Properties of A_,
Seminar 4

Niklas Fors, Gustav Cedersjo
Most slides “borrowed” from Martin Odersky

March 14, 2012

Repetition

Untyped lambda-calculus with booleans

t = terms
x variable
AX.t abstraction
tt application
true constant true
false constant false
if t then t else t conditional

v o= values
AX.t abstraction value
true true value

false false value

Evaluation Rules

if true then t, else tz3 — to (E-IFTRUE)
if false then t, else t3 —> t3 (E-IFFALSE)
ty — t
: L (E-Ir)
if t4 then ty else t3 — if t] then t; else t3
t; — t)
1—,1 (E-Appl)
t1 to —> t] to
ty — t
2 2 (E-App2)

vy €ty —> vy t/2

()\XITll.‘tlg) Vo —> [X — Vg]tlg (E—APPABS)

“Simple Types”

T = types
Bool type of booleans
T—T types of functions

What are some examples?

Typing rules

[Htrue : Bool

[+false : Bool

[Ft1 : Bool MFty o T Mty @0 T

[Fif t; then t, else t3 : T

I x:TyFtp 1 To
MEAx:T1.tp 1 T1—To

x:Tel
Fx: T

MFt1 : T11—Too Mty @ T1g
MHt1 to @ Too

(T-TRUE)
(T-FALSE)

(T-IrF)

(T-ABs)

(T-VAR)

(T-App)

Properties of A

The fundamental property of the type system we have just defined
is soundness with respect to the operational semantics.
1. Progress: A closed, well-typed term is not stuck

If =t : T then either t is a value or else t — t’
for some t’.

2. Preservation: Types are preserved by one-step evaluation
IfTtt:Tand t — t/, then ¢ : T

Proving progress

Same steps as before...

Proving progress

Same steps as before...
» inversion lemma for typing relation
» canonical forms lemma

> progress theorem

Inversion

Lemma:
1. If [= true : R, then R = Bool.
2. If '+ false : R, then R = Bool.

3. If T=4if t; then t, else t3 : R, then[t7 : Bool and
[+ to,t3 : R.

Inversion

Lemma:
1. If [= true : R, then R = Bool.
2. If '+ false : R, then R = Bool.

3. If T=4if t; then t, else t3 : R, then[t7 : Bool and
[+ to,t3 : R.

4. If ' = x : R, then

Inversion

Lemma:
1. If [= true : R, then R = Bool.
2. If '+ false : R, then R = Bool.

3. If T=4if t; then t, else t3 : R, then[t7 : Bool and
[+ to,t3 : R.

4. f I'+=x : R, then x:R € I.

Inversion

Lemma:
1. If [= true : R, then R = Bool.
2. If '+ false : R, then R = Bool.
3. If T=4if t; then t, else t3 : R, then[t7 : Bool and
INFty,t3 ¢ R.
4. f I'+=x : R, then x:R € I.
5 IfIM'E Ax:Ty.to @ R, then

Inversion

Lemma:
1. If [= true : R, then R = Bool.
2. If '+ false : R, then R = Bool.
3. If T=4if t; then t, else t3 : R, then[t7 : Bool and
INFty,t3 ¢ R.
4. f I'+=x : R, then x:R € I.
5 IfIM'E Ax:Ty.to : R, then R = T{—Ry for some Ry with

I, x:T1 Ft2 : Ro.

Inversion

Lemma:

1.
2.
3.

If [+ true : R, then R = Bool.

If [+ false : R, then R = Bool.

If [+ if t; then t, else t3 : R, then [t; : Bool and
[+ to,t3 : R.

IfF'-x: R, thenx:Rel.

If = Ax:Tq.t> : R, then R = T;—R» for some Ry with

I, x:T1 Ft2 : Ro.

If =ty to : R, then

Inversion

Lemma:
1. If [= true : R, then R = Bool.
2. If '+ false : R, then R = Bool.
3. If T=4if t; then t, else t3 : R, then[t7 : Bool and
INFty,t3 ¢ R.
4. f I'+=x : R, then x:R € I.
5 IfIM'E Ax:Ty.to : R, then R = T{—Ry for some Ry with

I, x:T1 Ft2 : Ro.

If '=t1 to : R, then there is some type T1; such that
[ty :Tyg—Rand Nty @ Tqq.

Canonical Forms

Lemma:

Canonical Forms

Lemma:

1. If v is a value of type Bool, then

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1—T», then

Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T;—T», then v has the form A\x:T;.to.

Progress

Theorem: Suppose t is a closed, well-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with
t— t.

Proof: By induction

Progress

Theorem: Suppose t is a closed, well-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with
t— t.

Proof: By induction on typing derivations.

Progress

Theorem: Suppose t is a closed, well-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with
t— t.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.

Progress

Theorem: Suppose t is a closed, well-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with
t— t.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.

Consider the case for application, where t = t1 t, with

Fty 1 Ty1—Typ and =ty @ Tq1.

Progress

Theorem: Suppose t is a closed, well-typed term (thatis, -t : T
for some T). Then either t is a value or else there is some t’ with
t— t.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.

Consider the case for application, where t = t1 t, with

1ty : Ti1—Ti2 and =ty @ T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t».

Preservation

Theorem: If Tt :Tandt — t/, then [Ft/: T.
Proof: By induction on typing derivations.

Preservation

Theorem: If Tt :Tandt — t/, then [Ft/: T.
Proof: By induction on typing derivations. Cases:

» T-TRUE:
» T-FALSE:
» T-IF:

» T-VAR:
» T-ABs:
» T-APP:

Preservation

Theorem: If Tt :Tandt — t/, then [Ft/: T.
Proof: By induction on typing derivations. Cases:

» T-TRUE: Same as last seminar.
» T-FALSE: Same as last seminar.
» T-IF: Same as last seminar.

» T-VAR:

» T-ABs:

» T-APP:

Preservation

Theorem: If Tt :Tandt — t/, then [Ft/: T.
Proof: By induction on typing derivations. Cases:

» T-TRUE: Same as last seminar.
» T-FALSE: Same as last seminar.
» T-IF: Same as last seminar.

» T-VAR: There exist no t — t’.
» T-ABs:

» T-APP:

Preservation

Theorem: If Tt :Tandt — t/, then [Ft/: T.
Proof: By induction on typing derivations. Cases:

» T-TRUE: Same as last seminar.
» T-FALSE: Same as last seminar.
» T-IF: Same as last seminar.

» T-VAR: There exist no t — t’.
» T-ABS: There exist no t — t’.
» T-APP:

Preservation

Theorem: If Tt :Tandt — t/, then [Ft/: T.
Proof: By induction on typing derivations. Cases:

» T-TRUE: Same as last seminar.
» T-FALSE: Same as last seminar.
» T-IF: Same as last seminar.

» T-VAR: There exist not — t’.
» T-ABs: There exist no t — t’.
» T-App: WTF!

Preservation

Theorem: If Tt :Tandt — t/, then [Ft/: T.
Proof: By induction on typing derivations. Cases:

» T-TRUE: Same as last seminar.
» T-FALSE: Same as last seminar.
» T-IF: Same as last seminar.

» T-VAR: There exist not — t’.
» T-ABs: There exist no t — t’.
» T-App: Whiteboard To Fors!

MEt1:T11 — T2 M+t : Ty

Ft1ty:Tio

Substitution

Definition:
[x — s]x =s
s sly —y iy #x
[x — s](A\y.t1) = Ay.[x+— s]t1 if y #x

and y ¢ FV(s)
[x—s](t1t2) = ([x+ s]t1) ([x — s]t2)

The “Substitution Lemma”

Lemma: Types are preserved under substitition.

Thatis, if I, x:SFHt:Tand s : S, then T+ [x+ s]t @ T,

Proof: ...

Weakening and Permutation
Two other lemmas will be useful.

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If T =t : Tand x ¢ dom(l"), then ', x:Stt : T.

Weakening and Permutation
Two other lemmas will be useful.

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If T =t : Tand x ¢ dom(l"), then ', x:Stt : T.

Permutation tells us that the order of assumptions in (the list) I
does not matter.

Lemma: If T =t : T and A is a permutation of [, then A+t : T.

Weakening and Permutation
Two other lemmas will be useful.

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If T =t : Tand x ¢ dom(l"), then ', x:Stt : T.
Moreover, the latter derivation has the same depth as the former.
Permutation tells us that the order of assumptions in (the list) I
does not matter.

Lemma: If [=t : T and A is a permutation of [, then At : T.

Moreover, the latter derivation has the same depth as the former.

The “Substitution Lemma”
Lemma: If [, x:Skt :Tand ks : S, thenlF [x+ st : T.

l.e., “Types are preserved under substitition.”

The “Substitution Lemma”
Lemma: If [, x:Skt :Tand ks : S, thenlF [x+ st : T.

Proof: By induction on the derivation of [, x:SF t : T. Proceed
by cases on the final typing rule used in the derivation.

The “Substitution Lemma”

Lemma: If [, x:Skt :Tand ks : S, thenlF [x+ st : T.

Proof: By induction on the derivation of [, x:SF t : T. Proceed
by cases on the final typing rule used in the derivation.
Case T-APP: t=1t1 to

I x:SEty: Tr—Ty

I x:SkEty : Ty

T=T;
By the induction hypothesis, I - [x > s]|t; : To—T; and
[[x+ s]ty @ To. By T-APP, [F [x > s|t1 [x— s]t2 : T, i.e,
I+ [X — S](t1 t2) . T.

The “Substitution Lemma”
Lemma: If [, x:Skt :Tand ks : S, thenlF [x+ st : T.

Proof: By induction on the derivation of [, x:SF t : T. Proceed
by cases on the final typing rule used in the derivation.

Case T-VAR: t=2z

with z: T € (T, x:8)
There are two sub-cases to consider, depending on whether z is x
or another variable. If z = x, then [x + s]z = s. The required
result is then I = s : S, which is among the assumptions of the
lemma. Otherwise, [x > s|z = z, and the desired result is
immediate.

The “Substitution Lemma”
Lemma: If [, x:Skt :Tand ks : S, thenlF [x+ st : T.

Proof: By induction on the derivation of [, x:SF t : T. Proceed
by cases on the final typing rule used in the derivation.
Case T-ABs: t =)\ytTg .t T=Ty—T;

[x:8,y:Tokty : Ty
By our conventions on choice of bound variable names, we may
assume x # y and y ¢ FV/(s). Using permutation on the given
subderivation, we obtain I, y:To, x:SF t1 : T1. Using weakening
on the other given derivation ([- s : S), we obtain
[,y:To s : S. Now, by the induction hypothesis,
M y:To b [x+ s|ty : T;. By T-ABS,
[Ay:To. [x+> s]ty @ To—Ty, i.e. (by the definition of
substitution), [[x — s|Ay:To. t1 @ To—Ty.

The “Substitution Lemma”
Lemma: If [, x:Skt :Tand ks : S, thenlF [x+ st : T.

l.e., “Types are preserved under substitition.”

Summary: Preservation

Theorem: If Tt : Tand t — t/, then [¢t/ : T.

Lemmas to prove:
> Weakening
» Permutation
» Substitution preserves types

» Reduction preserves types (i.e., preservation)

Review: Type Systems

To define and verify a type system, you must:
1. Define types
2. Specify typing rules

3. Prove soundness: progress and preservation

