
Properties of λ→
Seminar 4

Niklas Fors, Gustav Cedersjö
Most slides “borrowed” from Martin Odersky

March 14, 2012



Repetition



Untyped lambda-calculus with booleans

t ::= terms
x variable
λx.t abstraction
t t application
true constant true
false constant false
if t then t else t conditional

v ::= values
λx.t abstraction value
true true value
false false value



Evaluation Rules

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(E-If)

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

t2 −→ t′2
v1 t2 −→ v1 t

′
2

(E-App2)

(λx :T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)



“Simple Types”

T ::= types
Bool type of booleans
T→T types of functions

What are some examples?



Typing rules

Γ `true : Bool (T-True)

Γ `false : Bool (T-False)

Γ `t1 : Bool Γ `t2 : T Γ `t3 : T

Γ `if t1 then t2 else t3 : T
(T-If)

Γ, x:T1 `t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ `x : T
(T-Var)

Γ `t1 : T11→T12 Γ `t2 : T11

Γ `t1 t2 : T12
(T-App)



Properties of λ→
The fundamental property of the type system we have just defined
is soundness with respect to the operational semantics.

1. Progress: A closed, well-typed term is not stuck

If ` t : T, then either t is a value or else t −→ t′

for some t′.

2. Preservation: Types are preserved by one-step evaluation

If Γ ` t : T and t −→ t′, then Γ ` t′ : T.



Proving progress

Same steps as before...

I inversion lemma for typing relation

I canonical forms lemma

I progress theorem



Proving progress

Same steps as before...

I inversion lemma for typing relation

I canonical forms lemma

I progress theorem



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then

x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then

R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then

there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then

v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then

v has the form λx:T1.t2.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction

on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on typing derivations.

The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.

Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11.

By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2.

If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.
Proof: By induction on typing derivations.

Cases:

I T-True:

Same as last seminar.

I T-False:

Same as last seminar.

I T-If:

Same as last seminar.

I T-Var:

There exist no t −→ t′.

I T-Abs:

There exist no t −→ t′.

I T-App:

WTF!

Γ ` t1 : T11 → T12 Γ ` t2 : T11
Γ ` t1 t2 : T12



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.
Proof: By induction on typing derivations. Cases:

I T-True:

Same as last seminar.

I T-False:

Same as last seminar.

I T-If:

Same as last seminar.

I T-Var:

There exist no t −→ t′.

I T-Abs:

There exist no t −→ t′.

I T-App:

WTF!

Γ ` t1 : T11 → T12 Γ ` t2 : T11
Γ ` t1 t2 : T12



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.
Proof: By induction on typing derivations. Cases:

I T-True: Same as last seminar.

I T-False: Same as last seminar.

I T-If: Same as last seminar.

I T-Var:

There exist no t −→ t′.

I T-Abs:

There exist no t −→ t′.

I T-App:

WTF!

Γ ` t1 : T11 → T12 Γ ` t2 : T11
Γ ` t1 t2 : T12



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.
Proof: By induction on typing derivations. Cases:

I T-True: Same as last seminar.

I T-False: Same as last seminar.

I T-If: Same as last seminar.

I T-Var: There exist no t −→ t′.
I T-Abs:

There exist no t −→ t′.

I T-App:

WTF!

Γ ` t1 : T11 → T12 Γ ` t2 : T11
Γ ` t1 t2 : T12



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.
Proof: By induction on typing derivations. Cases:

I T-True: Same as last seminar.

I T-False: Same as last seminar.

I T-If: Same as last seminar.

I T-Var: There exist no t −→ t′.
I T-Abs: There exist no t −→ t′.
I T-App:

WTF!

Γ ` t1 : T11 → T12 Γ ` t2 : T11
Γ ` t1 t2 : T12



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.
Proof: By induction on typing derivations. Cases:

I T-True: Same as last seminar.

I T-False: Same as last seminar.

I T-If: Same as last seminar.

I T-Var: There exist no t −→ t′.
I T-Abs: There exist no t −→ t′.
I T-App: WTF!

Γ ` t1 : T11 → T12 Γ ` t2 : T11
Γ ` t1 t2 : T12



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.
Proof: By induction on typing derivations. Cases:

I T-True: Same as last seminar.

I T-False: Same as last seminar.

I T-If: Same as last seminar.

I T-Var: There exist no t −→ t′.
I T-Abs: There exist no t −→ t′.
I T-App: Whiteboard To Fors!

Γ ` t1 : T11 → T12 Γ ` t2 : T11
Γ ` t1 t2 : T12



Substitution

Definition:

[x 7→ s]x = s

[x 7→ s]y = y if y 6= x

[x 7→ s](λy.t1) = λy.[x 7→ s]t1 if y 6= x

and y /∈ FV (s)

[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t2)



The “Substitution Lemma”

Lemma: Types are preserved under substitition.

That is, if Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: ...



Weakening and Permutation

Two other lemmas will be useful.

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.



Weakening and Permutation

Two other lemmas will be useful.

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.



Weakening and Permutation

Two other lemmas will be useful.

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

I.e., “Types are preserved under substitition.”

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.

Case T-App: t = t1 t2
Γ, x:S ` t1 : T2→T1
Γ, x:S ` t2 : T2
T = T1

By the induction hypothesis, Γ ` [x 7→ s]t1 : T2→T1 and
Γ ` [x 7→ s]t2 : T2. By T-App, Γ ` [x 7→ s]t1 [x 7→ s]t2 : T, i.e.,
Γ ` [x 7→ s](t1 t2) : T.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.

Case T-Var: t = z

with z:T ∈ (Γ, x:S)

There are two sub-cases to consider, depending on whether z is x
or another variable. If z = x, then [x 7→ s]z = s. The required
result is then Γ ` s : S, which is among the assumptions of the
lemma. Otherwise, [x 7→ s]z = z, and the desired result is
immediate.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.

Case T-Abs: t = λy:T2.t1 T = T2→T1
Γ, x:S, y:T2 ` t1 : T1

By our conventions on choice of bound variable names, we may
assume x 6= y and y /∈ FV(s). Using permutation on the given
subderivation, we obtain Γ, y:T2, x:S ` t1 : T1. Using weakening
on the other given derivation (Γ ` s : S), we obtain
Γ, y:T2 ` s : S. Now, by the induction hypothesis,
Γ, y:T2 ` [x 7→ s]t1 : T1. By T-Abs,
Γ ` λy:T2. [x 7→ s]t1 : T2→T1, i.e. (by the definition of
substitution), Γ ` [x 7→ s]λy:T2. t1 : T2→T1.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

I.e., “Types are preserved under substitition.”

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.



Summary: Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Lemmas to prove:

I Weakening

I Permutation

I Substitution preserves types

I Reduction preserves types (i.e., preservation)



Review: Type Systems

To define and verify a type system, you must:

1. Define types

2. Specify typing rules

3. Prove soundness: progress and preservation


