Type Systems Seminar 6

Mehmet Ali Arslan

Slides mostly "borrowed" from Martin Odersky

Plan

PREVIOUSLY: unit, sequencing, let, pairs, sums

TODAY:

- 1. recursion
- 2. state
- 3. ???

NEXT: exceptions? NEXT: polymorphic (not so simple) typing

Recursion

Recursion in untyped λ -calculus

We apply a *fixed-point combinator* to a *generator* function

$\succ \texttt{fix} = \lambda\texttt{f}.\left(\lambda\texttt{x}.\texttt{f}\left(\lambda\texttt{y}.\texttt{x}\texttt{x}\texttt{y}\right)\right)\left(\lambda\texttt{x}.\texttt{f}\left(\lambda\texttt{y}.\texttt{x}\texttt{x}\texttt{y}\right)\right)$

Example - Factorial

```
\succ g = \lambdafct. (\lambdan. if realeq n c<sub>0</sub> then c<sub>1</sub>
```

else(timesn(fct(prd(prdn)));

- \succ factorial = fixg;
- > whiteboard...

Recursion in STLC

- > the term $\lambda y. x x y$ in *fix* can not be typed in STLC
- \succ so we add it as a primitive

Example

New syntactic forms

t ::= ... fix t terms fixed point of t

New evaluation rules

$$\begin{array}{c} \text{fix } (\lambda x: T_1. t_2) \\ \longrightarrow [x \mapsto (\text{fix } (\lambda x: T_1. t_2))] t_2 \end{array} \text{ (E-FIXBETA)} \end{array}$$

$$\frac{t_1 \longrightarrow t'_1}{\text{fix } t_1 \longrightarrow \text{fix } t'_1}$$
 (E-Fix)

New typing rules

$$\frac{\Gamma \vdash t_1 : T_1 \rightarrow T_1}{\Gamma \vdash \text{fix } t_1 : T_1}$$
(T-Fix)

A more convenient form

```
letrec x:T<sub>1</sub>=t<sub>1</sub> in t<sub>2</sub> \stackrel{\text{def}}{=} let x = fix (\lambdax:T<sub>1</sub>.t<sub>1</sub>) in t<sub>2</sub>
letrec iseven : Nat\rightarrowBool =
\lambdax:Nat.
    if iszero x then true
    else if iszero (pred x) then false
    else iseven (pred (pred x))
in
```

```
iseven 7;
```

References

Mutability

- In most programming languages, variables are mutable i.e., a variable provides both
 - a name that refers to a previously calculated value, and
 - the possibility of *overwriting* this value with another (which will be referred to by the same name)
- ► In some languages (e.g., OCaml), these features are separate:
 - variables are only for naming the binding between a variable and its value is immutable
 - introduce a new class of *mutable values* (called *reference cells* or *references*)
 - at any given moment, a reference holds a value (and can be dereferenced to obtain this value)
 - a new value may be assigned to a reference

We choose OCaml's style, which is easier to work with formally. So a variable of type T in most languages (except OCaml) will correspond to a Ref T (actually, a Ref(Option T)) here.

Basic Examples

r = ref 5

```
!r
r := 7
(r:=succ(!r); !r)
(r:=succ(!r); r:=succ(!r); r:=succ(!r);
r:=succ(!r); !r)
```

Basic Examples

```
r = ref 5
    !r
   r := 7
    (r:=succ(!r); !r)
    (r:=succ(!r); r:=succ(!r); r:=succ(!r);
    r:=succ(!r); !r)
i.e.,
    (((((r:=succ(!r); r:=succ(!r)); r:=succ(!r));
      r:=succ(!r)); !r)
```

Aliasing

A value of type Ref T is a *pointer* to a cell holding a value of type T.

If this value is "copied" by assigning it to another variable, the cell pointed to is not copied.

So we can change r by assigning to s:

(s:=6; !r)

Aliasing all around us

Reference cells are not the only language feature that introduces the possibility of aliasing.

- object references
- explicit pointers in C
- arrays
- communication channels
- I/O devices (disks, etc.)

Example

```
c = ref 0

incc = \lambda x:Unit. (c := succ (!c); !c)

decc = \lambda x:Unit. (c := pred (!c); !c)

incc unit

decc unit

o = {i = incc, d = decc}
```

Syntax

t	::=		terms
		unit	unit constant
		x	variable
		$\lambda \texttt{x:T.t}$	abstraction
		t t	application
		ref t	reference creation
		!t	dereference
		t:=t	assignment

... plus other familiar types, in examples.

Typing Rules

$$\frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash \text{ref } t_1 : \text{Ref } T_1} \qquad (T-\text{Ref})$$

$$\frac{\Gamma \vdash t_1 : \text{Ref } T_1}{\Gamma \vdash !t_1 : T_1} \qquad (T-\text{Deref})$$

$$\frac{\Gamma \vdash t_1 : \text{Ref } T_1 \qquad \Gamma \vdash t_2 : T_1}{\Gamma \vdash t_1 : = t_2 : \text{Unit}} \qquad (T-\text{Assign})$$

Final example

```
NatArray = Ref (Nat \rightarrow Nat);
newarray = \lambda_{::}Unit. ref (\lambda_{n:Nat.0});
             : Unit \rightarrow NatArray
lookup = \lambdaa:NatArray. \lambdan:Nat. (!a) n;
          : NatArray \rightarrow Nat \rightarrow Nat
update = \lambdaa:NatArray. \lambdam:Nat. \lambdav:Nat.
                let oldf = !a in
                a := (\lambda n: \text{Nat. if equal m n then v else oldf n});
          : NatArray \rightarrow Nat \rightarrow Nat \rightarrow Unit
```

What is the *value* of the expression ref 0?

What is the *value* of the expression ref 0? Crucial observation: evaluating ref 0 must *do* something. Otherwise,

r = ref 0s = ref 0

and

r = ref 0s = r

would behave the same.

What is the *value* of the expression ref 0? Crucial observation: evaluating ref 0 must *do* something. Otherwise,

r = ref 0s = ref 0

and

r = ref 0s = r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and yield a reference (or pointer) to that storage.

What is the *value* of the expression ref 0? Crucial observation: evaluating ref 0 must *do* something. Otherwise,

r = ref 0s = ref 0

and

r = ref 0s = r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and yield a reference (or pointer) to that storage. So what is a reference?

A reference names a *location* in the *store* (also known as the *heap* or just the *memory*).

What is the store?

A reference names a *location* in the *store* (also known as the *heap* or just the *memory*).

What is the store?

 Concretely: An array of 8-bit bytes, indexed by 32-bit integers.

A reference names a *location* in the *store* (also known as the *heap* or just the *memory*).

What is the store?

- Concretely: An array of 8-bit bytes, indexed by 32-bit integers.
- More abstractly: an array of values

A reference names a *location* in the *store* (also known as the *heap* or just the *memory*).

What is the store?

- Concretely: An array of 8-bit bytes, indexed by 32-bit integers.
- *More abstractly:* an array of *values*
- Even more abstractly: a partial function from locations to values.

Locations

Syntax of values:

v ::= unit $\lambda x:T.t$ values unit constant abstraction value store location

... and since all values are terms...

Syntax of Terms

t	::=		terms	
		unit	unit constant	
		х	variable	
		$\lambda \texttt{x:T.t}$	abstraction	
		t t	application	
		ref t	reference creation	
		!t	dereference	
		t:=t	assignment	
		1	store location	

Aside

Does this mean we are going to allow programmers to write explicit locations in their programs??

No: This is just a modeling trick. We are enriching the "source language" to include some run-time structures, so that we can continue to formalize evaluation as a relation between source terms.

Aside: If we formalize evaluation in the big-step style, then we can add locations to the set of values (results of evaluation) without adding them to the set of terms.

The result of evaluating a term now depends on the store in which it is evaluated. Moreover, the result of evaluating a term is not just a value — we must also keep track of the changes that get made to the store.

I.e., the evaluation relation should now map a term and a store to a reduced term and a new store.

 $t \mid \mu \longrightarrow t' \mid \mu'$

We use the metavariable μ to range over stores.

An assignment $t_1:=t_2$ first evaluates t_1 and t_2 until they become values...

$$\frac{\mathbf{t}_{1} \mid \mu \longrightarrow \mathbf{t}_{1}' \mid \mu'}{\mathbf{t}_{1} := \mathbf{t}_{2} \mid \mu \longrightarrow \mathbf{t}_{1}' := \mathbf{t}_{2} \mid \mu'} \quad (\text{E-Assign1})$$

$$\frac{\mathbf{t}_{2} \mid \mu \longrightarrow \mathbf{t}_{2}' \mid \mu'}{\mathbf{v}_{1} := \mathbf{t}_{2} \mid \mu \longrightarrow \mathbf{v}_{1} := \mathbf{t}_{2}' \mid \mu'} \quad (\text{E-Assign2})$$

... and then returns unit and updates the store:

$$l:=v_2 \mid \mu \longrightarrow \text{unit} \mid [l \mapsto v_2]\mu$$
 (E-Assign)

A term of the form ref t_1 first evaluates inside t_1 until it becomes a value...

$$\frac{\mathtt{t}_1 \mid \mu \longrightarrow \mathtt{t}'_1 \mid \mu'}{\texttt{ref } \mathtt{t}_1 \mid \mu \longrightarrow \texttt{ref } \mathtt{t}'_1 \mid \mu'} \tag{E-ReF}$$

... and then chooses (allocates) a fresh location /, augments the store with a binding from / to v_1 , and returns /:

$$\frac{l \notin dom(\mu)}{\text{ref } v_1 \mid \mu \longrightarrow l \mid (\mu, l \mapsto v_1)}$$
 (E-ReFV)

A term $!t_1$ first evaluates in t_1 until it becomes a value...

$$\frac{\mathsf{t}_1 \mid \mu \longrightarrow \mathsf{t}'_1 \mid \mu'}{|\mathsf{t}_1 \mid \mu \longrightarrow !\mathsf{t}'_1 \mid \mu'}$$
(E-DEREF)

... and then looks up this value (which must be a location, if the original term was well typed) and returns its contents in the current store:

$$\frac{\mu(l) = \mathbf{v}}{|l| \mu \longrightarrow \mathbf{v} | \mu}$$
 (E-DerefLoc)

Evaluation rules for function abstraction and application are augmented with stores, but don't do anything with them directly.

$$\frac{\mathbf{t}_{1} \mid \mu \longrightarrow \mathbf{t}_{1}' \mid \mu'}{\mathbf{t}_{1} \mid \mathbf{t}_{2} \mid \mu \longrightarrow \mathbf{t}_{1}' \mid \mathbf{t}_{2} \mid \mu'} \quad (E-APP1)$$

$$\frac{\mathbf{t}_{2} \mid \mu \longrightarrow \mathbf{t}_{2}' \mid \mu'}{\mathbf{v}_{1} \mid \mathbf{t}_{2} \mid \mu \longrightarrow \mathbf{v}_{1} \mid \mathbf{t}_{2}' \mid \mu'} \quad (E-APP2)$$

 $(\lambda \mathbf{x}: \mathbf{T}_{11}, \mathbf{t}_{12}) \ \mathbf{v}_2 \mid \mu \longrightarrow [\mathbf{x} \mapsto \mathbf{v}_2] \mathbf{t}_{12} \mid \mu \text{ (E-APPABS)}$

Aside: garbage collection

Note that we are not modeling garbage collection — the store just grows without bound.

Aside: pointer arithmetic

We can't do any!

Store Typings

Typing Locations

Q: What is the type of a location?

Typing Locations

- Q: What is the type of a location?
- A: It depends on the store!

E.g., in the store $(l_1 \mapsto \text{unit}, l_2 \mapsto \text{unit})$, the term $!l_2$ has type Unit.

But in the store $(l_1 \mapsto \text{unit}, l_2 \mapsto \lambda x: \text{Unit.x})$, the term $!l_2$ has type Unit \rightarrow Unit.

Typing Locations — first try

Roughly:

 $\frac{\Gamma \vdash \mu(I) \, : \, \mathrm{T}_1}{\Gamma \vdash I \, : \, \mathrm{Ref } \mathrm{T}_1}$

Typing Locations — first try

Roughly:

 $\frac{\Gamma \vdash \mu(I) \, : \, \mathrm{T}_1}{\Gamma \vdash I \, : \, \mathrm{Ref } \, \mathrm{T}_1}$

More precisely:

 $\frac{\Gamma \mid \mu \vdash \mu(I) \, : \, \mathtt{T}_1}{\Gamma \mid \mu \vdash I \, : \, \mathtt{Ref } \mathsf{T}_1}$

I.e., typing is now a *four*-place relation (between contexts, *stores*, terms, and types).

Problem

E.g., if

However, this rule is not completely satisfactory. For one thing, it can make typing derivations very large!

 $\begin{aligned} (\mu = I_1 \mapsto \lambda \texttt{x:Nat. 999}, \\ I_2 \mapsto \lambda \texttt{x:Nat. } !I_1 \ (!I_1 \ \texttt{x}), \\ I_3 \mapsto \lambda \texttt{x:Nat. } !I_2 \ (!I_2 \ \texttt{x}), \\ I_4 \mapsto \lambda \texttt{x:Nat. } !I_3 \ (!I_3 \ \texttt{x}), \\ I_5 \mapsto \lambda \texttt{x:Nat. } !I_4 \ (!I_4 \ \texttt{x})), \end{aligned}$

then how big is the typing derivation for $! l_5?$

Problem!

But wait ... it gets worse. Suppose

$$(\mu = l_1 \mapsto \lambda \mathbf{x}: \texttt{Nat. } ! l_2 \mathbf{x}, \\ l_2 \mapsto \lambda \mathbf{x}: \texttt{Nat. } ! l_1 \mathbf{x}),$$

Now how big is the typing derivation for $!l_2$?

Store Typings

Observation: The typing rules we have chosen for references guarantee that a given location in the store is *always* used to hold values of the *same* type.

These intended types can be collected into a *store typing* — a partial function from locations to types.

E.g., for

$$\mu = (I_1 \mapsto \lambda \mathbf{x} : \text{Nat. 999},$$

$$I_2 \mapsto \lambda \mathbf{x} : \text{Nat. } I_1 \quad (!I_1 \quad \mathbf{x}),$$

$$I_3 \mapsto \lambda \mathbf{x} : \text{Nat. } I_2 \quad (!I_2 \quad \mathbf{x}),$$

$$I_4 \mapsto \lambda \mathbf{x} : \text{Nat. } I_3 \quad (!I_3 \quad \mathbf{x}),$$

$$I_5 \mapsto \lambda \mathbf{x} : \text{Nat. } I_4 \quad (!I_4 \quad \mathbf{x})),$$

A reasonable store typing would be

$$\Sigma = (I_1 \mapsto ext{Nat} o ext{Nat}, \ I_2 \mapsto ext{Nat} o ext{Nat}, \ I_3 \mapsto ext{Nat} o ext{Nat}, \ I_4 \mapsto ext{Nat} o ext{Nat}, \ I_5 \mapsto ext{Nat} o ext{Nat})$$

Now, suppose we are given a store typing Σ describing the store μ in which we intend to evaluate some term t. Then we can use Σ to look up the types of locations in t instead of calculating them from the values in μ .

$$\frac{\Sigma(l) = \mathtt{T}_1}{\lceil \Sigma \vdash l : \mathtt{Ref } \mathtt{T}_1}$$
(T-Loc)

I.e., typing is now a four-place relation between between contexts, *store typings*, terms, and types.

Final typing rules

$$\frac{\Sigma(l) = T_1}{\Gamma \mid \Sigma \vdash l : \text{Ref } T_1}$$
(T-Loc)
$$\frac{\Gamma \mid \Sigma \vdash t_1 : T_1}{\Gamma \mid \Sigma \vdash \text{ref } t_1 : \text{Ref } T_1}$$
(T-REF)
$$\frac{\Gamma \mid \Sigma \vdash t_1 : \text{Ref } T_{11}}{\Gamma \mid \Sigma \vdash t_1 : T_{11}}$$
(T-DEREF)
$$\frac{\Gamma \mid \Sigma \vdash t_1 : \text{Ref } T_{11}}{\Gamma \mid \Sigma \vdash t_1 : \text{ref } T_{11}}$$
(T-ASSIGN)

Q: Where do these store typings come from?

Q: Where do these store typings come from?

A: When we first typecheck a program, there will be no explicit locations, so we can use an empty store typing.

So, when a new location is created during evaluation,

$$\frac{l \notin dom(\mu)}{\operatorname{ref} v_1 \mid \mu \longrightarrow l \mid (\mu, l \mapsto v_1)}$$
 (E-ReFV)

we can extend the "current store typing" with the type of v_1 .

First attempt: just add stores and store typings in the appropriate places.

Theorem (?): If $\Gamma \mid \Sigma \vdash t : T$ and $t \mid \mu \longrightarrow t' \mid \mu'$, then $\Gamma \mid \Sigma \vdash t' : T$.

First attempt: just add stores and store typings in the appropriate places.

Theorem (?): If $\Gamma \mid \Sigma \vdash t : T$ and $t \mid \mu \longrightarrow t' \mid \mu'$, then $\Gamma \mid \Sigma \vdash t' : T$. Wrong!

Why is this wrong?

First attempt: just add stores and store typings in the appropriate places.

Theorem (?): If $\Gamma \mid \Sigma \vdash t : T$ and $t \mid \mu \longrightarrow t' \mid \mu'$, then $\Gamma \mid \Sigma \vdash t' : T$. Wrong!

Why is this wrong?

Because Σ and μ here are not constrained to have anything to do with each other!

(Exercise: Construct an example that breaks this statement of preservation.)

A store μ is said to be *well typed* with respect to a typing context Γ and a store typing Σ , written $\Gamma \mid \Sigma \vdash \mu$, if $dom(\mu) = dom(\Sigma)$ and $\Gamma \mid \Sigma \vdash \mu(l) : \Sigma(l)$ for every $l \in dom(\mu)$.

A store μ is said to be *well typed* with respect to a typing context Γ and a store typing Σ , written $\Gamma \mid \Sigma \vdash \mu$, if $dom(\mu) = dom(\Sigma)$ and $\Gamma \mid \Sigma \vdash \mu(l) : \Sigma(l)$ for every $l \in dom(\mu)$.

Next attempt:

A store μ is said to be *well typed* with respect to a typing context Γ and a store typing Σ , written $\Gamma \mid \Sigma \vdash \mu$, if $dom(\mu) = dom(\Sigma)$ and $\Gamma \mid \Sigma \vdash \mu(l) : \Sigma(l)$ for every $l \in dom(\mu)$.

Next attempt:

Still wrong!

What's wrong now?

A store μ is said to be *well typed* with respect to a typing context Γ and a store typing Σ , written $\Gamma \mid \Sigma \vdash \mu$, if $dom(\mu) = dom(\Sigma)$ and $\Gamma \mid \Sigma \vdash \mu(l) : \Sigma(l)$ for every $l \in dom(\mu)$.

Next attempt:

Still wrong!

Creation of a new reference cell...

 $\frac{l \notin dom(\mu)}{\text{ref } v_1 \mid \mu \longrightarrow l \mid (\mu, l \mapsto v_1)}$ (E-ReFV)

... breaks the correspondence between the store typing and the store.

Preservation (correct version)

Theorem: If $\begin{bmatrix} \Gamma \mid \Sigma \vdash t : T \\ \Gamma \mid \Sigma \vdash \mu \\ t \mid \mu \longrightarrow t' \mid \mu'$ then, for some $\Sigma' \supseteq \Sigma$, $\begin{bmatrix} \Gamma \mid \Sigma' \vdash t' : T \\ \Gamma \mid \Sigma' \vdash \mu'.$

Preservation (correct version)

Theorem: If $\begin{bmatrix} \Gamma \mid \Sigma \vdash t : T \\ \Gamma \mid \Sigma \vdash \mu \\ t \mid \mu \longrightarrow t' \mid \mu'$ then, for some $\Sigma' \supseteq \Sigma$, $\begin{bmatrix} \Gamma \mid \Sigma' \vdash t' : T \\ \Gamma \mid \Sigma' \vdash \mu'.$

Proof: Easy extension of the preservation proof for λ_{\rightarrow} .

Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\emptyset \mid \Sigma \vdash t : T$ for some T and Σ). Then either t is a value or else, for any store μ such that $\emptyset \mid \Sigma \vdash \mu$, there is some term t' and store μ' with t $\mid \mu \longrightarrow t' \mid \mu'$.