Extensions to _,
Seminar 5

Niklas Fors, Gustav Cedersjo
Most slides “borrowed” from Martin Odersky

March 19, 2012

Outline

v

Base types
» Unit

v

Sequencing

v

Ascription
Product types
» Pairs
» Tuples
» Records

v

v

Sum types

» Sums
» Variants
> Options
» Enumerations

Base types

Up to now, we've formulated “base types” (e.g. Nat) by adding
them to the syntax of types, extending the syntax of terms with
associated constants (zero) and operators (succ, etc.) and
adding appropriate typing and evaluation rules. We can do this for
as many base types as we like.

For more theoretical discussions (as opposed to programming) we
can often ignore the term-level inhabitants of base types, and just
treat these types as uninterpreted constants.

E.g., suppose B and C are some base types. Then we can ask
(without knowing anything more about B or C) whether there are
any types S and T such that the term

(Mf:8. Ag:T. £ g) (A\x:B. x)

is well typed.

The Unit type

t o=
unit
v =
unit
T = ..
Unit

New typing rules

[+ unit :

terms
constant unit

values
constant unit

types
unit type

Unit (T-UnI1T)

Sequencing

t = .. terms
t1;t2

Sequencing

t o= .. terms
t1;t2
t; — t]

' ! (E-SEQ)

t1;t — Ty t2
unit;t, — to (E-SEQNEXT)

=ty : Unit [Ety : T

1 2 Ta (T-S8Q)

MEt1;ty @ Ty

Derived forms

» Syntatic sugar

» Internal language vs. external (surface) language

Sequencing as a derived form

t1;to det (Ax:Unit.tp) t1
where x ¢ FV(t2)

Ascription

New syntactic forms

t 1= ... terms
t as T ascription

New evaluation rules t — t/
vi as T— vy (E-ASCRIBE)

t] — t!
/1 (E-ASCRIBEL)

ti as T—1t; as T

New typing rules M=t :T

M=t : T

(T-ASCRIBE)
[Ft{ as T: T

Ascription as a derived form

f
t as Td§ (Mx:T. x) t

Pairs

{t,t}
t.1
t.2

{v,v}

Ty X To

terms
pair
first projection
second projection

values
pair value

types
product type

Evaluation rules for pairs

{Vl ,V2}.1 — V1
{Vl ,V2}.2 — V2

t] — t]
t1.1 —t].1

t] — t)
t1.2 —t].2

t] — t)

{t1,t2} — {t],t2}

ty — t)

{v1,t2} — {v1,th}

(E-PAIRBETAL)

(E-PAIRBETA2)

(E-ProJ1)

(E-ProJ2)

(E-PAIR1)

(E-PAIR2)

Typing rules for pairs

Mt1:T1 Tkt T

M-{t1,t2} : T1 xTs

Mty : T11 X T1o
M=ty.1: 11

[ty :T11 XT12
NFt1.2: T1p

(T-PAIR)

(T-ProJl)

(T-ProJ2)

Tuples

{t; i€1-n}
t.1i

{Vi i€1../1}

{TI iCl.J)}

terms
tuple
projection

values
tuple value

types
tuple type

Evaluation rules for tuples

{v; €1} j — vy (E-PROJTUPLE)

t] — t
- (E-Proy)
t1.1—t7.1

. /
{Vi i€l..j—1 ,tj P kej+1“n}
{Vi i€l..j1 ’tj' :tk keﬁl..n}

(E-TuPLE)

Typing rules for tuples

foreachi THt;:T;

[{t; <2}« {T; €00}

Mty : {T; €}
NEt1.5:T;

(T-TuPLE)

(T-ProJ)

Records

t =

{1l=tl iEl,.n}
t.1

{1i=Vi i€1,.n}

{1I.T/ iCZA.n}

terms
record
projection

values
record value

types
type of records

Evaluation rules for records

{lf=vi i€1.4n} . 1_/ —_— Vj (E—PROJRCD)

t] — t
S (E-PRroy)
t1.1 — tq. 1

/!
{1i=Vi i€l..j—1 s]-J:tj , 1k=tk k6j+1.,n}
s {1i=Vi i€l..j-1 ’lj=tj :1k=tk kE}H..n}

(E-Rcp)

Typing rules for records

foreachi TkHt;: T
r l— {li=ti I'El..n} : {ll‘:Ti r'el..n}

(T-Rcb)

[+ ty {1i5Ti i€l..n}
|_|—t1.lj 2T

(T-Proy)

Sums and variants

Sums — motivating example

PhysicalAddr = {firstlast:String, addr:String}
VirtualAddr = {name:String, email:String}

Addr = PhysicalAddr + VirtualAddr
inl : “PhysicalAddr — PhysicalAddr+VirtualAddr”
inr : “VirtualAddr — PhysicalAddr+VirtualAddr”

getName = \a:Addr.
case a of
inl x = x.firstlast
| inr y = y.name;

New syntactic forms

t = .. terms
inl t tagging (left)
inr t tagging (right)

case t of inl x=t | inr x=t case

v o= values
inl v tagged value (left)
inr v tagged value (right)
T = .. types
T+T sum type

T1+T5 is a disjoint union of T and T, (the tags inl and inr
ensure disjointness)

New evaluation rules

case (inl wvg) — [x1 — volts
of inl x;=t; | inr x,=1t,

case (inr vq) — [x2 > volt2 (
of inl x;=t; | inr x,=t,
tg — tg
case tp of inl x;=t; | inr x,=t,
— case tj of inl x;=t; | inr xo=t»
t; — t)
inl t; — inl t)
t; — t)

inr t; — inr t}

(E-CASEINL)

E-CASEINR)

(E-CASE)

(E-INL)

(E-INR)

New typing rules

MHt1: Ty

(T-InL)
NFinl t1 : T1+T>
[ty :To
(T-INR)
NFinr t1 : T1+To
Fty: T1+To
Mxy:TiFt1: T [xp:TobFty: T
(T-CasE)
[F case tg of inl x1=t; | inr xo=t, : T

Sums and Uniqueness of Types

Problem:
If t has type T, then inl t has type T+U for every U.

l.e., we've lost uniqueness of types.

Possible solutions:
» “Infer” U as needed during typechecking

» Give constructors different names and only allow each name
to appear in one sum type (requires generalization to
“variants,” which we'll see next) — OCaml’s solution

» Annotate each inl and inr with the intended sum type.

For simplicity, let's choose the third.

New syntactic forms
t o= ..
inl t as T
inr t as T

inl v as T
inr v as T

terms
tagging (left)
tagging (right)

values
tagged value (left)
tagged value (right)

Note that as T here is not the ascription operator that we saw
before — i.e., not a separate syntactic form: in essence, there is an
ascription “built into” every use of inl or inr.

New typing rules

MHt1: Ty

Finl t; as T1+Tp : T1+T>

[ty :To

Finr t; as T1+Tp : T1+T>

Evaluation rules ignore annotations: t — t/

case (inl vg as Tp)
of inl x;=t; | inr x>=t, (E-CASEINL)
— [X1 — Vo]tl

case (inr vg as Tg)
of inl x1=t7 | inr xo=1t» (E-CASEINR)
— [X2 — Vo]t2

t; — t]
! ; (E-INL)
inl t; as Tp —> inl t; as Tp
t; — t!
! (E-INR)

inr t; as Tp — inr t] as T

Variants

Just as we generalized binary products to labeled records, we can
generalize binary sums to labeled variants.

Example

Addr = <physical:PhysicalAddr, virtual:VirtualAddr>;
a = <physical=pa> as Addr;

getName = Aa:Addr.
case a of
<physical=x> = x.firstlast
| <virtual=y> = y.name;

New syntactic forms

t

<1=t> as T
case t of <1l;=x;>=t; €l

<1’, . Tf 1'€1..n>

terms

tagging
case

types
type of variants

New evaluation rules t — t/

case (<1j=v;> as T) of <1;=x;>=t; i€l.n

(E-CASEVARIANT)
— [Xj — Vj]tj

to — t

, E-CAsE
case tg of <1;=x;>=t; " ()

—> case t6 of <1l;=x;>=t; €

tj — t}

7 (E-VARIANT)
<li=t;> as T—><1;=t> as T

New typing rules

MN=t; : T;
L . (T-VARIANT)
M+ <1j=‘tj> as <1;:T;€"™> . <1;:T; '€t-">

(I to : <1;:T; i€l..ny,
foreach i T, x;:TjFt;:T
[case tg of <1;=x;>=t; ‘€l""

T-C
I (T-CasE)

Example

Addr = <physical:PhysicalAddr, virtual:VirtualAddr>;
a = <physical=pa> as Addr;

getName = Aa:Addr.
case a of
<physical=x> = x.firstlast
| <virtual=y> = y.name;

Options
Just like in OCaml...
OptionalNat = <none:Unit, some:Nat>;
Table = Nat—0OptionalNat;

emptyTable = An:Nat. <none=unit> as OptionalNat;

extendTable =
At:Table. Am:Nat. Av:Nat.
An:Nat.
if equal n m then <some=v> as OptionalNat
else t n;

x = case t(5) of
<none=u> = 999
| <some=v> = v;

Enumerations

Weekday = <monday:Unit, tuesday:Unit, wednesday:Unit,
thursday:Unit, friday:Unit>;

nextBusinessDay = \w:Weekday.
case w of <monday=x> = <tuesday=unit> as Weekday
| <tuesday=x> = <wednesday=unit> as Weekday
| <wednesday=x> = <thursday=unit> as Weekday
| <thursday=x> = <friday=unit> as Weekday
| <friday=x> = <monday=unit> as Weekday;

