Type Systems
Seminar 6

Mehmet Ali Arslan

Slides mostly “borrowed” from Martin Odersky



Plan
PREVIOUSLY: unit, sequencing, let, pairs, sums

TODAY:

1. recursion

2. state
3. 777

NEXT: exceptions?
NEXT: polymorphic (not so simple) typing



Recursion



Recursion in untyped A-calculus

» We apply a fixed-point combinator to a generator
function

» fix =M. (Ax.f(A\y.xxy)) (Ax. £ (\y.xxy))



Example - Factorial

% g = Afct.(An.if realeqncqthency

else (timesn(fct (prd (prdn)));
» factorial = fixg;

» whiteboard...



Recursion in STLC

» theterm \y.xxy in fix can not be typed in STLC
» so we add it as a primitive



Example

ff = Aie:Nat—Bool.
Ax:Nat.
if iszero x then true
else if iszero (pred x) then false
else ie (pred (pred x));

iseven = fix ff;

iseven 7;



New syntactic forms

t o= .. terms
fx e fixed point of ¢

New evaluation rules t — t/

fix (Ax:Ty.t2)

— [x = (fix (Ax:T1.t2))]t2 (E-FIXBETA)

t — t]

E-Fix
fix t; — fix t ( )



New typing rules

Nt : T1—T

M fix t; : Ty



A more convenient form

. lef . .
letrec x:Ti=t; in tp» = let x = fix (A\x:Ty.t1) in t»

letrec iseven : Nat—Bool =
Ax:Nat.
if iszero x then true
else if iszero (pred x) then false
else iseven (pred (pred x))
in
iseven 7;



References



Mutability

> In most programming languages, variables are mutable — i.e.,
a variable provides both
> a name that refers to a previously calculated value, and
> the possibility of overwriting this value with another (which
will be referred to by the same name)
> In some languages (e.g., OCaml), these features are separate:
» variables are only for naming — the binding between a variable
and its value is immutable
» introduce a new class of mutable values (called reference cells
or references)
» at any given moment, a reference holds a value (and can be
dereferenced to obtain this value)
> a new value may be assigned to a reference

We choose OCaml’s style, which is easier to work with formally.

So a variable of type T in most languages (except OCaml) will
correspond to a Ref T (actually, a Ref (Option T)) here.



Basic Examples

r =ref 5

(r:=succ(!'r); !r)

(r:=succ('r); r:=succ('r); r:=succ('r);
r:=succ(!r); !'r)



Basic Examples

r =ref 5

(r:=succ('r); !'r)

(r:=succ('r); r:=succ('r); r:=succ('r);
r:=succ(!r); !'r)

((((r:=succ('r); r:=succ(!'r)); r:=succ(lr));
r:=succ(!r)); !'r)



Aliasing

A value of type Ref T is a pointer to a cell holding a value of type
T.

If this value is “copied” by assigning it to another variable, the cell

pointed to is not copied.
N

So we can change r by assigning to s:

(s:=6; 'r)



Aliasing all around us
Reference cells are not the only language feature that introduces
the possibility of aliasing.
> object references
» explicit pointers in C
> arrays
» communication channels
» 1/0 devices (disks, etc.)



Example

c =
incc
decc
incc
decc
o =

ref O
= Ax:Unit. (c := succ (!c); !'c)
= Ax:Unit. (c := pred (!c); !'c)
unit
unit

{i = incc, d = decc}



Syntax

t = terms
unit unit constant
X variable
Ax:T.t abstraction
tt application
ref t reference creation
It dereference
t:=t assignment

... plus other familiar types, in examples.



Typing Rules

Mt : Ty
(T-REF)
Fref t1 : Ref T
Ft1 :Ref T
! ! (T-DEREF)
[F1t; Ty
[Ft1 :Ref T [Fty: T
! ! S (T-AsSIGN)

[ ti:=ty : Unit



Final example

NatArray

newarray

lookup =

Ref (Nat—Nat);

A_:Unit. ref (\n:Nat.0);
: Unit — NatArray

Aa:NatArray. An:Nat. (!a) n;

: NatArray — Nat — Nat

update =

Aa:NatArray. Am:Nat. Av:Nat.
let oldf = 'a in
a := (An:Nat. if equal m n then v else oldf n);

: NatArray — Nat — Nat — Unit



Evaluation

What is the value of the expression ref 07



Evaluation

What is the value of the expression ref 07
Crucial observation: evaluating ref 0 must do something.

Otherwise,
r =ref O
s =ref O
and
=ref O
s =r

would behave the same.



Evaluation

What is the value of the expression ref 07
Crucial observation: evaluating ref 0 must do something.

Otherwise,
r =ref O
s =ref O
and
=ref O
s =r

would behave the same.
Specifically, evaluating ref 0 should allocate some storage and
yield a reference (or pointer) to that storage.



Evaluation

What is the value of the expression ref 07
Crucial observation: evaluating ref 0 must do something.

Otherwise,
r =ref O
s =ref O
and
=ref O
s =r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and
yield a reference (or pointer) to that storage.

So what is a reference?



The Store

A reference names a location in the store (also known as the heap
or just the memory).

What is the store?



The Store

A reference names a location in the store (also known as the heap
or just the memory).
What is the store?

» Concretely: An array of 8-bit bytes, indexed by 32-bit
integers.



The Store

A reference names a location in the store (also known as the heap
or just the memory).
What is the store?

» Concretely: An array of 8-bit bytes, indexed by 32-bit
integers.

» More abstractly: an array of values



The Store

A reference names a location in the store (also known as the heap
or just the memory).
What is the store?

» Concretely: An array of 8-bit bytes, indexed by 32-bit
integers.

» More abstractly: an array of values

> Even more abstractly: a partial function from locations to
values.



Locations

Syntax of values:

v ou= values
unit unit constant
Ax:T.t abstraction value
/ store location

. and since all values are terms...



Syntax of Terms

t = terms
unit unit constant
X variable
Ax:T.t abstraction
tt application
ref t reference creation
It dereference
t:=t assignment

/ store location



Aside

Does this mean we are going to allow programmers to write
explicit locations in their programs??

No: This is just a modeling trick. We are enriching the “source
language” to include some run-time structures, so that we can
continue to formalize evaluation as a relation between source
terms.

Aside: If we formalize evaluation in the big-step style, then we can
add locations to the set of values (results of evaluation) without
adding them to the set of terms.



Evaluation

The result of evaluating a term now depends on the store in which
it is evaluated. Moreover, the result of evaluating a term is not
just a value — we must also keep track of the changes that get
made to the store.

l.e., the evaluation relation should now map a term and a store to
a reduced term and a new store.

tlp—t|

We use the metavariable ;. to range over stores.



Evaluation

An assignment t;:=t, first evaluates t; and t, until they become
values...

£ | n— | o

— o : (E-AssIiGN1)
tii=ty | p—> tii=to | p

to|p—ty [

T (E-AsSIGN2)
viisto | p— vii=th | p

. and then returns unit and updates the store:

[:=vy | p — unit | [| — vo]p (E-ASSIGN)



A term of the form ref t; first evaluates inside t; until it
becomes a value...

£ | n— ) | o

E-REF
ref t1|pu—>ref t) | ( )

. and then chooses (allocates) a fresh location /, augments the
store with a binding from / to vy, and returns /:

I ¢ dom( 1)
ref vi|pu— 1| (p, — v1)

(E-REFV)



A term !t first evaluates in t1 until it becomes a value...

ty | p—t | W

E-DEREF
Mty | — 1ty | ( )

. and then looks up this value (which must be a location, if the
original term was well typed) and returns its contents in the
current store:

u(h)y =v

R —— (E-DEREFLOC)
Ulp—v|p



Evaluation rules for function abstraction and application are
augmented with stores, but don't do anything with them directly.

ti] p— £y 4

; ; (E-APpP1)
t1 to| p—> t] to| p

to| p— 5| 1/

E-AprpP2
vy to| p— vy th| ( )

(Ax:Ty1.t12) vo| o — [x +— va]tiz| p (E-APPABS)



Aside: garbage collection

Note that we are not modeling garbage collection — the store just
grows without bound.



Aside: pointer arithmetic

We can’t do any!



Store Typings



Typing Locations

Q: What is the type of a location?



Typing Locations
Q: What is the type of a location?
A: It depends on the store!

E.g., in the store (/; v unit, h ~ unit), the term !/, has type
Unit.

But in the store (/; + unit, h ~ Ax:Unit.x), the term !/, has
type Unit—Unit.



Typing Locations — first try
Roughly:

MEu(l): T
[/ :Ref Ty



Typing Locations — first try
Roughly:

MEu(l): T
[/:Ref Ty

More precisely:

C b pwp(l): Ty
M puhk/l:Ref Ty

l.e., typing is now a four-place relation (between contexts, stores,
terms, and types).



Problem

However, this rule is not completely satisfactory. For one thing, it
can make typing derivations very large!

Eg.,if
(n=h — Ax:Nat. 999,
b+ Ax:Nat. '/ (Vh x),
I3+ Ax:Nat. !'h (1h x),
lg — Ax:Nat. 'l ('l %),
Is — Ax:Nat. 'Iy (1, X))7

then how big is the typing derivation for !/57



Problem!

But wait... it gets worse. Suppose

(u=hr— Ax:Nat. 'k x,
b — Ax:Nat. !'h x),

Now how big is the typing derivation for !/,?



Store Typings

Observation: The typing rules we have chosen for references
guarantee that a given location in the store is always used to hold
values of the same type.

These intended types can be collected into a store typing — a
partial function from locations to types.



E.g., for
p=(h+— Ax:Nat. 999,
b+ Ax:Nat. !'f; (1h x),
I3 — Ax:Nat. 'h ('h x),
lg — Ax:Nat. 'l ('l %),
I — Ax:Nat. 'y (Mg x)),

A reasonable store typing would be

Y = (h — Nat—Nat,
I +— Nat—Nat,
I3 — Nat—Nat,
Is — Nat—Nat,
Is — Nat—Nat)



Now, suppose we are given a store typing > describing the store 1
in which we intend to evaluate some term t. Then we can use >
to look up the types of locations in t instead of calculating them
from the values in 1.

(=T
[|SF/:Ref Ty

(T-Loc)

l.e., typing is now a four-place relation between between contexts,
store typings, terms, and types.



Final typing rules

Y(I)=T,
M XH/:Ref Tq

I'\Zl—tlle
N XHref t; : Ref Tg

F|Zkt1:Ref T11
F]ZF!tl:Tll

F‘ZFtllRef T11 |—|Z'—t2

(T-Loc)

(T-REF)

(T-DEREF)

: T11

[ ZFty:=tp : Unit

(T-AsSIGN)



Q: Where do these store typings come from?



Q: Where do these store typings come from?

A: When we first typecheck a program, there will be no explicit
locations, so we can use an empty store typing.

So, when a new location is created during evaluation,

I ¢ dom( 1)

(E-REFV)
ref vi|pu— 1| (p, I+ v1)

we can extend the “current store typing” with the type of v;.



Safety



Preservation

First attempt: just add stores and store typings in the appropriate
places.

Theorem (?): If I |2t : Tand t |y — t' |/, then
ke T



Preservation

First attempt: just add stores and store typings in the appropriate
places.

Theorem (?): If I |2t : Tand t |y — t' |/, then
Mkt :T. Wrong!

Why is this wrong?



Preservation

First attempt: just add stores and store typings in the appropriate
places.

Theorem (?): If I |2t : Tand t |y — t' |/, then
Mkt :T. Wrong!

Why is this wrong?

Because > and ;i here are not constrained to have anything to do
with each other!

(Exercise: Construct an example that breaks this statement of
preservation.)



Preservation

A store [ is said to be well typed with respect to a typing context
[ and a store typing X, written [ | X I 1, if dom(p) = dom(X)
and [ | Z b pu(/) « X(/) for every | € dom(p).



Preservation

A store [ is said to be well typed with respect to a typing context
[ and a store typing X, written [ | X I 1, if dom(p) = dom(X)
and [ | Z b pu(/) « X(/) for every | € dom(p).

Next attempt:

Theorem (7): If
MXFt:T
tlp—t' |y
MXFu

then | Xt/ :T.



Preservation

A store [ is said to be well typed with respect to a typing context
[ and a store typing X, written [ | X I 1, if dom(p) = dom(X)
and [ | Z b pu(/) « X(/) for every | € dom(p).

Next attempt:

Theorem (7): If
MEXkFt:T
tlp—t |y
MNMIku

then | Xt/ :T. Still wrong!

What's wrong now?



Preservation

A store [ is said to be well typed with respect to a typing context
[ and a store typing X, written [ | X I 1, if dom(p) = dom(X)
and [ | Z b pu(/) « X(/) for every | € dom(p).

Next attempt:
Theorem (7): If

MSkt:T
tlp—t' |y
Mk u
then | Xt/ :T. Still wrong!

Creation of a new reference cell...

I ¢ dom( )

ref vi|pu— 1| (u, [~ v1)

(E-REFV)

... breaks the correspondence between the store typing and the
store.



Preservation (correct version)

Theorem: If
MNMIzxkEt:T
MEku
o gt |

then, for some ¥’ O ¥,
M Fe T
s



Preservation (correct version)

Theorem: If
MEXkFt:T
Mk
tlp—t |y

then, for some ¥’ O ¥,
Mxket:T
MYk,

Proof: Easy extension of the preservation proof for A_,.



Progress

Theorem: Suppose t is a closed, well-typed term (that is,

()| X+t : Tfor some T and X). Then either t is a value or else,
for any store ;. such that () | & t 1, there is some term t’ and store
' with © | o —t" | .



	Recursion
	References
	Store Typings
	Safety

