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Abstract— Program parallelization becomes increasingly
important when new multi-core architectures provide ways to
improve performance. One of the greatest challenges of this
development lies in programming parallel applications. Us-
ing declarative languages, such as constraint programming,
can make the transition to parallelism easier by hiding the
parallelization details in a framework.

Automatic parallelization in constraint programming has
previously focused on data parallelism. In this paper, we
look at task parallelism, specifically the case of parallel
consistency. We have developed two models of parallel
consistency, one that shares intermediate results and one
that does not. We evaluate which model is better in our
experiments. Our results show that parallelizing consistency
can provide the programmer with a robust scalability for
regular problems with global constraints.
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1. Introduction
In this paper, we discuss parallel consistency in constraint

programming (CP) as a means of achieving task parallelism.
CP has the advantage of being declarative. Hence, the
programmer does not have to make any significant changes
to the program in order to solve it using parallelism. This
means that the difficult aspects of parallel programming can
be left entirely to the creator of the constraint framework.

Constraint programming has been used with great success
to tackle different instances of NP-complete problems such
as graph coloring, satisfiability (SAT), and scheduling [5].
A constraint satisfaction problem (CSP) can be defined as
a 3-tuple P = (X, D, C), where X is a set of variables, D
is a set of finite domains where Di is the domain of Xi,
and C is a set of primitive or global constraints containing
between one and all variables in X . Solving a CSP means
finding assignments to X such that the value of Xi is in Di,
while all the constraints are satisfied. The tuple P is referred
to as a constraint store.

Finding a valid assignment to a constraint satisfaction
problem is usually accomplished by combining backtracking
search with consistency checking that prunes inconsistent
values. To do this, a variable is assigned one of the values
from its domain in every node of the search tree. Due to
time-complexity issues, the consistency methods are rarely
complete [2]. Hence, the domains of the variables will
contain values that are locally consistent, but cannot be part
of a solution.
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Fig. 1: Parallel search in constraint programming.

In this paper, we refer to parallel search as data paral-
lelism, and parallel consistency as task parallelism. When
parallelizing search in CP, the data is split between solvers.
As depicted in Fig. 1, data parallelism in CP can cause
major problems. In the figure, we send the rightmost nodes
to another constraint solver running on a different processor
core. However, since there are no solutions in those search
nodes, the parallelism will inevitably lead to a slowdown
because of communication overhead. This problem cannot be
avoided, since the consistency algorithms are not complete.
Hence, we cannot predict the amount of work sent to other
processors.
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Fig. 2: Parallel consistency in constraint programming.

Fig. 2 presents the model of parallel consistency in con-
straint programming discussed in this paper. In the example,
the search process is sequential, but the enforcement of
consistency is performed in parallel. Constraints C1, C2,
and C3 can be evaluated independently of each other on
different processor cores, as long as the changes they try to
perform are synchronized. This type of parallelism does not
involve splitting data, and will never lead to any unnecessary
search. We may, however, have to perform extra iterations



of consistency, since the updates to domains are based on
the store from the beginning of each consistency phase.

The problem of performing unnecessary work in parallel
constraint solving is pervasive. Most problems do not scale
well when using many processors. In our previous work [11],
[12] we have tried to reduce the cost distributing work,
and reduce the probability of performing unnecessary work.
However, some problems cannot be data-parallelized at all
without causing a severe slowdown, this is true in particular
when searching for a single solution.

Data parallelism can be problematic, or even unsuitable,
for other reasons. Many problems modeled in CP spend a
magnitude more time enforcing consistency than searching.
Trying to use data parallelism for these problems often
reduces performance. In these cases, task parallelism is the
only way to take advantage of modern multicore processors.

The rest of this paper is organized as follows. In Section 2
the background issues are explained, in Section 3 the parallel
consistency is described in detail. Section 4 introduces the
experiments and the results, Section 5 gathers the conclu-
sions, and Section 6 presents our future work.

2. Background
Most work on parallelism in CP has dealt with data

parallelism [14]. While this offers the greatest theoretical
scalability, it is often limited by a number of issues. Today,
the main one is that processing disjoint data will saturate
the memory bus faster than when processing the same data.
In theory, a super-linear performance should be possible
for depth-first search algorithms [10]. This, however, has
only rarely been reported, and only for small numbers
of processors [6]. The performance-limits placed on data-
parallel constraint solving are especially apparent on modern
multi-core architectures.

Another issue with data parallelism in CP arises for
problems modeled using intervals. This category includes
scheduling problems, which are the most industry-relevant
applications of constraint programming. Splitting an interval
in a scheduling problem will reshape the search tree of both
the computer sending work and the one receiving it. Such
a change in shape can lead to bounding solutions not being
found in reasonable time. In the worst case, this can lead to
a very large slowdown. Previous work on data parallelism
for scheduling problems has either relied on specialized
splitting [14], or only reported results for limited discrepancy
search and not for depth-first search [8].

Task parallelism is the most realistic type of parallelism
for problems where the time needed for search is insignif-
icant compared to that of enforcing consistency. This can
happen when the consistency algorithms prunes almost all
the inconsistent values. Such strong pruning is particularly
expensive and in a greater need of parallelism. The ad-
vantage of these large constraints over a massively parallel
search is that the execution time will be more predictable.

Previous work on parallel enforcement of consistency
has focused on parallel arc-consistency algorithms [7], [13].
The downside of such an approach is that processing one
constraint at a time may not allow inconsistencies to be
discovered as quickly. If one constraint holds and another
does not, the enforcement of the first one could be cancelled
as soon as the inconsistency of the second constraint is
discovered.

Perhaps the greatest downside of parallel arc-consistency
is that it is not applicable to global constraints. These
constraints encompass several, or all, of the variables in a
problem. This allows them to achieve a much better pruning
than primitive constraints that can only establish simple
relations between variables, such as X + Y ≤ Z.

3. Parallel Consistency
Parallel consistency in CP means that several constraints

will be evaluated in parallel. Constraints that contain the
same variables have data dependencies, and therefore their
pruning must be synchronized. However, since the pruning
is monotonic, the order in which the data is modified does
not affect the correctness. This follows from that well-
behaved constraint propagators must be both decreasing and
monotonic [15]. In our solver this is guaranteed by the
consistency method implemented in our solver. It makes the
intersection of the old domain and the one given by the
consistency algorithm. The result is written back as a new
domain. Hence, the domain size will never increase.
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Fig. 3: Model of parallel consistency with two consistency
threads. The dashed line indicates the final return to the
constraint program. In this example it leads to a backtrack
of the search procedure.

Our model of parallel consistency is depicted in Fig. 3.
The pseudo-code for our model is presented in Fig. 4. At
each level of the search, consistency is enforced. This is done
by waking the consistency threads available to the constraint
program. These threads will then retrieve constraints from
the queue of constraints whose variables have changed. In
order to reduce synchronization, each thread will take several
constraints out of the queue at the same time. When all
the constraints that were in the queue at the beginning of
the consistency phase have been processed, all prunings are



committed to the constraint store. If there were no changes to
any variable, the consistency has reached a fix-point and the
constraint program resumes the search. If an inconsistency
is discovered, the other consistency threads are notified and
they all enter the waiting state after informing the constraint
program that it needs to backtrack.

// variables to be labeled V , with FDV xi ∈ V
// domain of xi is di, list of slave computers S

while V 6= ∅
V ← V \ xi

select value a from di

xi ← a
for each slave s in S

s.enforceConsistency
wait //wait for all slaves to stop
if Inconsistent

di ← di \ a
V ← V ∪ xi

return solution

// set of constraints to be processed PC
// set of constraints processed in this slave SC
// returns result to the constraint program

while PC 6= ∅
PC ← PC \ SC
while SC 6= ∅

SC ← SC \ c
c.consistency
if c.inconsistent
for each slave s in S

s.stop
return Inconsistent

if all other slaves waiting
perform updates
for each changed constraint cd

PC ← PC ∪ cd
for each slave s in S

s.wake
else
wait //wait for updates

return Consistent

Fig. 4: The parallel depth-first search algorithm. Constraint
program (top), slave program (bottom).

Constraint 
Queue

Thread 1 Thread 2 Thread 3

Barrier

Done, waiting
Done, waiting

Perform updates

Add changed constraints to queue

Fig. 5: The execution model for parallel consistency.

As depicted in Fig. 5, we have to stop all thread in order to
enforce updates. The reason is that most constraints cannot
operate on a partially updated store. However, speculative
execution of the constraints already in the queue could
reduce the idle time for some threads.

Consistency enforcement is iterative. When the threads are
ready, the constraint queue is split between them. Then one
iteration of consistency can begin. This procedure will be
repeated until the constraints no longer change the domain
of any variable. The constraints containing variables that
have changes will be added to the constraint queue after
the updates have been performed.

The greatest challenge in parallel consistency lies in
distributing the work evenly between the threads. This
load-balancing requires a tradeoff between synchronization
overhead and an uneven load. The best balance is when each
thread has its own local constraint queue, that receives a
number of the constraints from the global queue. If a thread
runs out of work, it can perform work stealing from another
thread without having to lock the global constraint queue.

One of the main implementation issues of parallel consis-
tency is the overhead for synchronization. If this overhead
is too high, compared to the time needed to enforce con-
sistency, then there will be no speed-up. Furthermore, when
starting the consistency, there is additional synchronization
needed for waking the threads in the thread pool from the
waiting state.

The issue of load-balancing is related to the model in
the constraint program. Global constraints usually have
consistency algorithms with a time complexity of at least
O(nlog n). Primitive constraints, however, typically have
a constant running time with regard to the number of
variables. While a good load-balancing can alleviate this
problem, some problems may simply have too few global
constraints to motivate the cost of synchronization in parallel
consistency.

There are two variations of the model that we have pre-
sented. The difference lies in how the intermediate domains
used for updates are handled. The two variations are:

• Shared intermediate domains, which requires synchro-
nization of changes to variables. This variant is de-
scribed in section 3.1.

• Thread local intermediate domains, which does not
require changes to be synchronized, described in sec-
tion 3.2.

The domain that is used during update at the barrier in
Fig. 5 is the intersection of all intermediate domains given by
the constraints. If a shared intermediate domain is used, the
intersection will be calculated each time a constraint changes
a variable. If the intermediate domains are thread local, the
intersection will be calculated at the barrier.

3.1 Shared Intermediate Domains
Using shared intermediate domains requires changes to be

synchronized. This inevitably reduces the scalability of the
parallel consistency. The entire calculation of the domain
intersection has to be synchronized, otherwise intervals in
the domain could be modified concurrently. Hence, the



shared domains cannot be made lock-free, unless the entire
domain fits into an architecture-atomic data type.

The advantage of shared intermediate domains, is that
inconsistencies will be discovered earlier. The domain used
at the update barrier is the intersection of the intermediate
domains given by the constraints. Hence, an empty interme-
diate domain means that the constraint store is inconsistent.
If any constraint leads to an empty intermediate domain, we
can cancel the enforcement of all other constraints, as the
pruning is monotonic.

3.2 Thread Local Intermediate Domains
The principle behind thread local intermediate domains

is depicted in Fig. 6. The downside of using separate
intermediate domains is that we will not be able to detect
all inconsistencies before the update barrier. Often, incon-
sistency is reached when the combined changes of two
constraints lead to an empty intermediate domain. If we are
using thread local intermediate domains, we will only detect
such inconsistencies if the two incompatible constraints are
enforced by the same thread.
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Fig. 6: The model of thread local updates.

Thread local variables do not require synchronization, this
increases the scalability. In the case of thread local interme-
diate domains, the only concern is ensuring visibility at the
update barrier. This may add extra cost of synchronization
depending on which thread performs the actual updates.

If the constraint store is consistent, thread local inter-
mediate domains are preferable. Since there is less syn-
chronization, the scalability will be better, especially when
using many consistency threads. However, if the store is
inconsistent, we may have to enforce many more constraints
since we cannot see the changes caused by the other threads.
Inconsistency will therefore be detected later, possibly not
until the update barrier is reached.

4. Experimental Results
We used the JaCoP solver [3] in our experiments. The

experiments were run on a Mac Pro with two 3.2 GHz quad-
core Intel Xeon processors running Mac OS X 10.5. The
parallel version of our solver is described in detail in [11].

4.1 Problem Set
We used three problems in our experiments: n-Sudoku,

which gives an n × n Sudoku if the square root of n is
an integer, LA31 which is a well-known 30 × 10 jobshop
scheduling problem [4], and n-Queens which consists in
finding a placement of n queens on a chessboard so that
no queen can strike another. The presented results are the
absolute speed-ups of enforcing consistency of all constraints
before the search. For Sudoku we used n = 1024 and for
Queens we used n = 40 000.

The characteristics of the problems are shown in Table 1.
n-Sudoku is very regular when modeled in CP, it uses 3×n
alldiff constraints. Our implementation of alldiff uses the
O(n2) algorithm for bounds consistency [9]. LA31 was
formulated using ten cumulative constraints, which also have
a time complexity of O(n2) [1]. However, this problem also
contains a number of primitive constraints for task prece-
dence. Queens was formulated using three alldiff constraints,
combined with a large number of primitive constraints to
calculate the diagonals of each queen.

Table 1: Characteristics of the problems.
Problem Variables Primitive Constraints Global Constraints

Sudoku 1048576 0 3072
LA31 632 301 10
Queens 119998 79998 3

4.2 Results for a Consistent Store
We performed experiments on both variations of parallel

consistency. The results for shared intermediate domains are
presented in Table 2 and Fig. 7. The results for thread local
intermediate domains are presented in Table 3 and Fig. 8.
From the tables we can see that the scheduling problem
of LA31 is quite small compared to Queens and Sudoku.
However, we wanted to use a standardized test for this
industry-relevant problem instead of generating a new one.

Table 2: Execution times in milliseconds for shared interme-
diate domains.

Problem / Threads 1 2 4 8

Sudoku 10991 5524 3108 1843
LA31 84.66 50.92 32.44 27.22
Queens 33428 19419 14928 14420

Table 3: Execution times in milliseconds for thread local
intermediate domains.

Problem / Threads 1 2 4 8

Sudoku 10991 5541 3161 1897
LA31 84.66 47.05 33.22 26.98
Queens 33428 18413 14729 14477



Figure 7 and Fig. 8 show that Sudoku is the problem that
scales the best by far. This is because it is very regular.
The constraints used in this problem are all of the same
size, which makes it easy to achieve a good load-balancing.
Moreover, all constraints contain 1024 variables, making
them very expensive to compute. In contrast, the other
problems use combinations of large and small constraints,
which makes it difficult to distribute the load evenly.
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Fig. 7: Absolute speed-up when using shared intermediate
domains.

1 2 4 8
0

1

2

3

4

5

6

7

Sudoku        LA31        Queens

Number of Threads

A
b
s
o
lu
te
 S
p
e
e
d
-u
p

Fig. 8: Absolute speed-up when using thread local interme-
diate domains.

The scheduling problem of LA31 does not scale as well as
Sudoku. The two main reasons are problem size and a lack
of large constraints. The short execution time of enforcing
consistency increases the relative cost of synchronization.
Furthermore, the global constraints in LA31 contain much
fewer variables than the ones in Sudoku.

Clearly Queens does not scale well at all, but as we can
see in Tables 2 and 3, this is not because of problem size. The
low scalability is instead caused by the constraints. There are
only three global constraints used in this problem. The rest
are small, primitive constraints that finish quickly. Hence, we
will have at most three threads running heavy consistency
algorithms. LA31 scales better than Queens, despite its short
running time, since it contains more global constraints.

The lack of speed-up for Queens compared to Sudoku
relates not only to the load-balancing during consistency,
but also the consistency iterations. Since the three global
constraints in Queens are much larger than the ones in
Sudoku, it would not be unreasonable to expect a speed-
up of about three for Queens. However, the updates caused
by primitive constraints, require the global constraints to
be enforced a second time. Hence, the pruning pattern of
a problem can have a large negative impact on performance.

The small difference between using shared and thread
local intermediate domains is noteworthy. The minimal dif-
ferences suggests that most of the locks are uncontended.
The cases where shared domains are faster are probably
caused by the operating system scheduler.

Clearly it does not matter which model of parallel con-
sistency is chosen when the store is consistent. The closer
the store is to global consistency, the less pruning there
will be. The less pruning, the fewer the dependencies are
caused by the update of intermediate domains, reducing lock
contention.

4.3 Results for an Inconsistent Store
During search, the store is likely to become inconsistent

more often than consistent. Hence, we also performed ex-
periments on an inconsistent store. In order to make the
store inconsistent, we made two incompatible assignments
and then enforced consistency.

The execution times in milliseconds of the two models are
presented in Table 4 and Table 5. The absolute speed-ups
are depicted in Fig. 9 and Fig. 10. Clearly, the scalability of
parallel consistency is not as good if the store is inconsistent.

Table 4: Execution times in milliseconds for shared interme-
diate domains.

Problem / Threads 1 2 4 8

Sudoku 7342 5503 3018 1703
LA31 69 58 38 36
Queens 9709 5442 5127 5312

Table 5: Execution times in milliseconds for thread local
intermediate domains.

Problem / Threads 1 2 4 8

Sudoku 7342 5599 2994 1875
LA31 69 59 41 37
Queens 9709 5750 5370 5547

Table 6 and Table 7 present the behavior of the two
model variations. As expected, many more constraints are
evaluated when using parallel consistency. Furthermore, the
performance is completely determined by the order in which
the constraints are evaluated. Ideally the constraints should
be ordered by the probability of causing an inconsistency.



Table 6: Constraints evaluated by the shared intermediate
domains.

Problem / Threads 1 2 4 8

Sudoku 2049 3073 3073 3073
LA31 1749 2941 2941 2941
Queens 3 80002 16610 14873

Table 7: Constraints evaluated by the thread local interme-
diate domains.

Problem / Threads 1 2 4 8

Sudoku 2049 3072 3072 3072
LA31 1749 2981 2981 2981
Queens 3 80001 12310 14041
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Fig. 9: Absolute speed-up when using shared intermediate
domains.
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Fig. 10: Absolute speed-up when using thread local inter-
mediate domains.

The reason why the scalability is lower when the store is
inconsistent is that we base our computations on the store at
the beginning of the consistency phase. Hence, even with
shared intermediate domains, the pruning will not be as
strong per consistency iteration as when using sequential
consistency.

4.4 Processor Load
As depicted in Figures 11 to 13, the processor loads for

the three problems are quite different. The biggest difference
is that the problems need a different amount of consistency
iterations. Sudoku performs no pruning and needs only one
iteration of consistency. LA31 needs 12 iterations, hence
the heavily varying curve in Fig. 12. Queens needs two
iterations, which is the cause of the spike in Fig. 13.
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Fig. 11: The processor load of Sudoku using eight threads.
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Fig. 12: The processor load of LA31 using eight threads.
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Fig. 13: The processor load of Queens using eight threads.

The average load of the problems is presented in Table 8.
The load of LA31 is quite low despite the fact that there
are more global constraints than available threads. The main
cause is the large number of consistency iterations. In order
to enforce the updates, we have to perform twelve barrier
synchronizations, at which no consistency threads are active.



The reason why Queens has such a low load is that there
are few global constraints. Given the time complexity, the
three alldiff constraints will take several orders of magnitude
longer to compute than the combined time for the primitive
constraints. In the second iteration of consistency, the load
comes from the two alldiff constraints used to calculate the
diagonals.

Table 8: Average load when using eight threads.
Problem Average Load Percentage of Maximum

Sudoku 6.77 0.85
LA31 2.13 0.27
Queens 1.71 0.21

From the average load it is clear that the performance
of parallel consistency depends heavily on achieving a
good load distribution. Unfortunately, the problem structure
may not allow for the load to be shared using only task
parallelism. In the case of Queens, a parallel consistency
algorithm for alldiff would be necessary to improve the
scalability.

5. Conclusions
The main conclusion of this paper is that task parallelism,

in the form of parallel consistency, can offer great improve-
ments in performance. The prerequisite is that the problem
is formulated using many global constraints. For problems
that consist mainly of primitive constraints, that are easily
enforced, the scalability can be severely limited.

Depending on the load-balancing used in the consistency
threads, the regularity of the problem has a large impact on
the scalability. The more regular the problem, the less of
an issue load-balancing becomes. Sudoku is an example of
a problem that is both regular and consists only of global
constraints. Hence, this problem illustrates the upper bound
of the scalability of parallel consistency.

The synchronization cost limits which problems can bene-
fit from parallel consistency. Problems that mostly consist of
small constraints will not scale well since even the locking
in a thread pool is to costly compared to the performance
benefits.

Clearly there is little difference between the two variations
of our model of parallel consistency. Reducing synchroniza-
tion by using thread local intermediate domains will most
likely give a better scalability when using many threads.
However, which model is better depends on the problem,
and how often the constraint store becomes inconsistent.

6. Future Work
In our future work we hope to investigate the possibility

of speculative execution. The last iteration of consistency
will not make changes to any domain. Hence, speculative
execution of the last iteration will always be successful.

We also hope to improve the load-balancing by imple-
menting work stealing. This will alleviate some of the
issues that occur for problems with irregular constraints.
However, this may not prevent the extra updates caused by
the primitive constraints.

The problems that show poor scalability in our ex-
periments are those that often need a greater amount of
search. Such problems would benefit primarily from data
parallelism. However, parallel consistency could be used to
increase the scalability when the memory bus starts to get
congested.
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