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Abstract

In this paper we explain our concept of Interaction and Task
Patterns, and discuss how such patterns can be applied to
support mixed-initiative in symbiotic human-robot interac-
tion both with service and industrial robotic systems.

1 Introduction
Recently, quite some research efforts have been made in
the field of Human-Robot Interaction with industrial robotic
systems, in many cases aiming at systems that would be eas-
ier to handle, to understand, and specifically to program by
their users, reducing the need for robot experts on the shop
floor and ultimately reducing the costs for deploying robotic
systems in manufacturing for small and medium-sized en-
terprises. One example for such research efforts is SMEr-
obotics, the European Robotics Initiative for Strengthening
the Competitiveness of SMEs in Manufacturing by integrat-
ing aspects of cognitive systems (SMErobotics Project Con-
sortium 2012). Within the SMErobotics consortium, one line
of research is focused on the issue of symbiotic human-robot
interaction, aiming to provide means for genuine mixed-
initiative interaction. We assume this as crucial to support
any type of human-machine symbiosis - both parts in the
symbiotic relationship must be allowed and enabled to re-
quest and gather, but also to provide insight into their re-
spective understanding of a situation so that they can benefit
from these insights to solve their task in collaboration.
In this paper we explain our idea of Interaction and Task
Patterns and their potential in HRI with both service and
industrial robotic systems. Specifically for Interaction Pat-
terns, we report results from a user study with 37 subjects,
which allowed us to confirm the existence of such patterns in
the interaction with a mobile service robot, as well as a pro-
totypical implementation of an interaction monitoring sys-
tem based on Bayesian Networks supporting identification,
description and exploitation of the patterns. The idea of Task
Patterns transfers the idea of identifying patterns in the inter-
action with a service robot into the perspective of industrial
robotic systems - here it might not be the robot itself the
human is interacting with directly, but there might be con-
trol systems and interfaces to be considered as interaction
partners. The explanations of the concept and background
ideas for Interaction Patterns are given in Section 2, Section
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Figure 3.2: GeNIe Bayesian network

3.1.6 Interaction Recognition
With the help of the SMILE library this node performs inference in the Bayesian network
generated by the interaction_learner package.

First of all, the interaction_recognition node opens a GeNIe/SMILE file
with a trained Bayesian Network (Figure 3.2). Then, this node subscribes to the/BN_vars
topic and for each message that arrives performs inference in the network to obtain the
Category by behaviour posterior probabilities.

For each classification (Object, Workspace, Region and Unknown) the pos-
terior probability is computed and printed. If the highest posterior probability has a di�er-
ence less than a 10% with the second highest one, we consider that they are too similar and
there is an ambiguity. For example, in figure 3.3 region and workspace categories have the
higher posterior probability values with a di�erence less than 10%.

P("category" = object) = 0.009547
P("category" = region) = 0.420887
P("category" = workspace) = 0.495601
P("category" = unknown) = 0.073965

Figure 3.3: Output of the node when we perform inference in the
Bayesian network. Region and Workspace posterior probabilities
are very similar.

The usr_present annotation is not used to perform inference in the network when
we are recognising the Category by behaviour. However, this annotation is com-
pared among the highest posterior probabilities to check the performance of the network.

Output statistics
When no more annotations are being published, a statistical overview is printed to check
the results of the Bayesian network. The table 3.2 contains the description of the statistical
data.
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Figure 1: The core part of the Bayesian Network describing
the relationship between observed behavioural features and
the underlying category for the presented item of a SHOW-
episode

3 reports on the analysis of material from the user study con-
ducted to confirm our hypotheses about Interaction Patterns.
In Section 4 we discuss a prototypical implementation that
was informed and evaluated with the data set gathered in the
described study, and in Section 5 we elaborate on the trans-
fer of the idea of Interaction Patterns to Task Patterns for
HRI in industrial settings.

2 Interaction Patterns
A significant part in mixed-initiative interaction is the un-
derstanding of the situation on the robotic system’s side, in-
cluding an understanding of the internal state and abilities
of the system with respect to this particular situation, so that
requests for additional information and clarification can be
formulated appropriately, i.e., in a way that makes it easy
for the human communication partner to provide the “right”
(in terms of expected) response (Rosenthal, Veloso, and Dey
2012).
Now, looking at the human side of the communication, a
rather natural assumption would be that the human who is
interacting with the robotic system in a particular situation
is perfectly capable of providing the necessary information
to make the robotic system understand, e.g., in an instruct-
ing situation. However, when interacting with a robot in a
situation in which the robot more or less replaces a human,
people are certainly aware of the communication partner be-
ing “different”, but they do not necessarily have an exact
insight into the specific differences in understanding they
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might face. Hence, as we could observe in a number of stud-
ies, there are certainly adaptations made to compensate for
assumed or perceived shortcomings on the robot’s side, but
at the same time, the human user might give implicit sig-
nals and information that she assumes to be understood by
the robot just as if there was a human being adressed. We
observed such situations in a “guided tour” scenario within
several explorative user studies with a mobile service robot
(Hüttenrauch, Topp, and Severinson Eklundh 2009, as an
example) within the previously introduced framework for
Human Augmented Mapping (Topp 2008). For example the
user would point to the doorway leading into an office while
presenting “the office” with the same type of utterance they
used otherwise inside a room to introduce that, unaware that
this information might lead to the robot storing its immediate
surroundings (i.e, the corridor part close to the doorway) as
“the office”, instead of the area beyond the doorway. We con-
sider such a situation as ambiguous and a definite source for
misunderstandings and difficulties for the user to, firstly, un-
derstand what went wrong (why the robot stored, e.g., “the
meeting-room” correctly in its map, but not “the office”)
and, secondly, find a way to correct the misunderstanding.
To avoid such problems, we assume that the robotic system
must be equipped with the means to detect ambiguities in
a situation, i.e., any kind of deviation from expectations re-
garding user behaviour, surroundings, action or activity se-
quences should at least be evaluated and possibly lead to
a request for disambiguation, before erroneous information
is stored. Thus, to achieve genuine mixed-initiative interac-
tion as a part of human-robot symbiosis, we need the means
to describe both expectations and deviations from them to
refine knowledge and contextual understanding on both the
human and robotic system parts of this interaction.
Based on our experiences from the above mentioned user
studies, where the investigations of potential patterns ob-
servable in the interaction were rather a sideline of research,
we developed the concept of Interaction Patterns, i.e., re-
occurring patterns in the observable interaction (including
preparation / positioning of the robot and general move-
ments around the robot), that might correspond to the un-
derlying meaning, conceptual understanding, or even inten-
tion the user assumes for her utterances, which would give
us at least some means to describe those expectations and
deviations. Our investigations focused so far on patterns that
would allow to hypothesise about the conceptual category
(region, location, or object, see explanation in the following
section) of an item presented to the robot beyond its label.
E.g., while in the above example the utterance “this is the of-
fice” indicates that a room (or region) is presented, the user
behaviour (pointing clearly) suggests that some specific lo-
cation or large object (the door) is referred to. This should
result in a mismatch of expected category and observations,
which can further be used to trigger a request for clarifica-
tion.
We confirmed the applicability of our idea in a more con-
trolled study, that had explicitly the purpose to further in-
vestigate the concept of Interaction Patterns, of which we
could so far report preliminary results from manual inspec-
tion of the material (Topp 2011). We can now report on a

more thorough investigation of this particular study material
in the following section.

3 The user study
Within the framework for Human Augmented Mapping a
(partially) hierarchical generic model of space is assumed
based on the three conceptual categories, regions (delimited
areas, typically corresponding to rooms), locations (work-
spaces, defined by large, rather stationary objects, e.g., a
fridge or a coffee-maker) and objects (small items that can
be manipulated and are not stationary, e.g., cups or books).
Further, the study was again conducted based on the guided-
tour scenario. The coverage of all categories in each trial run
of our study with 37 subjects was guaranteed through the in-
structions, that suggested items in different lists.

By inspecting the video footprint of the trials, the SHOW
episode (Hüttenrauch et al. 2006) for each item presented
during the trial runs was segmented into a preparation
phase and a show event (corresponding to a gesture and / or
an introducing utterance like “This is ...”). The observations
were in an initial analysis categorised in a number of prepa-
rations and gestures according to our previously discussed
hypotheses about Interaction Patterns (Topp 2011).
Specifically, we looked at the observable types of prepa-
rations and gestures applied before and during the
SHOW-episode, such as “moving the robot to a specific
position and/or pose”, “fetching an item from a surface”,
“holding the item in front of the robot’s camera”, or
“pointing with the whole hand”.
We used these verbal and qualitative, human-
comprehensible, descriptions of preparations and gestures
to define a set of potentially machine-observable features,
which were applied to annotate the video material. We also
provided meta-annotations like the theoretically expected
category for each item, information whether the subject
had given explicit comments on their understanding and
preferences to disambiguate the situation (e.g., “this is the
printer-room, I am inside it, but you’re outside”) and an
indication for the item being somewhat ambiguous in itself
(coffee-makers can indeed be seen as both workspaces - a
place to go to for picking up a cup of coffee - or objects, as
at least the smaller, household-type can easily be lifted).
We consider the episodes independent from the actual time-
line, i.e., we assume that order and timing of observations
are irrelevant, only the presence or absence of a certain ob-
servation in connection with a SHOW-episode is important.
We are aware that this might be a significant simplification
in the general case, however, for the studied scenario our
static approach seemed appropriate and allowed for much
lower complexity in the analysis.
The annotated material was then quantitatively summarised,
so that we could apply these statistics to train and evaluate
a Bayesian Network (generated and trained with GeNie,
https://dslpitt.org/genie as of 2015-10-30), where we as-
sumed a causal relationship between the subject’s “category
assumption” and the observable behavioural features.
We compared the (according to the network) most likely
“intended category” with our annotations regarding our
theoretically assumed category and found our network to be
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3.1 Interaction Patterns Manager
The implementation of this part of the prototype is based on annotation files generated with
the respective tool ELAN [1], from videos recorded during the study case "Understanding
Spatial Concepts from User Actions" [31]. Those annotation patterns were identified and
confirmed in a manual analysis e�ort.

Figure 3.1 shows all nodes and topics of this prototype. It consists of a parser to obtain
all the annotations from ELAN files; an ELAN translation module to translate Interaction
Patterns from annotations (Strings) to variables adapted for the Machine Learning algo-
rithm (Integers); an interaction monitor that store all the immediate around Interaction
Patterns and send it to the interaction learner in the case that we want to train the algo-
rithm; or to the interaction recognition in the case that we want to recognise the category
of the item that the user is presenting.

Figure 3.1: Interaction Patterns Manager prototype nodes and
topics structure

3.1.1 Machine Learning Algorithm
In section 2.2.3 we have presented five di�erent machine learning algorithms that could
be used for our approach. However, we are going to use only one, and we have to choose
the most suitable one.

Algorithms that work with a tree structure such as Decision Tree Learning and Ran-
dom Forests have the inconvenience of the tree design, a tree structure has to be designed
beforehand. We have a bunch of data that was previously studied, but not at the level of
designing a decision tree. Furthermore, taking into account all the di�erent variables, the
design of the tree would require a big e�ort.

Gaussian Mixure Models work fine in the classification for reduced dimensions. High
dimensionality cause problems since the amount of training data may become insu�cient,
or computation time increases too much [22]. One option is to reduce the number of
features preprocessing the data, for example using the Principal component analysis (PCA)
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Figure 2: Our prototypical system for parsing and monitor-
ing interaction events (features) for the interpretation of in-
teraction patterns

a satisfying description for the material.
However, all these analysis steps were performed manually,
hence the results are quite error-prone due to subjective
interpretation of timelines and observations. Approaches to
automating also the identification of the features in the first
place are subject to current investigations.To avoid at least
the last layer of subjectivity we implemented a prototypical
interaction monitor system, that was able to parse the anno-
tations of the video material and feed specific annotations
as “observed features” into the respective core part of the
Bayesian Network, which is shown in Figure 1. We explain
our prototypical implementation in the following section.

4 Automated identification of Interaction
Patterns

Our prototypical implementation (Martı́ Carrillo 2015) was
based on ROS (www.ros.org, as of 2015-10-30), both for
compatibility reasons within the SMErobotics related re-
search efforts in symbiotic HRI, but also to benefit from the
improvements and further development of ROS in compari-
son to the tools and hardware abstraction previously used for
implementing the Human-Augmented Mapping software.
For the manual annotation of the video footprint from the
user study we had used ELAN (https://tla.mpi.nl/tools/tla-
tools/elan, as of 2015-10-30), a for research purposes freely
available tool that produces XML-files from which it is pos-
sible to reconstruct the original timeline and organise the
annotations accordingly. Hence, one part of the prototype
was a parser for the ELAN-generated annotation files, that
provides the core part of the system, the interaction monitor,
with the stream of annotations. As indicated above, we as-
sume here, that it would be possible to exchange the parser
with online recognition tools for different types of percep-
tions, e.g., a tracking system (here, we already tested an
approach that would not rely on the manually provided an-
notations but on actual tracker data (Martı́ Carrillo 2015)),
or vision based gesture recognition. The interaction monitor
provides in turn the Bayesian Network with observations,
whenever a SHOW-episode can be assumed to be concluded.
Figure 2 gives an overview of the ROS-nodes (data parser,
elan translator, interaction monitor, interaction learner / in-
teraction recognition) and -topics of the prototype. In our
previous analysis step we had identified the following fea-

tures (variables of the Bayesian Network) as most relevant:
• last command – the last explicit motion command the

user had given to the robot before presenting an item. In
cases where several SHOW-episodes occurred right after
each other without the robot moving in between, this ob-
servation would be missing from the second episode.

• gesture – the type of gesture that was observed in connec-
tion with the SHOW-episode, if any gesture was observed
at all.

• announce – an item was announced (or not) to be pre-
sented in the near future, before the actual SHOW-episode
took place (“and now, we go to the meeting room” would
be such an observation).

• heading adj and dist adj – the user adjusted her position
relative to the robot regarding heading or distance respec-
tively, shortly before or while presenting an item (each
feature could be independently present or not).

• category – not used as an observation or feature for the
Bayesian Network, but applied for evaluation. Contains
the category ascribed the presented item by the experi-
ment supervisor, i.e., region, location/workspace, object,
orunknown, as in some cases the annotation files did not
contain a clear categorisation matching the time period for
the SHOW-episode.

• trigger – indicates when an episode can be considered ter-
minated, i.e., the actual item presentation was identified in
the stream of annotations of user utterances.

We ran several different tests, where we used different sub-
sets of the data set (37 subjects, 548 SHOW-episodes over-
all), to train and evaluate the Bayesian Network. We eval-
uated the performance according to the number of matches
between the inferred item category by behaviour and the a
priori category assumed by the operator. We classified the re-
sults of the network into clear matches or mismatches, when
the network inferred the same or a different category as the
assumed one with a significantly higher probability than for
other categories, a similarity between two categories (with
one of them being the assumed one), a similarity of two, but
none of them was the assumed one, or a similarity between
three categories, i.e., the network result was very ambigu-
ous, and finally, it could happen, that the network suggested
a category for an item previously assumed unknown. For two
test cases the results are shown in Figure 3. Although the
number for clear matches are below 50% in both cases, we
claim, that the network still produces applicable results. In
general, this would mean, that relying only on the automated
identification of interaction patterns to assign a category to
an item would be risky, but to detect ambiguities, that would
be found in mismatches and the other types of not quite clear
matches, the results would be quite suitable.
A more specific look into the cases classified as similar be-
tween two, showed that this was very often the case for
items with categories that in some sense are close to another;
as stated before, workspaces and objects are often difficult
to classify even for a human user, in particular chairs and
coffee-makers would end up in this unclear area quite often.
Hence, it seems safe to say, that in simple cases, the network
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Training set
Number of files 37

Number of presentations 548
Subject files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37

Test set
Number of files 37

Number of presentations 548
Subject files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37

Table 4.1: Datasets in test 1

that were classified previously as unknown. And then, we have two big categories such
as mismatches and similar between two that are of great interest to be analysed in more
detail.

Matches

226
Mismatches

71

Similar between two

165

Similar among three

29 Unknown category classified

40
Similar between two and mismatch

17

Figure 4.1: Results of test 1

Analysing more deeply the results of the two biggest groups that are not matches we
can see that the results are not bad at all, in the case of mismatches we have got the fol-
lowing:

• Mismatches 71

– 40 objects are classified as a workspace. Mainly the object "chair" is classified
as a workspace. Other objects misclassified are "phone", "dustbin", "printer"
and "paper".
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Matches

167
Mismatches

97

Similar between two

79

Similar among three

39
Unknown category classified

28
Similar between two and mismatch

37

Figure 4.4: Results of test 4

tests there are two big categories mismatches and similar between two that are of great
interest to be analysed in more detail.

Analysing more deeply the results of the two biggest groups that are not matches we
can see that the results are not bad at all, in the case of mismatches we have the following
results:

• Mismatches 97

– 29 objects are classified as a workspace. The most misclassified object is
"chair", followed by "paper".

– 31 presentations were classified as unknown: 19 workspaces, 10 objects and 2
regions.

– 15 regions are classified as a workspace. The most misclassified are "meeting
room" and "o�ce".

– 9 workspaces are classified as a region. In this case, "printer room" "lucas
entrance" are the most misclassified.

– 7 workspaces are classified as objects, "projector", "photocopy machine" and
"shelf"

– 5 regions are classified as an object, "o�ce".
– 1 object is classified as a region.

If we analyse the results when we have two candidate categories and one of them is the
correct one, we can see that the results are quite good:

• Similar between two 79

– 33 presentations have similar results between object and workspace
– 29 presentations have similar results between region and workspace
– 17 presentations have similar results between any category and unknown
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Figure 3: (left) Results for 100% of the data for training and
evaluation and (right) Results for training with 18.5% and
evaluation with 81.5% of the data

produced quite often a clear match, in ambiguous cases, it
produced rather ambiguous results, which would help us to
identify situations in which the robotic system should re-
quest a clarification from its user. Here, we plan to apply a
more thorough analysis of specific cases to the results we
could achieve so far to give a clear statement on the perfor-
mance of the approach. However, we consider our results as
a further confirmation for the possibility of identifying and
applying Interaction Patterns (or Task Patterns as discussed
in the following section) to enhance the understanding of an
interaction situation.

5 Task Patterns
We assume the previously discussed Interaction Patterns to
be mainly applicable in the realm of service or personal
robots, where the interaction as such is somewhat more cen-
tral than for industrial systems. With the idea of Task Pat-
terns we target rather the area of industrial systems. We as-
sume here that reoccurring patterns in task descriptions can
be applied in several parts of the system and also in different
contexts of interaction. For example, the sequence “washer
- screw” is presumably part of many descriptions for the as-
sembly of two parts by screwing them together (rather than
snap-fitting or glueing). Given sufficiently many examples
of different assembly tasks it would be possible to identify
this sequence as a reoccurring Task Pattern. This and other
previously learned patterns can then be applied to match a
suggested sequence for an assembly with the available col-
lection of expected patterns. If the sequence does for exam-
ple contain “place a washer”, but this is never followed by
“place the screw”, the system should request a clarification.
Another application would be in actually supervising the
user. If it was possible to identify the actual actions or activ-
ities connected with the features of the Task Patterns (pick-
ing and placing a washer, picking and placing a screw) from
the observation of a human worker performing an assembly,
potential erroneous assemblies (missing a washer) could be
identified and corrected, before a failure-prone work piece
leaves the production system. We are currently starting to
investigate this idea by analysing annotated data from user
studies performed in industrial (however laboratory) settings
within the efforts of the SMErobotics research (Roitberg et
al. 2015).

6 Conclusion
With this paper we explained our idea of Interaction Pat-
terns, how we assume they can be exploited to support

mixed-initiative human-robot interaction as a part of sym-
biotic interaction in terms of the identification of ambigu-
ous situations, and discussed our prototypical implementa-
tion of an interaction monitoring approach that would allow
us to automatically identify the patterns, potentially also in
an online system. Our results allowed us to confirm the exis-
tence of Interaction Patterns in a specific scenario, and also
their applicability in presumably unclear situations, so that
confusion and errors in interaction can be reduced, if not
avoided. We additionally explained our thoughts on how the
concept of Interaction Patterns can be extended to Task Pat-
terns, which we consider more relevant to industrial settings
than Interaction Patterns. We consider these investigations
as future work.
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