
From Demonstrations to Skills for High-level Programming of Industrial Robots

Maj Stenmark, Elin A. Topp
Dept of Computer Science, Faculty of Engineering

Lund University, Sweden
e-mail: {maj.stenmark, elin anna.topp}@cs.lth.se

Abstract

In this paper we describe our approach to robotic skill
representation and a prototypical implementation of a
programming-by-demonstration approach that allows users
to generate skills and robot program primitives for later re-
finement and re-use. We intend to evaluate the applicability
of this approach to high-level programming in a user study,
which we also explain.

1 Introduction
In recent years we have had a renaissance in industrial
robotics: a new segment of robot models (e.g., UR5, ABB
YuMi, Rethink Robotics Baxter and LBR iiwa) intended for
safe human-robot collaboration and simpler robot program-
ming have emerged. The application areas for these models
are typically assembly of consumer electronics or repackag-
ing of (small) products. The difference between these small
robots and previous models is the lead-through program-
ming mode, or kinesthetic teaching, where the user guides
the robot arm into the desired positions and thus record and
replay a robot program. Dynamic environments, uncertainty
and the use of noisy sensor feedback are still challenges for
the operator (Stenmark et al. 2016), however, this type of
programming tool has enabled industrially oriented research
in robot programming by demonstration, PbD, or learning
from demonstration, LfD (Billard et al. 2008). Originally,
users demonstrate tasks and classic machine learning tech-
niques are used to extract model parameters. Very often
the overall qualitative goal is more important than the spe-
cific implementation and precision of the execution, see e.g.,
(Niekum et al. 2015; Ahmadzadeh et al. 2015). For the in-
dustrial context, the most obvious drawback with pure data
driven approaches is lack of data: it is difficult and time con-
suming for the user to provide a sufficient number of demon-
strations with enough feature variation and precision, that
would allow to distinguish between qualitative and quanti-
tative aspects of the task. Hence, the desired approach in an
industrial context is a one-shot demonstration, from which
enough parameters for an executable representation can be
extracted. The representation has to be understandable and

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The dual-arm ABB YuMi robot used in the exper-
iments.

adaptable for the user, because the instruction process usu-
ally involve multiple iterations in a refinement and testing
loop in order to achieve acceptable precision and robustness.

Orthogonal to the PbD approach is the use of high-
level instructions to simplify robot programming for indus-
trial tasks, e.g., natural language and semantically defined
parametrized motion primitives, often called skills (Peder-
sen et al. 2016). Such semantic descriptions are desirable
because they enable the automatic generation of, e.g., stan-
dard PDDL1-descriptions for planning and scheduling of
tasks or path planning and generation from virtual mod-
els. Of course, extensive modeling requires engineering ef-
fort, hence, our uncontroversial hypothesis is that a middle
ground should be reached by combining programming by
demonstration and parametrized skill representations to sim-
plify robot programming. The novel angle of our research
is that the users are to create the parameterized skills from
scratch, instead of using a library of expert made skills.
The latter approach, while desirable, is currently unattain-
able since there is no widely adapted architecture in place
for experts to create and distribute robot skills. We describe
a system that assists the user to combine demonstrations and
semantic action information in order to simplify re-use.

We also touch a methodological problem: while there ex-

1Planning Domain Definition Language



ist multiple proposed task representation frameworks, eval-
uations in realistic application settings are rare – but exist,
see (Mollard et al. 2015) – and the metrics are chosen by
the individual researchers. User studies are often dependent
on the laboratory setup and software is seldom shared, not
to mention complete systems, hence studies are not easily
reproduced by other research groups. We propose thus an
approach that uses open-source software components and
openly available tools to provide easier robot programming
and allows for evaluations in realistic settings.

In this short-paper, we outline an ongoing user study
aimed at evaluating the applicability of our previously pre-
sented skill representation (Stenmark and Malec 2015) used
in a programming by demonstration setup with the ABB
YuMi robot, see Fig. 1. First we provide some background
about the representation under evaluation, followed by a de-
scription of the study setup and evaluation criteria. We dis-
cuss the prospective results of the study from a methodolog-
ical perspective.

2 Skills and high-level programming for
industrial robots

A re-usable robot program, in the literature often referred to
as a robot skill, has two components. The first is a high-level
step-by-step instruction how to achieve a goal. In our work,
we represent the robot program using a finite state machine.
The state machine can have other skills as nested states
and the lowest semantically described step comprises atomic
states called primitives. The primitives must have a mapping
to executable code on the robot system (Stenmark, Malec,
and Stolt 2015), which is the second component of the skill2.
The same execution environment can be used to execute dif-
ferent task state machines but can be very different depend-
ing on the application. In our robot system, force-controlled
tasks expressed in the iTaSC formalism (De Schutter et al.
2007) use code generated from Simulink models for the
force-control (Blomdell et al. 2005), position-based control
policies can execute as C-programs that send joint values di-
rectly to the robot controller, while other moves execute as
native robot code (ABB RAPID).

The primitives have a type hierarchy (Stenmark and
Malec 2015). Only the relevant subset of primitives are listed
here: the base type is Action with subtypes Motion, Grip-
per Action and Locating Action. Each primitive has a set
of semantically annotated parameter types with (system de-
pendent) default values.

Motion has subtypes Free Motion and Contact Motion.
Free Motion has subtype AbsJointMove (where the target
is expressed in joint angles), Linear Move, Circular Move
and Joint Move where the target is expressed in Cartesian
space relative to a point on an object and the path will be
linear, circular or by moving all joints simultaneously. More
complex trajectories are expressed as position-based control
policies using dynamic movement primitives, DMPs (see

2A forced analogy can be made to Java where a program con-
sists of (byte code generated from) high-level text (re-usable) but
the execution is carried out on different virtual machines depending
on operating system.

Figure 2: To the left is a 2-by-2 LEGO Duplo piece and to
the right a 2-by-4 piece.

Sec. 3). A Contact Motion can either be a Guarded Search
or Force-controlled Motion. A Guarded Search is a mo-
tion towards a point that will continue until contact with an
object is reached or, if it fails, a specified target position is
reached. A Force-controlled Motion has a set of force con-
straints which have to be fulfilled during the execution, e.g.,
keeping a constant force in one direction while moving in
another. Parameter types to each motion primitive are the
target position in a reference coordinate system (when rele-
vant) and error tolerance, velocity and guards.

Gripper Action has subtype Open, Close, Finger Posi-
tion with gripping force (and finger positions) as a parame-
ter value. When a suction tool is installed subtypes include
Suction On and Suction Off.

Locating Action has only one subtype and that is Vision
which locates an object given a calibration and a trained
model.

In addition to the primitives, objects in the workspace are
specified by the user with types, object coordinate frame and
relative points as coordinate frames. The base type for ob-
jects involved in an assembly is Workpiece. In the study
the LEGO Duplo pieces shown in Fig.2 are used, hence, an
example of a subtype of Workpiece is Duplo piece which
in turn has subtypes 2-by-2 Duplo and 2-by-4 Duplo . The
Duplo pieces will have an object coordinate frame in the
center of the piece and relative coordinate frames as corners
or gripping positions.

A skill can further use control structures such as synchro-
nized motions or synchronized points, loops over objects
and conditional branching.

3 Extracting skills from demonstration
Using lead-through (also called kinesthetic teaching), the
task can be demonstrated either by recording a sequence
of via points and then replaying them in order, or, when
necessary, by logging the full trajectory and generaliz-
ing it to a position-based control policy. A popular ap-
proach for the latter is using dynamic movement primitives,
DMPs (Ijspeert et al. 2013), which encode the motion as a
nonlinear attractor system towards the goal point with a per-
turbing force term. The force term is defined as a number
of weighted Gaussian basis functions dependent on a phase
variable (that scales the motion from 0 to 1 along the trajec-



tory) and the weights are calculated from the demonstrated
trajectory. The goal can be changed and the equation will
still converge since the forcing function decays with time.

Only one demonstration is needed to create an executable
program, but neither approach provides semantic informa-
tion about the task such as a coordinate system for the mo-
tion, the required position accuracy or the high-level goal
of the task, e.g., to insert one object on top of another. The
parametrization is required for reuse and modification.

In our current implementation, the user will provide (a
hypothetical) action type information using speech while
moving the robot or by selecting the action type in a touch-
based graphical user interface. The system provides initial
type suggestions from the log, e.g., if the robot moved, the
type hypothesis will be a motion to the new point using the
same velocity and position tolerance as the previous move,
or a gripper action if the gripper state changed. The user has
to actively select the suggestion in order to add it to the se-
quence, since many motions are unnecessary (e.g., adjust-
ment of the robot elbow to let the user reach around the
arm). Some parameter values can be extracted directly us-
ing the robot interface, this includes joint angles, the grip-
pers’ Cartesian and finger positions, and numerical values
for contact forces. It is more difficult to accurately guess the
reference coordinate system from a single demonstration, it
is more intuitive and thus easier to use speech and a GUI
on the other hand. Still the system can suggest points using
simple heuristics such as the last used reference coordinate
system or, if no such exists, the reference point closest to the
tool tip. The log is not discarded so that the user can switch
between motion types and parameters without repeating the
demonstration. The object positions are taught by pointing
using the robot finger tips.

Refinement and debugging are carried out by executing
the actions stepwise and adjusting positions and parameter
values when needed, or changing, adding or deleting actions.

4 Re-usable skills for high-level
programming

When the user has created a task (sequence), where each
action has type information and actual parameter values ex-
tracted from the demonstration, the task can be saved as a
robot skill with type (e.g., Pick, Place or Insert) and a tex-
tual description. The task is stored with information about
robot system and workspace including object positions and
types. When a skill is selected for re-use, the action type in-
formation is used to check that the program is valid in the
current system, i.e., that the execution environment exists
(e.g., there is a module for execution of DMPs), that the pa-
rameters are valid (e.g., a target specified using joint angles
is only valid for the same robot type) and that object refer-
ences are selected from the current workspace. The system
suggests changes when possible, that is, changing the mo-
tion type to a linear move from a DMP and selecting an ob-
ject with the same super type as reference object. This will
give a valid program skeleton that the user can refine using
stepwise debugging and updating.

5 Evaluation of re-usable skills in non-expert
high-level programming

For the user study, a group of undergrad engineering stu-
dents in a robotics course will be given the task to pro-
gram one arm on a dual-arm ABB YuMi to assemble dif-
ferent types of LEGO Duplo bricks. The robot is equipped
with simple two-finger grippers, a camera and contact detec-
tion, and it provides the previously mentioned lead-through
mechanism for task demonstration. The number of partici-
pants will be approximately 30 students, expected to have in-
troductory knowledge about robots and programming. They
will program the robot using a simplified graphical user in-
terface for high-level sequencing, parametrization and sav-
ing of tasks, with limited natural language support for open-
ing and closing the grippers and saving positions.

The programming has two phases: the first phase will be
carried out by all participants while the second phase di-
vides the users into three groups. The first group, Group A,
will re-use their own skills, Group B will re-use an expert-
made skill and Group C is a control group that programs
the task without re-use. In phase 1 the users will program
the robot from scratch using lead-through and the test appli-
cation to pick up a 2-by-2 Duplo piece and using insertion
to place it on top of a tower of other pieces. In the second
phase, a 2-by-4 piece should be picked and placed on the
tower in three different positions. Group A will be allowed
to parametrize the picking and insertion as skills, Group B
will instantiate a similar but expert-made skill and the con-
trol group (Group C) has to program the three insertions
from scratch as in phase 1. Since the initial program can-
not be used directly, the users of Group A and B will have to
chose to change either the pick position of the larger piece
using lead-through or by inserting parameter values for the
coordinates, or by changing the insertion step by adding ad-
ditional motions/adjusting positions or force. Group B will
get a parametrized sequence of primitives that they have to
adapt by changing parameter values or adding/deleting ac-
tions.

The time to complete the task will be limited and the qual-
ity of the resulting program will be evaluated using the suc-
cess rate of 20 executions. Additional metrics include the
number of test cycles the user has to execute (number of pa-
rameters changed) or actions added and how many times the
users request help. In the second phase we aim to understand
whether the users can finish before the maximum allowed
time runs out. The first phase is not intended to take more
than 10 minutes, while the second will be limited to 30 min-
utes. The result is intended to give an indication whether or
not parametrization and re-use reduce (and in that case, how
much) the programming effort in similar tasks of moderate
complexity.

The explorative aspects of the study will show whether
or not the users preferred to change parameters and/or re-
fine the action sequence, whether or not they preferred lan-
guage commands or graphical interaction only as well as re-
veal any common problems non-expert users have with robot
programming that must be addressed during training.

However, general conclusions will be difficult to draw.



The result of the study is obviously dependent on the usabil-
ity and quality of the test application, the responsiveness of
the language detection and other quality aspects of the tools
used, however, the application will be open source and stand
alone to simplify comparisons. Secondly, the task of assem-
bling LEGO bricks is a rather specific task, and it might not
be entirely representative for other assembly tasks, although
we assume the necessary components for inserting one brick
into another to be quite similar to, e.g., folding insertion op-
erations in mobile phone assembly.

6 Discussion
This paper has provided an overview of an ongoing study
to evaluate the usability of a robot programming approach
where the operators instruct the robot using lead-through
and parametrized primitives to create their own re-usable
robot skills from scratch. The study aims at evaluating if
such parametrization will lower the programming effort
when adapting the robot program to a similar task.

The result of the study is essential when deciding the
direction of future research efforts. Our initial hypothesis
is that users programming robots for industrial assembly
task can benefit significantly from a combination of task
demonstration and skill parametrization based high-level ap-
proaches. However, it might also be the case that it is easier
or more efficient to rely fully on direct task demonstration
also for repeated programming of similar tasks, which can
be due to different factors. Comparisons between the groups
can be made, i.e., is it beneficial for the user to know about
the parametrization and execution sequence when adapting
the skill? Is it easier for the users to program everything from
scratch than try to decipher someone else’s program?

Hence, if the results of our study show that the skill
parametrization does not simplify the programming of sim-
ilar task by reducing programming time or success rate of
the application, this can be due to the taught skills being too
simple to begin with and that the overhead of creating a re-
usable skill is too high compared to the skill complexity and
even that the relationship between skill complexity and best
approach for programming is non-linear. This can in turn de-
pend on the Duplo building task or the quality and usability
of the study tool application. Further evaluations and inves-
tigations of the reasons for such an outcome would have to
be considered. If, on the other hand, the programming effort
is reduced, further investigations in similar setups would be
needed to ensure that our approach and representations are
not simply overfit to Duplo building while ill suited as gen-
eral benchmarking.

This is artifact research and while action models and
frameworks are well motivated from a qualitative perspec-
tive, it is very challenging to create experiments from
which valuable results for a transfer into real-world ap-
plications can be drawn. There is a lack of benchmarking
and methodological tools for system evaluation which holds
back progress in the field of AI-HRI because the ideas can-
not propagate from academia to industry without measur-
able value. We believe, that our study is one contribution
to a methodological discussion that is necessary to establish
this type of tools.

7 Acknowledgments
The research leading to these results has received funding
from the European Community’s Framework Programme
Horizon 2020 under grant agreement No 644938 SARAFun.

References
Ahmadzadeh, S.; Paikan, A.; Mastrogiovanni, F.; Natale, L.;
Kormushev, P.; and Caldwell, D. 2015. Learning symbolic
representations of actions from human demonstrations. In
Robotics and Automation (ICRA), 2015 IEEE International
Conference on. 3801–3808.
Billard, A.; Calinon, S.; Dillmann, R.; and Schaal, S. 2008.
Robot programming by demonstration. In Springer hand-
book of robotics. Springer. 1371–1394.
Blomdell, A.; Bolmsjö, G.; Brogårdh, T.; Cederberg, P.;
Isaksson, M.; Johansson, R.; Haage, M.; Nilsson, K.; Ols-
son, M.; Olsson, T.; et al. 2005. Extending an industrial
robot controller-implementation and applications of a fast
open sensor interface. IEEE Robotics & Automation Maga-
zine 12(3):85–94.
De Schutter, J.; De Laet, T.; Rutgeerts, J.; Decré, W.;
Smits, R.; Aertbeliën, E.; Claes, K.; and Bruyninckx, H.
2007. Constraint-based task specification and estimation for
sensor-based robot systems in the presence of geometric un-
certainty. The International Journal of Robotics Research
26(5):433–455.
Ijspeert, A. J.; Nakanishi, J.; Hoffmann, H.; Pastor, P.; and
Schaal, S. 2013. Dynamical movement primitives: Learn-
ing attractor models for motor behaviors. Neural Comput.
25(2):328–373.
Mollard, Y.; Munzer, T.; Baisero, A.; Toussaint, M.; and
Lopes, M. 2015. Robot programming from demonstra-
tion, feedback and transfer. In Intelligent Robots and Sys-
tems (IROS), 2015 IEEE/RSJ International Conference on,
1825–1831.
Niekum, S.; Osentoski, S.; Konidaris, G.; Chitta, S.; Marthi,
B.; and Barto, A. G. 2015. Learning grounded finite-state
representations from unstructured demonstrations. The In-
ternational Journal of Robotics Research 34(2):131–157.
Pedersen, M. R.; Nalpantidis, L.; Andersen, R. S.; Schou,
C.; Bgh, S.; Krger, V.; and Madsen, O. 2016. Robot skills
for manufacturing: From concept to industrial deployment.
Robotics and Computer-Integrated Manufacturing 37:282 –
291.
Stenmark, M., and Malec, J. 2015. Knowledge-Based
Instruction of Manipulation Tasks for Industrial Robotics.
Robotics and Computer Integrated Manufacturing 33:56–
67.
Stenmark, M.; Stolt, A.; Topp, E. A.; Haage, M.; Roberts-
son, A.; Nilsson, K.; and Johansson, R. 2016. The GiftWrap-
per: Programming a Dual-Arm Robot With Lead-through. In
ICRA Workshop on Human-Robot Interfaces for Enhanced
Physical Interactions.
Stenmark, M.; Malec, J.; and Stolt, A. 2015. From high-
level task descriptions to executable robot code. In Intelli-
gent Systems’ 2014. Springer. 189–202.


