pred x) then false

else iseven (pred (pred x))

in

iseven 7;

References

Mutability

I In most programming languages, variables are mutable — i.e.,
a variable provides both

I a name that refers to a previously calculated value, and
I the possibility of overwriting this value with another (which

will be referred to by the same name)

I In some languages (e.g., OCaml), these features are separate:
I variables are only for naming — the binding between a variable

and its value is immutable
I introduce a new class of mutable values (called reference cells

or references)
I at any given moment, a reference holds a value (and can be

dereferenced to obtain this value)
I a new value may be assigned to a reference

We choose OCaml’s style, which is easier to work with formally.

So a variable of type T in most languages (except OCaml) will
correspond to a Ref T (actually, a Ref(Option T)) here.

Basic Examples

r = ref 5

!r

r := 7

(r:=succ(!r); !r)

(r:=succ(!r); r:=succ(!r); r:=succ(!r);

r:=succ(!r); !r)

i.e.,

((((r:=succ(!r); r:=succ(!r)); r:=succ(!r));

r:=succ(!r)); !r)

Basic Examples

r = ref 5

!r

r := 7

(r:=succ(!r); !r)

(r:=succ(!r); r:=succ(!r); r:=succ(!r);

r:=succ(!r); !r)

i.e.,

((((r:=succ(!r); r:=succ(!r)); r:=succ(!r));

r:=succ(!r)); !r)

Aliasing

A value of type Ref T is a pointer to a cell holding a value of type
T.

r =

5

If this value is “copied” by assigning it to another variable, the cell
pointed to is not copied.

r =

5

s =

So we can change r by assigning to s:

(s:=6; !r)

Aliasing all around us

Reference cells are not the only language feature that introduces
the possibility of aliasing.

I object references

I explicit pointers in C

I arrays

I communication channels

I I/O devices (disks, etc.)

Example

c = ref 0

incc = �x:Unit. (c := succ (!c); !c)

decc = �x:Unit. (c := pred (!c); !c)

incc unit

decc unit

o = {i = incc, d = decc}

Syntax

t ::= terms

unit unit constant

x variable

�x:T.t abstraction

t t application

ref t reference creation

!t dereference

t:=t assignment

... plus other familiar types, in examples.

Typing Rules

� ` t1 : T1

� ` ref t1 : Ref T1
(T-Ref)

� ` t1 : Ref T1

� ` !t1 : T1
(T-Deref)

� ` t1 : Ref T1 � ` t2 : T1

� ` t1:=t2 : Unit
(T-Assign)

Final example

NatArray = Ref (Nat!Nat);

newarray = �_:Unit. ref (�n:Nat.0);
: Unit ! NatArray

lookup = �a:NatArray. �n:Nat. (!a) n;

: NatArray ! Nat ! Nat

update = �a:NatArray. �m:Nat. �v:Nat.
let oldf = !a in

a := (�n:Nat. if equal m n then v else oldf n);

: NatArray ! Nat ! Nat ! Unit

Evaluation

What is the value of the expression ref 0?

Crucial observation: evaluating ref 0 must do something.
Otherwise,

r = ref 0

s = ref 0

and

r = ref 0

s = r

would behave the same.
Specifically, evaluating ref 0 should allocate some storage and
yield a reference (or pointer) to that storage.
So what is a reference?

Evaluation

What is the value of the expression ref 0?
Crucial observation: evaluating ref 0 must do something.
Otherwise,

r = ref 0

s = ref 0

and

r = ref 0

s = r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and
yield a reference (or pointer) to that storage.
So what is a reference?

Evaluation

What is the value of the expression ref 0?
Crucial observation: evaluating ref 0 must do something.
Otherwise,

r = ref 0

s = ref 0

and

r = ref 0

s = r

would behave the same.
Specifically, evaluating ref 0 should allocate some storage and
yield a reference (or pointer) to that storage.

So what is a reference?

Evaluation

What is the value of the expression ref 0?
Crucial observation: evaluating ref 0 must do something.
Otherwise,

r = ref 0

s = ref 0

and

r = ref 0

s = r

would behave the same.
Specifically, evaluating ref 0 should allocate some storage and
yield a reference (or pointer) to that storage.
So what is a reference?

The Store

A reference names a location in the store (also known as the heap

or just the memory).

What is the store?

I
Concretely: An array of 8-bit bytes, indexed by 32-bit
integers.

I
More abstractly: an array of values

I
Even more abstractly: a partial function from locations to
values.

The Store

A reference names a location in the store (also known as the heap

or just the memory).

What is the store?

I
Concretely: An array of 8-bit bytes, indexed by 32-bit
integers.

I
More abstractly: an array of values

I
Even more abstractly: a partial function from locations to
values.

The Store

A reference names a location in the store (also known as the heap

or just the memory).

What is the store?

I
Concretely: An array of 8-bit bytes, indexed by 32-bit
integers.

I
More abstractly: an array of values

I
Even more abstractly: a partial function from locations to
values.

The Store

A reference names a location in the store (also known as the heap

or just the memory).

What is the store?

I
Concretely: An array of 8-bit bytes, indexed by 32-bit
integers.

I
More abstractly: an array of values

I
Even more abstractly: a partial function from locations to
values.

Locations

Syntax of values:

v ::= values

unit unit constant

�x:T.t abstraction value

l store location

... and since all values are terms...

Syntax of Terms

t ::= terms

unit unit constant

x variable

�x:T.t abstraction

t t application

ref t reference creation

!t dereference

t:=t assignment

l store location

Aside

Does this mean we are going to allow programmers to write
explicit locations in their programs??

No: This is just a modeling trick. We are enriching the “source
language” to include some run-time structures, so that we can
continue to formalize evaluation as a relation between source
terms.

Aside: If we formalize evaluation in the big-step style, then we can
add locations to the set of values (results of evaluation) without
adding them to the set of terms.

Evaluation

The result of evaluating a term now depends on the store in which
it is evaluated. Moreover, the result of evaluating a term is not
just a value — we must also keep track of the changes that get
made to the store.
I.e., the evaluation relation should now map a term and a store to
a reduced term and a new store.

t| µ �! t0| µ0

We use the metavariable µ to range over stores.

Evaluation

An assignment t1:=t2 first evaluates t1 and t2 until they become
values...

t1 | µ �! t01 | µ0

t1:=t2 | µ �! t01:=t2 | µ0 (E-Assign1)

t2 | µ �! t02 | µ0

v1:=t2 | µ �! v1:=t
0
2 | µ0 (E-Assign2)

... and then returns unit and updates the store:

l:=v2 | µ �! unit | [l 7! v2]µ (E-Assign)

A term of the form ref t1 first evaluates inside t1 until it
becomes a value...

t1 | µ �! t01 | µ0

ref t1 | µ �! ref t01 | µ0 (E-Ref)

... and then chooses (allocates) a fresh location l , augments the
store with a binding from l to v1, and returns l :

l /2 dom(µ)

ref v1 | µ �! l | (µ, l 7! v1)
(E-RefV)

A term !t1 first evaluates in t1 until it becomes a value...

t1 | µ �! t01 | µ0

!t1 | µ �! !t01 | µ0 (E-Deref)

... and then looks up this value (which must be a location, if the
original term was well typed) and returns its contents in the
current store:

µ(l) = v

!l | µ �! v | µ
(E-DerefLoc)

Evaluation rules for function abstraction and application are
augmented with stores, but don’t do anything with them directly.

t1| µ �! t01| µ0

t1 t2| µ �! t01 t2| µ0 (E-App1)

t2| µ �! t02| µ0

v1 t2| µ �! v1 t02| µ0 (E-App2)

(�x:T11.t12) v2| µ �! [x 7! v2]t12| µ (E-AppAbs)

Aside: garbage collection

Note that we are not modeling garbage collection — the store just
grows without bound.

Aside: pointer arithmetic

We can’t do any!

Store Typings

Typing Locations

Q: What is the type of a location?

A: It depends on the store!

E.g., in the store (l1 7! unit, l2 7! unit), the term !l2 has type
Unit.

But in the store (l1 7! unit, l2 7! �x:Unit.x), the term !l2 has
type Unit!Unit.

Typing Locations

Q: What is the type of a location?

A: It depends on the store!

E.g., in the store (l1 7! unit, l2 7! unit), the term !l2 has type
Unit.

But in the store (l1 7! unit, l2 7! �x:Unit.x), the term !l2 has
type Unit!Unit.

Typing Locations — first try

Roughly:

� ` µ(l) : T1

� ` l : Ref T1

More precisely:

� | µ ` µ(l) : T1

� | µ ` l : Ref T1

I.e., typing is now a four-place relation (between contexts, stores,
terms, and types).

Typing Locations — first try

Roughly:

� ` µ(l) : T1

� ` l : Ref T1

More precisely:

� | µ ` µ(l) : T1

� | µ ` l : Ref T1

I.e., typing is now a four-place relation (between contexts, stores,
terms, and types).

Problem

However, this rule is not completely satisfactory. For one thing, it
can make typing derivations very large!

E.g., if
(µ = l1 7! �x:Nat. 999,

l2 7! �x:Nat. !l1 (!l1 x),
l3 7! �x:Nat. !l2 (!l2 x),
l4 7! �x:Nat. !l3 (!l3 x),
l5 7! �x:Nat. !l4 (!l4 x)),

then how big is the typing derivation for !l5?

Problem!

But wait... it gets worse. Suppose

(µ = l1 7! �x:Nat. !l2 x,
l2 7! �x:Nat. !l1 x),

Now how big is the typing derivation for !l2?

Store Typings

Observation: The typing rules we have chosen for references
guarantee that a given location in the store is always used to hold
values of the same type.

These intended types can be collected into a store typing — a
partial function from locations to types.

E.g., for
µ = (l1 7! �x:Nat. 999,

l2 7! �x:Nat. !l1 (!l1 x),
l3 7! �x:Nat. !l2 (!l2 x),
l4 7! �x:Nat. !l3 (!l3 x),
l5 7! �x:Nat. !l4 (!l4 x)),

A reasonable store typing would be

⌃ = (l1 7! Nat!Nat,
l2 7! Nat!Nat,
l3 7! Nat!Nat,
l4 7! Nat!Nat,
l5 7! Nat!Nat)

Now, suppose we are given a store typing ⌃ describing the store µ
in which we intend to evaluate some term t. Then we can use ⌃
to look up the types of locations in t instead of calculating them
from the values in µ.

⌃(l) = T1

� | ⌃ ` l : Ref T1
(T-Loc)

I.e., typing is now a four-place relation between between contexts,
store typings, terms, and types.

Final typing rules

⌃(l) = T1

� | ⌃ ` l : Ref T1
(T-Loc)

� | ⌃ ` t1 : T1

� | ⌃ ` ref t1 : Ref T1
(T-Ref)

� | ⌃ ` t1 : Ref T11

� | ⌃ ` !t1 : T11
(T-Deref)

� | ⌃ ` t1 : Ref T11 � | ⌃ ` t2 : T11

� | ⌃ ` t1:=t2 : Unit
(T-Assign)

Q: Where do these store typings come from?

A: When we first typecheck a program, there will be no explicit
locations, so we can use an empty store typing.

So, when a new location is created during evaluation,

l /2 dom(µ)

ref v1 | µ �! l | (µ, l 7! v1)
(E-RefV)

we can extend the “current store typing” with the type of v1.

Q: Where do these store typings come from?

A: When we first typecheck a program, there will be no explicit
locations, so we can use an empty store typing.

So, when a new location is created during evaluation,

l /2 dom(µ)

ref v1 | µ �! l | (µ, l 7! v1)
(E-RefV)

we can extend the “current store typing” with the type of v1.

Safety

Preservation

First attempt: just add stores and store typings in the appropriate
places.

Theorem (?): If � | ⌃ ` t : T and t | µ �! t0 | µ0, then
� | ⌃ ` t0 : T.

Wrong!

Why is this wrong?

Because ⌃ and µ here are not constrained to have anything to do
with each other!

(Exercise: Construct an example that breaks this statement of
preservation.)

Preservation

First attempt: just add stores and store typings in the appropriate
places.

Theorem (?): If � | ⌃ ` t : T and t | µ �! t0 | µ0, then
� | ⌃ ` t0 : T. Wrong!

Why is this wrong?

Because ⌃ and µ here are not constrained to have anything to do
with each other!

(Exercise: Construct an example that breaks this statement of
preservation.)

Preservation

First attempt: just add stores and store typings in the appropriate
places.

Theorem (?): If � | ⌃ ` t : T and t | µ �! t0 | µ0, then
� | ⌃ ` t0 : T. Wrong!

Why is this wrong?

Because ⌃ and µ here are not constrained to have anything to do
with each other!

(Exercise: Construct an example that breaks this statement of
preservation.)

Preservation

A store µ is said to be well typed with respect to a typing context
� and a store typing ⌃, written � | ⌃ ` µ, if dom(µ) = dom(⌃)
and � | ⌃ ` µ(l) : ⌃(l) for every l 2 dom(µ).

Next attempt:

Theorem (?): If

� | ⌃ ` t : T

t | µ �! t0 | µ0

� | ⌃ ` µ

then � | ⌃ ` t0 : T.

Still wrong!

Creation of a new reference cell...

l /2 dom(µ)

ref v1 | µ �! l | (µ, l 7! v1)
(E-RefV)

... breaks the correspondence between the store typing and the
store.

Preservation

A store µ is said to be well typed with respect to a typing context
� and a store typing ⌃, written � | ⌃ ` µ, if dom(µ) = dom(⌃)
and � | ⌃ ` µ(l) : ⌃(l) for every l 2 dom(µ).

Next attempt:

Theorem (?): If

� | ⌃ ` t : T

t | µ �! t0 | µ0

� | ⌃ ` µ

then � | ⌃ ` t0 : T.

Still wrong!

Creation of a new reference cell...

l /2 dom(µ)

ref v1 | µ �! l | (µ, l 7! v1)
(E-RefV)

... breaks the correspondence between the store typing and the
store.

Preservation

A store µ is said to be well typed with respect to a typing context
� and a store typing ⌃, written � | ⌃ ` µ, if dom(µ) = dom(⌃)
and � | ⌃ ` µ(l) : ⌃(l) for every l 2 dom(µ).

Next attempt:
Theorem (?): If

� | ⌃ ` t : T

t | µ �! t0 | µ0

� | ⌃ ` µ
then � | ⌃ ` t0 : T. Still wrong!

What’s wrong now?

Creation of a new reference cell...

l /2 dom(µ)

ref v1 | µ �! l | (µ, l 7! v1)
(E-RefV)

... breaks the correspondence between the store typing and the
store.

Preservation

A store µ is said to be well typed with respect to a typing context
� and a store typing ⌃, written � | ⌃ ` µ, if dom(µ) = dom(⌃)
and � | ⌃ ` µ(l) : ⌃(l) for every l 2 dom(µ).

Next attempt:

Theorem (?): If

� | ⌃ ` t : T

t | µ �! t0 | µ0

� | ⌃ ` µ

then � | ⌃ ` t0 : T. Still wrong!

Creation of a new reference cell...

l /2 dom(µ)

ref v1 | µ �! l | (µ, l 7! v1)
(E-RefV)

... breaks the correspondence between the store typing and the
store.

Preservation (correct version)

Theorem: If

� | ⌃ ` t : T

� | ⌃ ` µ
t | µ �! t0 | µ0

then, for some ⌃0 ◆ ⌃,

� | ⌃0 ` t0 : T

� | ⌃0 ` µ0.

Proof: Easy extension of the preservation proof for �!.

Preservation (correct version)

Theorem: If

� | ⌃ ` t : T

� | ⌃ ` µ
t | µ �! t0 | µ0

then, for some ⌃0 ◆ ⌃,

� | ⌃0 ` t0 : T

� | ⌃0 ` µ0.

Proof: Easy extension of the preservation proof for �!.

Progress

Theorem: Suppose t is a closed, well-typed term (that is,
; | ⌃ ` t : T for some T and ⌃). Then either t is a value or else,
for any store µ such that ; | ⌃ ` µ, there is some term t0 and store
µ0 with t | µ �! t0 | µ0.

	Recursion
	References
	Store Typings
	Safety

