# Properties of $\lambda_{\rightarrow}$ Seminar 4

Niklas Fors, Gustav Cedersjö Most slides "borrowed" from Martin Odersky

March 14, 2012

# Repetition

# Untyped lambda-calculus with booleans

```
t ::=
                                                terms
                                                  variable
        X
        \lambda x . t.
                                                  abstraction
                                                  application
        t t
                                                  constant true
        true
                                                  constant false
        false
                                                  conditional
        if t then t else t
                                                values
        \lambda x.t
                                                  abstraction value
                                                  true value
        true
                                                  false value
        false
```

## **Evaluation Rules**

if true then 
$$t_2$$
 else  $t_3 \longrightarrow t_2$  (E-IFTRUE)

if false then  $t_2$  else  $t_3 \longrightarrow t_3$  (E-IFFALSE)

$$\frac{t_1 \longrightarrow t_1'}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \longrightarrow \text{if } t_1' \text{ then } t_2 \text{ else } t_3} \qquad \text{(E-IF)}$$

$$\frac{t_1 \longrightarrow t_1'}{t_1 t_2 \longrightarrow t_1' t_2} \qquad \text{(E-APP1)}$$

$$\frac{t_2 \longrightarrow t_2'}{v_1 t_2 \longrightarrow v_1 t_2'} \qquad \text{(E-APP2)}$$

$$(\lambda x: T_{11}.t_{12}) v_2 \longrightarrow [x \mapsto v_2]t_{12} \qquad \text{(E-APPABS)}$$

# "Simple Types"

```
 \begin{array}{ccc} T & ::= & \\ & \text{Bool} \\ & T {\rightarrow} T \end{array}
```

types type of booleans types of functions

What are some examples?

# Typing rules

$$\begin{array}{c} \Gamma \vdash \text{true} : \text{Bool} & (\text{T-True}) \\ \Gamma \vdash \text{false} : \text{Bool} & (\text{T-False}) \\ \hline \\ \frac{\Gamma \vdash \text{t}_1 : \text{Bool}}{\Gamma \vdash \text{t}_1 : \text{Bool}} & \Gamma \vdash \text{t}_2 : T & \Gamma \vdash \text{t}_3 : T \\ \hline \\ \frac{\Gamma \vdash \text{if}}{\Gamma \vdash \text{if}} & \text{t}_1 & \text{then} & \text{t}_2 & \text{else} & \text{t}_3 : T \\ \hline \\ \frac{\Gamma, \, \text{x} : T_1 \vdash \text{t}_2 : T_2}{\Gamma \vdash \lambda \text{x} : T_1 \cdot \text{t}_2 : T_1 \rightarrow T_2} & (\text{T-Abs}) \\ \hline \\ \frac{\text{x} : T \in \Gamma}{\Gamma \vdash \text{k}_1 : T_{11} \rightarrow T_{12}} & \Gamma \vdash \text{t}_2 : T_{11} \\ \hline \\ \frac{\Gamma \vdash \text{t}_1 : T_{11} \rightarrow T_{12}}{\Gamma \vdash \text{t}_1 : T_{12}} & \Gamma \vdash \text{t}_2 : T_{11} \\ \hline \end{array} \quad \text{(T-App)}$$

# Properties of $\lambda_{\rightarrow}$

The fundamental property of the type system we have just defined is *soundness* with respect to the operational semantics.

- 1. Progress: A closed, well-typed term is not stuck If  $\vdash t : T$ , then either t is a value or else  $t \longrightarrow t'$  for some t'.
- 2. Preservation: Types are preserved by one-step evaluation If  $\Gamma \vdash t : T$  and  $t \longrightarrow t'$ , then  $\Gamma \vdash t' : T$ .

# Proving progress

Same steps as before...

# Proving progress

Same steps as before...

- ▶ inversion lemma for typing relation
- canonical forms lemma
- progress theorem

- 1. If  $\Gamma \vdash \text{true} : R$ , then R = Bool.
- 2. If  $\Gamma \vdash false : R$ , then R = Bool.
- 3. If  $\Gamma \vdash$  if  $t_1$  then  $t_2$  else  $t_3 : R$ , then  $\Gamma \vdash t_1 :$  Bool and  $\Gamma \vdash t_2, t_3 : R$ .

- 1. If  $\Gamma \vdash \text{true} : R$ , then R = Bool.
- 2. If  $\Gamma \vdash false : R$ , then R = Bool.
- 3. If  $\Gamma \vdash$  if  $t_1$  then  $t_2$  else  $t_3:R$ , then  $\Gamma \vdash t_1:Bool$  and  $\Gamma \vdash t_2,t_3:R.$
- 4. If  $\Gamma \vdash x : R$ , then

- 1. If  $\Gamma \vdash \text{true} : R$ , then R = Bool.
- 2. If  $\Gamma \vdash false : R$ , then R = Bool.
- 3. If  $\Gamma \vdash$  if  $t_1$  then  $t_2$  else  $t_3:R$ , then  $\Gamma \vdash t_1:Bool$  and  $\Gamma \vdash t_2,t_3:R$ .
- 4. If  $\Gamma \vdash x : R$ , then  $x : R \in \Gamma$ .

- 1. If  $\Gamma \vdash \text{true} : R$ , then R = Bool.
- 2. If  $\Gamma \vdash false : R$ , then R = Bool.
- 3. If  $\Gamma \vdash$  if  $t_1$  then  $t_2$  else  $t_3:R$ , then  $\Gamma \vdash t_1:Bool$  and  $\Gamma \vdash t_2,t_3:R$ .
- 4. If  $\Gamma \vdash x : R$ , then  $x : R \in \Gamma$ .
- 5. If  $\Gamma \vdash \lambda x:T_1.t_2:R$ , then

- 1. If  $\Gamma \vdash \text{true} : R$ , then R = Bool.
- 2. If  $\Gamma \vdash false : R$ , then R = Bool.
- 3. If  $\Gamma \vdash$  if  $t_1$  then  $t_2$  else  $t_3:R$ , then  $\Gamma \vdash t_1:Bool$  and  $\Gamma \vdash t_2,t_3:R$ .
- 4. If  $\Gamma \vdash x : R$ , then  $x : R \in \Gamma$ .
- 5. If  $\Gamma \vdash \lambda x:T_1.t_2:R$ , then  $R=T_1 \rightarrow R_2$  for some  $R_2$  with  $\Gamma, x:T_1 \vdash t_2:R_2$ .

- 1. If  $\Gamma \vdash \text{true} : R$ , then R = Bool.
- 2. If  $\Gamma \vdash false : R$ , then R = Bool.
- 3. If  $\Gamma \vdash$  if  $t_1$  then  $t_2$  else  $t_3:R$ , then  $\Gamma \vdash t_1:Bool$  and  $\Gamma \vdash t_2,t_3:R$ .
- 4. If  $\Gamma \vdash x : R$ , then  $x : R \in \Gamma$ .
- 5. If  $\Gamma \vdash \lambda x: T_1.t_2: R$ , then  $R = T_1 \rightarrow R_2$  for some  $R_2$  with  $\Gamma, \, x: T_1 \vdash t_2: R_2$ .
- 6. If  $\Gamma \vdash t_1 \ t_2 : \mathbb{R}$ , then

- 1. If  $\Gamma \vdash \text{true} : R$ , then R = Bool.
- 2. If  $\Gamma \vdash false : R$ , then R = Bool.
- 3. If  $\Gamma \vdash$  if  $t_1$  then  $t_2$  else  $t_3:R$ , then  $\Gamma \vdash t_1:Bool$  and  $\Gamma \vdash t_2,t_3:R$ .
- 4. If  $\Gamma \vdash x : R$ , then  $x : R \in \Gamma$ .
- 5. If  $\Gamma \vdash \lambda x: T_1 \cdot t_2 : R$ , then  $R = T_1 \rightarrow R_2$  for some  $R_2$  with  $\Gamma, x: T_1 \vdash t_2 : R_2$ .
- 6. If  $\Gamma \vdash t_1 \ t_2 : R$ , then there is some type  $T_{11}$  such that  $\Gamma \vdash t_1 : T_{11} \rightarrow R$  and  $\Gamma \vdash t_2 : T_{11}$ .

#### Lemma:

1. If v is a value of type Bool, then

#### Lemma:

1. If v is a value of type Bool, then v is either true or false.

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type  $T_1 \rightarrow T_2$ , then

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type  $T_1 \rightarrow T_2$ , then v has the form  $\lambda x: T_1 \cdot t_2$ .

Theorem: Suppose t is a closed, well-typed term (that is,  $\vdash$  t : T for some T). Then either t is a value or else there is some t' with t  $\longrightarrow$  t'.

Proof: By induction

Theorem: Suppose t is a closed, well-typed term (that is,  $\vdash$  t : T for some T). Then either t is a value or else there is some t' with t  $\longrightarrow$  t'.

*Proof:* By induction on typing derivations.

Theorem: Suppose t is a closed, well-typed term (that is,  $\vdash t : T$  for some T). Then either t is a value or else there is some t' with  $t \longrightarrow t'$ .

*Proof:* By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Theorem: Suppose t is a closed, well-typed term (that is,  $\vdash$  t : T for some T). Then either t is a value or else there is some t' with t  $\longrightarrow$  t'.

*Proof:* By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where  $\mathbf{t} = \mathbf{t}_1 \ \mathbf{t}_2$  with  $\vdash \mathbf{t}_1 : T_{11} \rightarrow T_{12}$  and  $\vdash \mathbf{t}_2 : T_{11}$ .

Theorem: Suppose t is a closed, well-typed term (that is,  $\vdash$  t : T for some T). Then either t is a value or else there is some t' with t  $\longrightarrow$  t'.

*Proof:* By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where  $\mathbf{t} = \mathbf{t}_1 \ \mathbf{t}_2$  with  $\vdash \mathbf{t}_1 : T_{11} {\rightarrow} T_{12}$  and  $\vdash \mathbf{t}_2 : T_{11}$ . By the induction hypothesis, either  $\mathbf{t}_1$  is a value or else it can make a step of evaluation, and likewise  $\mathbf{t}_2$ .

Theorem: If  $\Gamma \vdash t : T$  and  $t \longrightarrow t'$ , then  $\Gamma \vdash t' : T$ .

*Proof:* By induction on typing derivations.

- ► T-True:
- ► T-FALSE:
- ► T-IF:
- ► T-VAR:
- ► T-ABS:
- ► T-App:

- ► T-TRUE: Same as last seminar.
- ► T-FALSE: Same as last seminar.
- ► T-IF: Same as last seminar.
- ► T-VAR:
- ► T-Abs:
- ► T-App:

- ► T-TRUE: Same as last seminar.
- ► T-FALSE: Same as last seminar.
- ► T-IF: Same as last seminar.
- ▶ T-VAR: There exist no  $t \longrightarrow t'$ .
- ► T-Abs:
- ► T-App:

- ► T-TRUE: Same as last seminar.
- ► T-FALSE: Same as last seminar.
- ► T-IF: Same as last seminar.
- ▶ T-VAR: There exist no  $t \longrightarrow t'$ .
- ▶ T-ABS: There exist no  $t \longrightarrow t'$ .
- ► T-App:

- ► T-TRUE: Same as last seminar.
- ► T-FALSE: Same as last seminar.
- ► T-IF: Same as last seminar.
- ▶ T-VAR: There exist no  $t \longrightarrow t'$ .
- ▶ T-ABS: There exist no  $t \longrightarrow t'$ .
- ► T-App: WTF!

- ► T-TRUE: Same as last seminar.
- ► T-FALSE: Same as last seminar.
- ► T-IF: Same as last seminar.
- ▶ T-VAR: There exist no  $t \longrightarrow t'$ .
- ▶ T-ABS: There exist no  $t \longrightarrow t'$ .
- ► T-APP: Whiteboard To Fors!

$$\frac{\Gamma \vdash \mathsf{t}_1 : \mathsf{T}_{11} \to \mathsf{T}_{12} \qquad \Gamma \vdash \mathsf{t}_2 : \mathsf{T}_{11}}{\Gamma \vdash \mathsf{t}_1 \; \mathsf{t}_2 : \mathsf{T}_{12}}$$

## Substitution

#### Definition:

Lemma: Types are preserved under substitition.

That is, if  $\Gamma, x: S \vdash t : T$  and  $\Gamma \vdash s : S$ , then  $\Gamma \vdash [x \mapsto s]t : T$ .

Proof: ...

# Weakening and Permutation

Two other lemmas will be useful.

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

Lemma: If  $\Gamma \vdash t : T$  and  $x \notin dom(\Gamma)$ , then  $\Gamma, x : S \vdash t : T$ .

# Weakening and Permutation

Two other lemmas will be useful.

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

```
Lemma: If \Gamma \vdash t : T and x \notin dom(\Gamma), then \Gamma, x : S \vdash t : T.
```

Permutation tells us that the order of assumptions in (the list)  $\Gamma$  does not matter.

Lemma: If  $\Gamma \vdash t : T$  and  $\Delta$  is a permutation of  $\Gamma$ , then  $\Delta \vdash t : T$ .

# Weakening and Permutation

Two other lemmas will be useful.

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

Lemma: If  $\Gamma \vdash t : T$  and  $x \notin dom(\Gamma)$ , then  $\Gamma, x : S \vdash t : T$ .

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list)  $\Gamma$  does not matter.

Lemma: If  $\Gamma \vdash t : T$  and  $\Delta$  is a permutation of  $\Gamma$ , then  $\Delta \vdash t : T$ .

Moreover, the latter derivation has the same depth as the former.

Lemma: If  $\Gamma$ , x:S  $\vdash$  t : T and  $\Gamma$   $\vdash$  s : S, then  $\Gamma$   $\vdash$  [x  $\mapsto$  s]t : T.

I.e., "Types are preserved under substitition."

Lemma: If  $\Gamma$ ,  $x:S \vdash t:T$  and  $\Gamma \vdash s:S$ , then  $\Gamma \vdash [x \mapsto s]t:T$ .

*Proof:* By induction on the derivation of  $\Gamma$ , x:S  $\vdash$  t: T. Proceed by cases on the final typing rule used in the derivation.

Lemma: If  $\Gamma$ , x:S  $\vdash$  t : T and  $\Gamma$   $\vdash$  s : S, then  $\Gamma$   $\vdash$  [x  $\mapsto$  s]t : T.

*Proof:* By induction on the derivation of  $\Gamma$ ,  $x:S \vdash t:T$ . Proceed by cases on the final typing rule used in the derivation.

```
Case T-APP: \begin{array}{ccc} \textbf{t} = \textbf{t}_1 & \textbf{t}_2 \\ & \Gamma, \textbf{x} : \textbf{S} \vdash \textbf{t}_1 : \textbf{T}_2 {\rightarrow} \textbf{T}_1 \\ & \Gamma, \textbf{x} : \textbf{S} \vdash \textbf{t}_2 : \textbf{T}_2 \\ & \textbf{T} = \textbf{T}_1 \end{array}
```

By the induction hypothesis,  $\Gamma \vdash [x \mapsto s]t_1 : T_2 \rightarrow T_1$  and  $\Gamma \vdash [x \mapsto s]t_2 : T_2$ . By T-APP,  $\Gamma \vdash [x \mapsto s]t_1 \ [x \mapsto s]t_2 : T$ , i.e.,  $\Gamma \vdash [x \mapsto s](t_1 \ t_2) : T$ .

Lemma: If  $\Gamma$ , x:S  $\vdash$  t : T and  $\Gamma$   $\vdash$  s : S, then  $\Gamma$   $\vdash$  [x  $\mapsto$  s]t : T.

*Proof:* By induction on the derivation of  $\Gamma$ ,  $x:S \vdash t:T$ . Proceed by cases on the final typing rule used in the derivation.

```
Case T-VAR: t = z with z:T \in (\Gamma, x:S)
```

There are two sub-cases to consider, depending on whether z is x or another variable. If z=x, then  $[x\mapsto s]z=s$ . The required result is then  $\Gamma\vdash s:S$ , which is among the assumptions of the lemma. Otherwise,  $[x\mapsto s]z=z$ , and the desired result is immediate.

Lemma: If  $\Gamma$ , x:S  $\vdash$  t : T and  $\Gamma$   $\vdash$  s : S, then  $\Gamma$   $\vdash$  [x  $\mapsto$  s]t : T.

*Proof:* By induction on the derivation of  $\Gamma$ ,  $x:S \vdash t:T$ . Proceed by cases on the final typing rule used in the derivation.

Case T-ABS: 
$$t = \lambda y : T_2 . t_1$$
  $T = T_2 \rightarrow T_1$   
 $\Gamma, x : S, y : T_2 \vdash t_1 : T_1$ 

By our conventions on choice of bound variable names, we may assume  $x \neq y$  and  $y \notin FV(s)$ . Using permutation on the given subderivation, we obtain  $\Gamma$ ,  $y:T_2$ ,  $x:S \vdash t_1:T_1$ . Using weakening on the other given derivation ( $\Gamma \vdash s:S$ ), we obtain  $\Gamma$ ,  $y:T_2 \vdash s:S$ . Now, by the induction hypothesis,  $\Gamma$ ,  $y:T_2 \vdash [x \mapsto s]t_1:T_1$ . By T-ABS,  $\Gamma \vdash \lambda y:T_2$ .  $[x \mapsto s]t_1:T_2 \rightarrow T_1$ , i.e. (by the definition of substitution),  $\Gamma \vdash [x \mapsto s]\lambda y:T_2$ .  $t_1:T_2 \rightarrow T_1$ .

```
Lemma: If \Gamma, x:S \vdash t : T and \Gamma \vdash s : S, then \Gamma \vdash [x \mapsto s]t : T.
```

I.e., "Types are preserved under substitition."

# Summary: Preservation

```
Theorem: If \Gamma \vdash t : T and t \longrightarrow t', then \Gamma \vdash t' : T.
```

#### Lemmas to prove:

- Weakening
- Permutation
- Substitution preserves types
- ▶ Reduction preserves types (i.e., preservation)

# Review: Type Systems

To define and verify a type system, you must:

- 1. Define types
- 2. Specify typing rules
- 3. Prove soundness: progress and preservation