
The GiftWrapper: Programming a Dual-Arm Robot with Lead-Through

Maj Stenmark1, Andreas Stolt2, Elin A. Topp1, Mathias Haage3,
Anders Robertsson4, Klas Nilsson3, and Rolf Johansson5

I. INTRODUCTION

In previous work we presented a force-controlled lead-
through mechanism6 that has made its way into the recently
launched dual-arm ABB robot YuMi [2], [4]. This mech-
anism supports close physical interaction with an industrial
robot arm during setup and programming. With this paper we
intend to share our case-study experiences from program-
ming an ABB YuMi with standard equipment (i.e., basic
electric grippers, no external sensors) as shown in Fig. 1
to wrap gift boxes, using and thus evaluating mainly the
lead-through programming functionality in combination with
the respective ”YuMi Online” app. We would consider the
programming team as semi-experts in terms of industrial
robot programming, as we are quite familiar with the robot
and its tools from a research perspective, but have not too
much experience in programming robots for real shop-floor
conditions in the role of system integrators. The work was
commissioned as a Christmas commercial for a consumer
electronics retailer in Sweden, with a robot offering gift
wrapping services in the shop. The customers would place
their purchased items in a cardboard box of previously
specified and thus standardized measurements, a sheet of
paper would be manually placed in a fixture in front of
the robot and then the box was to be put on top of the
paper in front of the robot. The robot would wrap the gift
as described below and finish by stamping the packet and
decorating it with a gift bow chosen and handed over by
the currently served customer. Hence, the application was
entirely intended as part of an entertaining PR campaign
and not to optimize gift wrapping. Consequently, the cir-
cumstances (e.g., the allotted time frame, short setup and
tear-down cycles) for the development and deployment of the
application turned out to be somewhat nontraditional, forcing
us to find equally nontraditional solutions. Also, we made
use of the robot’s specific physical properties, including the
fact that the seventh redundant degree of freedom in each

1 Dept. of Computer Science, Lund University, Lund, Sweden.
{Maj.Stenmark, Elin Anna.Topp}@cs.lth.se

2 Cognibotics AB, Lund, Sweden. Andreas.Stolt@cognibotics.com
3 Cognibotics AB and Dept. of Computer Science, Lund University, Lund,

Sweden. {Mathias.Haage, Klas}@cognibotics.com
4 Cognibotics AB and Dept. of Automatic Control; LCCC Linnaeus

Center and the eLLIIT Excellence Center at Lund University, Lund, Sweden.
Anders.Robertsson@control.lth.se

5 Dept. of Automatic Control; LCCC Linnaeus Center and
eLLIIT Excellence Center at Lund University, Lund, Sweden.
Rolf.Johansson@control.lth.se

6Finalist for the 2016 euRobotics TechTransfer Award,
http://www.erf2016.eu

Fig. 1. The gift-wrapping setup.

arm could be utilized to achieve unusual, but effective joint
configurations. In the following, we will describe the cir-
cumstances for the application, including the gift-wrapping
process as such, and then discuss our experiences from the
programming process. Here, we will point out open issues
that we identified regarding the usability and support of the
programming tools for the dual-arm and 2x7 degrees of
freedom properties of the robot, focusing on the physical,
lead-through supported kinesthetic teaching.

II. SYSTEM SETUP AND TASK

In this section we will explain the task our application had
to handle together with the challenges we encountered. We
will also explain a number of choices we had to make during
this process that affected the resulting application, many of
which were due to the time constraints we faced both for
the programming and for the setup on location prior to each
deployment.

A. General challenges and issues

The general setup conditions held a number of challenges
already. The time frame available for feasibility analysis,
design, and implementation of the application was limited
to one month. As only one physical instance of the YuMi
robot was to be used throughout the month-long campaign
covering 18 sites throughout Sweden, each new placement
required (almost) daily on-location setup and tear down,
which posed additional requirements in terms of setup times
and robustness regarding the transport by truck in Swedish
winter conditions. These time and robustness constraints
(both for the programming but also for the daily setup)



were the main reason for us not to deploy external sensors
(cameras, force-sensitive fixtures, etc.) for the process, as
they would have added considerable complexity, given the
available programming and system environment.

Additionally, the application as such was challenging due
to different types of uncertainties that needed to be handled.
First, the weight of the boxes varied and despite careful
folding the boxes could slip several centimeters during the
wrapping process which required frequent repositioning of
the box. Secondly, the boxes could be filled to varying
degrees, resulting in the box being more or less rigid (or
even bulging outward), which generated some uncertainty
regarding the exact actual size of the box. Thirdly, paper is
an organic material that folds unexpectedly when deformed
and tears when pulled too hard, which in combination with
the slight variations in box shape and rigidness generated
another level of uncertainty.

B. Lead-through programming and work flow

The above mentioned time and robustness constraints re-
sulted in our decision to go past the offline programming and
simulation phase usually assumed and use only the online
programming techniques both for programming, testing and
debugging. Also, we decided to develop a purely position-
based program, as we did not have the time to adapt the
available force / torque sensory system to our needs. We
settled for very basic error handling capabilities—mainly, the
execution would stop in case of a problem being encountered,
and could only be resumed after an operator corrected the
situation and pressed the resume button. The resulting appli-
cation makes use of all seven degrees of freedom available
in each of the arms, hence, it controls all 14 degrees of
freedom. It also makes somewhat unconventional use of all
parts of the robot arms, e.g., pushing items using the side of
its wrist or fixating a workpiece by pressing down the elbow
while performing a folding movement with the same arm.
This actually imposed constraints on the box size that was
possible to handle, as the robot’s torso is rigid and the height
of the elbow relative to the table top cannot be arbitrarily
adjusted.

C. The resulting application

The resulting packaging process is shown in Figs. 2—4
and a video can be found online [3]. The application required
an on-location setup time within the limits of approximately
1–2 hours and a complete run wrapping one gift took 2 min
and 40 s, proceeding as described in the following. Initially
the robot kept the arms in a perpendicular position and used
the lower parts of the arms to push the box into a predefined
start position. While fixating the box using the padded part
of its right wrist, the robot lifted the paper around the box
with the left gripper, making use of an incision in the table
that let one of the fingers slide under the paper and grip the
edge of the sheet. Now, while the right gripper was used to
fixate the paper edge on top of the box, the left hand picked
up a piece of pre-cut tape. The pieces of tape had a tendency
to stick to the fingers, hence the taping procedure needed to

first attach the tape to the paper and then slide back and forth
to attach it to the top of the box. After attaching the right
side in a similar manner, the package was rotated by 90◦ and
the position was adjusted using the palms and lower parts of
the arm, as the fingers turned out being too sensitive for the
rather high torques needed to reposition the box. Now, both
sides of the package were taken care of running the following
process twice in a mirrored way. Using the grippers, the
paper was pinched into the side flaps typically shaped in
a gift wrapping process (Fig. 3C). These side flaps were
folded around the box using two plastic spatulas depicted
in Fig. 3(R). One arm fixated the box using three contact
points, the elbow, the finger tip and the spatula tip, while the
other arm used the other spatula to fold and straighten the
side flap. While one arm fixated (with the spatula) both side
flaps to the side of the box, the second arm lifted the lower
flap (making use of the incision in the table top) that resulted
from folding the side flaps inward, took over the fixation and
the other arm picked tape which was then placed and finally
firmly attached with the second arm fixating the box from
the opposite side. The packaging was ended with a stamp
and a gift bow. Finally, the finished gift was pushed towards
the customer using the soft pads on the wrists.

III. POSITION BASED ONLINE PROGRAMMING

In this section we will describe the development and pro-
gramming process for the gift wrapping application, focusing
on the opportunities and challenges we were facing regarding
robot and programming tool properties as well as task related
constraints.

As seen from the task perspective, one obvious advantage
of the robot is the redundancy in degrees of freedom, which
we exploited fully. Another advantage is the inherent safety
system, which allowed us to use the physical robot for
programming, debugging and testing, as well as we could
be sure being on the safe side regarding the customers who
were expected to be around (and part of the process) during
execution. This means, we would probably not have been
able to achieve a result as we did in the given time frame
with a robotic system not offering these properties. During
the programming and also during execution, however, we
faced some challenges in using the provided tools, which
we will explain in the following.

A. Physical programming

The robot flexpendant comes with a joystick and the joints,
and target coordinates or the elbow angle can be adjusted
separately. In order to teach the positions, it is, however,
faster to use lead-through programming. In this application,
the robot was in contact with the box with the purpose of
applying small forces to fixate the box or tape the paper.
When using lead-through programming in such a contact
situation, the robot arm had to be held in place by the user
while the position was saved using the GUI. With multiple
contact points, each contact point had to be fixated by the
user and often two hands were needed to position the robot
correctly. Actually, pressing the button to save the position



Fig. 2. L: The robot uses multiple contact points along the lower arms and the tool to push the box into its initial position; C: The table has an incision
to let the robot fingers grip the paper without creasing it; R: One hand fixates the box while the other one folds and tapes the side.

Fig. 3. L: The box is rotated using the side of the grippers and one of the arms as a fixture; C: The paper corners are folded using the fingers; R: The
robot uses pieces of cardboard to fold and straighten the paper around the corners of the box.

Fig. 4. L: The elbow fixates the box while the finger tip push down the paper and the cardboard piece folds the side; C: When taping the side, one hand
holds the paper flaps in place while the other attaches the tape. The other hand will then support the box while the taping hand can rub the tape to secure
it; R: The packaging process ends when the customer hands the robot a bow and the robot attaches it to the wrapped gift.

may thus become a physical challenge. The same shortage of
appendage arises when releasing the brake of an arm to move
it, since the brake button needs to be continuously pressed.
Dual-arm lead-through programming of contact situations
required three operators or an iterative approach.

B. RAPID prototyping

Since the physical system was used to prototype and
test different solutions, the cycle time for testing became
a bottleneck. This was partly due to the application itself
and partly in the system software. The application added
debugging complexity since complete gift wrapping can be
seen as one single long assembly operation. Execution of
the task itself deformed the paper and during the debugging

process, large parts of the program had to be executed in
sequence to take the paper folding into account. As soon
as some error was detected or a change was introduced,
it had to be corrected and debugged before the subsequent
parts of the program could be tested. Many of the positions
were dependent, so if a grip position changed so would not
only influence the following place positions but also the
paper could fold differently in the end of the process. The
complete cycle to update and test a program was therefore
very long. Also, since the programming and testing was
carried out on the same hardware, the programming process
could not be parallelized. In a typical use case, an application
can be tested using simulation software, but paper was not



available in the simulation tool (and would have been too
time-consuming to model and add), so only few parts were
optimized using offline tools. Other challenges were created
by the safety system and the fact that two robot tasks (both
arms’ controlled concurrently) had to be debugged together
(see more on this below). In a more typical scenario, the
spatial coordinates (Cartesian coordinates + rotation) of the
tool are the relevant features of each position and when
objects are moved in the environment, the target positions
can easily be offset.

In our case, the relevant positions were often implicit; e.g.,
the wrist or the elbow was in contact with the box but the
targets were still expressed using the tool point. This meant
that even small changes in object position would require
reprogramming.

C. Safety first

The tools assumed the same safety requirements as for
a classic, unsafe robot, hence the execution and debugging
modes required the user to specifically change controller
states between Auto, Manual and Debug modes or different
execution modes (step-over/continuous), and the allowed
operations were restricted (e.g., debugging is not allowed
in Auto mode). For each debugging operation, there was
additional dialogue or required steps that the programmer had
to take in order to guarantee safe execution. Failing to take
these steps would throw an exception, which in turn had to
be handled by the user before (s)he could attempt to carry out
the originally intended action in a correct manner. Many of
the safety features implemented in the system software seem
redundant when the hardware itself is safe, thus counter-
acting our intentions.

D. Dual-arm robots

Each robot arm has a single point of execution (a program
pointer), and during debugging, the user will have to manu-
ally move the position of the program pointer back and forth
to the correct line of code. As the current system design ex-
pects each robot arm to run its own single threaded program,
synchronization between arms is done using synchronization
points or by specifying pairs of synchronized concurrent
motions. During debugging, both program pointers had to
be monitored so that the arms would not get out of sync.
Synchronized motions often came in sequences and could
only be executed in the correct pairs using forward execution.
Therefore, it required a careful procedure to update a position
or recover from a collision in synchronized steps.

E. Contact point or collision?

The robot has a collision detection system that stops the
robot when too large a torque is needed to reach a target
position (assuming a collision with a human co-worker). This
would render a conflict when, e.g., a somewhat heavier box
had to be pushed into place and held with parts of the arms
not being the tool center point, or when a box was very
crammed and hence bulging, so that the contact point for
taping was reached earlier than expected. We did, however,

not have enough time to evaluate the applicability of a
specific parameter to resolve this issue. Another solution to
this problem would have been a more specific estimation of
contact forces for each arm segment and resulting adaptation
of the position for taping or turning. This is possible given
access to the low-level control signals to evaluate the motor
currents as we showed with a research prototype of the robot
[1]. The methods for estimating forces in the commercial
YuMi are currently under further development.

IV. CONCLUSIONS
From our experiences with the GiftWrapper application

we can state that the robot properties and tools for online
programming, specifically the lead-through programming,
made it possible for us to achieve a reasonable result
under rather pressed conditions, especially considering our
semi-expertise in terms of production line compatible robot
programming. Nevertheless, we faced a number of challenges
in the programming process, indicating that the currently
provided support tools and programming paradigms do not
yet fully support the full exploitation of the robot’s prop-
erties, and the programming requires still some level of
familiarity with the system internals, to achieve the necessary
level of robustness and stability. Although the robot supports
physical interactions during programming and setup, but also
during execution due to its safety system, the interface for
instructing the robot is not yet as intuitively and easily to
apply as these physical interaction properties suggest. Last
but not least, although seemingly a toy problem, the task
of wrapping gifts with a general purpose robot turned out
to be quite challenging, and it yields many properties of
applications we assume to become target applications for
this type of robot, e.g., assembly of flexible parts or general
uncertainties regarding part properties.

ACKNOWLEDGMENT
The GiftWrapper application was initially suggested for

(and then supported by) MediaMarkt Sweden by the market-
ing company Lowe Brindfors in Stockholm. ABB Robotics
provided a YuMi robot on loan for the work, plus valuable
support regarding YuMi programming. The application was
developed and exhibited by Cognibotics AB as a system
integrator. The authors acknowledge the persons involved
in those companies for valuable comments and discussions,
in particular Ivan Lundberg and Daniel Wäppling at ABB
Robotics.

REFERENCES

[1] Linderoth, M., Stolt, A., Robertsson, A., and Johansson, R., Robotic
force estimation using motor torques and modeling of low velocity
friction disturbances. In 2013 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, Tokyo, Japan, November 2013.

[2] Stolt, A., Bagge Carlson, F., Ghazaei, M., Lundberg, I., Robertsson,
I., and Johansson, R., Sensorless friction-compensated passive lead-
through programming for industrial robots. In 2015 IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, Hamburg, Germany, September
2015.

[3] Andreas Stolt and Maj Stenmark. YuMi wraps Christmas gift.
https://youtu.be/ASEtz2M1RiY, 2016. Accessed: 2016-01-20.

[4] ABB YuMi. http://new.abb.com/products/robotics/yumi. Accessed:
2016-03-18.


