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Most slides “borrowed” from Martin Odersky

March 14, 2012



Repetition



Untyped lambda-calculus with booleans

t ::= terms
x variable
λx.t abstraction
t t application
true constant true
false constant false
if t then t else t conditional

v ::= values
λx.t abstraction value
true true value
false false value



Evaluation Rules

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(E-If)

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

t2 −→ t′2
v1 t2 −→ v1 t

′
2

(E-App2)

(λx :T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)



“Simple Types”

T ::= types
Bool type of booleans
T→T types of functions

What are some examples?



Typing rules

Γ `true : Bool (T-True)

Γ `false : Bool (T-False)

Γ `t1 : Bool Γ `t2 : T Γ `t3 : T

Γ `if t1 then t2 else t3 : T
(T-If)

Γ, x:T1 `t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ `x : T
(T-Var)

Γ `t1 : T11→T12 Γ `t2 : T11

Γ `t1 t2 : T12
(T-App)



Properties of λ→
The fundamental property of the type system we have just defined
is soundness with respect to the operational semantics.

1. Progress: A closed, well-typed term is not stuck

If ` t : T, then either t is a value or else t −→ t′

for some t′.

2. Preservation: Types are preserved by one-step evaluation

If Γ ` t : T and t −→ t′, then Γ ` t′ : T.



Proving progress

Same steps as before...

I inversion lemma for typing relation

I canonical forms lemma

I progress theorem
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Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.
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Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.
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Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction

on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.
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Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.
Proof: By induction on typing derivations.

Cases:

I T-True:

Same as last seminar.

I T-False:

Same as last seminar.

I T-If:

Same as last seminar.

I T-Var:

There exist no t −→ t′.

I T-Abs:

There exist no t −→ t′.

I T-App:

WTF!

Γ ` t1 : T11 → T12 Γ ` t2 : T11
Γ ` t1 t2 : T12
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Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.
Proof: By induction on typing derivations. Cases:

I T-True: Same as last seminar.
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Γ ` t1 : T11 → T12 Γ ` t2 : T11
Γ ` t1 t2 : T12



Substitution

Definition:

[x 7→ s]x = s

[x 7→ s]y = y if y 6= x

[x 7→ s](λy.t1) = λy.[x 7→ s]t1 if y 6= x

and y /∈ FV (s)

[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t2)



The “Substitution Lemma”

Lemma: Types are preserved under substitition.

That is, if Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: ...



Weakening and Permutation

Two other lemmas will be useful.

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.
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The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.

Case T-Var: t = z

with z:T ∈ (Γ, x:S)

There are two sub-cases to consider, depending on whether z is x
or another variable. If z = x, then [x 7→ s]z = s. The required
result is then Γ ` s : S, which is among the assumptions of the
lemma. Otherwise, [x 7→ s]z = z, and the desired result is
immediate.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.
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By our conventions on choice of bound variable names, we may
assume x 6= y and y /∈ FV(s). Using permutation on the given
subderivation, we obtain Γ, y:T2, x:S ` t1 : T1. Using weakening
on the other given derivation (Γ ` s : S), we obtain
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The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

I.e., “Types are preserved under substitition.”

Proof: By induction on the derivation of Γ, x:S ` t : T. Proceed
by cases on the final typing rule used in the derivation.



Summary: Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Lemmas to prove:

I Weakening

I Permutation

I Substitution preserves types

I Reduction preserves types (i.e., preservation)



Review: Type Systems

To define and verify a type system, you must:

1. Define types

2. Specify typing rules

3. Prove soundness: progress and preservation


