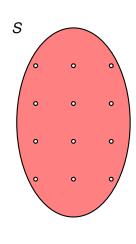
Type Systems Course

Preliminaries (Chapter 2)

Jörn Janneck Emma Söderberg

Department of Computer Science Lund University

February 22, 2012



Notation: {...}

By comprehension: $\{x \in S | \ldots\}$

Cardinality / Size: |S| = 12, $|\mathbb{N}| = \aleph_0$

The empty set: ∅

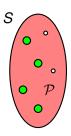
Power set: $\mathcal{P}(T) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}\$ for $T = \{x, y\}$

A set S is countable if there is a one-to-one correspondence to $\mathbb N$

Cartesian product: $X \times Y = \{(x, y) | x \in X \text{ and } y \in Y\}$

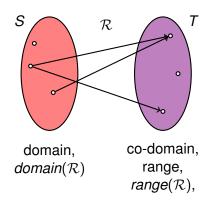
n-place relation: $\mathcal{R} \subseteq \{S_1 \times S_2 \times \ldots \times S_n\}$ elements $s_1 \in S_1$ to $s_n \in S_n$ are related by \mathcal{R} if $(s_1, \ldots, s_n) \in \mathcal{R}$

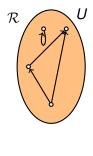
One-place relation / Predicate: $\mathcal{P}(S)$, $\mathcal{P} \subseteq S$



Two-place / Binary relation: SRT $(s,t) \in R$, for $s \in S$, $t \in T$

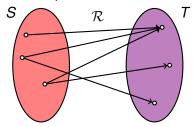
if T = U and S = U, then R is a binary relation on U





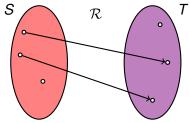
Partial function: \mathcal{R} is a partial function if whenever $(s, t_1) \in \mathcal{R}$ and $(s, t_2) \in \mathcal{R}$ we have $t_1 = t_2$

Is this a partial function?



Partial function: \mathcal{R} is a partial function if whenever $(s, t_1) \in \mathcal{R}$ and $(s, t_2) \in \mathcal{R}$ we have $t_1 = t_2$

What about this one?

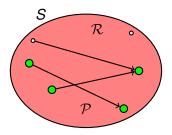


Total function: a partial function \mathcal{R} on S and T is a total function if $domain(\mathcal{R}) = S$

Is this a total function?

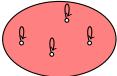
Defined: the partial function \mathcal{R} is *defined* on the argument s if $s \in domain(\mathcal{R})$, also written as $\mathcal{R}(s) \downarrow$

Preserved: if \mathcal{R} is a relation on a set S with a predicate \mathcal{P} , then \mathcal{P} is *preserved by* \mathcal{R} if whenever we have $s_1 \mathcal{R} s_2$ and $\mathcal{P}(s_1)$ we also have $\mathcal{P}(s_2)$

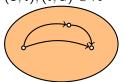


A binary relation \mathcal{R} on S is ...

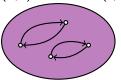
... **reflexive** if $\forall s \in S$ we have $(s, s) \in \mathcal{R}$



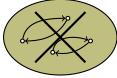
... **transitive** if $\forall s, t, u \in S$ $(s, t), (t, u) \in \mathcal{R} \implies (s, u) \in \mathcal{R}$



... symmetric if $\forall s, t \in S$ $(s,t) \in \mathcal{R} \implies (t,s) \in \mathcal{R}$

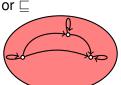


... antisymmetric if $\forall s, t \in S$ $(s,t), (t,s) \in \mathcal{R} \implies t = s$

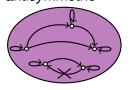


A relation \mathcal{R} on a set S is called a ...

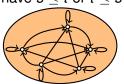
... **preorder** if it is reflexive and transitive, often denoted with \leq



... **partial order** if it is a *preorder* and *antisymmetric*



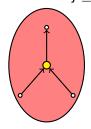
... **total order** if it is a partial order and for each pair $s, t \in S$ we have s < t or t < s

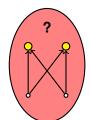


For a partial order \leq on a set S ...

... an element $j \in S$ is a **join** or **least upper bound** if

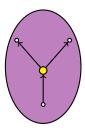
- 1. $s \le j$ and $t \le j$
- 2. for any $k \in S$, where $s \le k$ and $t \le k$, we have $j \le k$





... an element $m \in S$ is a meet or greatest lower bound if

- 1. m < s and m < t
- 2. for any element $n \in S$, where $n \le s$ and $n \le t$, we have $m \le n$



A relation $\mathcal R$ on a set $\mathcal S$ which is *reflexive*, *transitive*, and *symmetric* is called an **equivalence** on $\mathcal S$ (denoted with \sim)

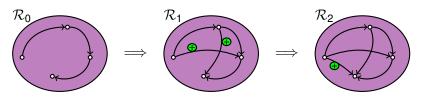


The **reflexive closure** of a relation \mathcal{R} on a set S is the *smallest reflexive* relation \mathcal{R}' that contains \mathcal{R} , $\mathcal{R}' = \mathcal{R} \cup \{(s,s)|s \in S\}$

The **transitive closure** of a relation \mathcal{R} on a set S is the *smallest transitive* relation \mathcal{R}' that contains \mathcal{R} , denoted with $\mathcal{R}^+ = \bigcup_{i \in \mathbb{N}} \mathcal{R}_i$ where

$$\mathcal{R}_0 = \overline{\mathcal{R}}$$

$$\mathcal{R}_{i+1} = \mathcal{R}_i \cup \{(s, u) | \text{for some } t, (s, t) \in \mathcal{R}_i \text{ and } (t, u) \in \mathcal{R}_i \}$$



The **reflexive and transitive closure** is denoted \mathcal{R}^*

A **decreasing chain** on a preorder \leq is a sequence of $s_1, s_2, s_3, ...$ of elements in S such that $s_{i+1} < s_i$ (these may be both finite and inifinite)

A preorder \leq on a set S is called **well-founded** if it contains no infinite decreasing chains, e.g., the preorder \leq on $\{...,-2,-1,0,1,...\}$ is not well-founded

Sequences

A **sequence** is an ordered list of elements, e.g., a, b, c. Order matters, i.e., b, a, c is not the same sequence

A sequence containing the same elements of another sequence, but in a different order, is called a **permutation**

The **length** of a sequence a = 2, 5, 7 is given by |a| = 3

Sequences may be **concat**inated, e.g., 0, a gives us 0, 2, 5, 7