
Parallel Solving in Constraint Programming

Carl Christian Rolf and Krzysztof Kuchcinski
Lund University

Carl_Christian.Rolf@cs.lth.se, Krzysztof.Kuchcinski@cs.lth.se

ABSTRACT
Program parallelization becomes increasingly important when new
multi-core architectures provide ways to improve performance. One
of the greatest challenges of this development lies in programming
parallel applications. Declarative languages, such as constraint pro-
gramming, can make the transition to parallelism easier by hiding
the parallelization details in a framework.

Automatic parallelization in constraint programming has mostly
focused on parallel search. While search and consistency are in-
trinsically linked, the consistency part of the solving process is of-
ten more time-consuming. We have previously looked at parallel
consistency and found it to be quite promising. In this paper we in-
vestigate how to combine parallel search with parallel consistency.
We evaluate which problems are suitable and which are not. Our re-
sults show that parallelizing the entire solving process in constraint
programming is a major challenge as parallel search and parallel
consistency typically suit different types of problems.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming

General Terms
Algorithms, Performance

Keywords
Constraint Programming, Parallel Search, Parallel Consistency

1. INTRODUCTION
In this paper, we discuss the combination of parallel search and

parallel consistency in constraint programming (CP). CP has the
advantage of being declarative. Hence, the programmer does not
have to make any significant changes to the program in order to
solve it using parallelism. This means that the difficult aspects of
parallel programming can be left entirely to the creator of the con-
straint framework.

Constraint programming has been used with great success to
tackle different instances of NP-complete problems such as graph
coloring, satisfiability (SAT), and scheduling [4]. A constraint sat-
isfaction problem (CSP) can be defined as a 3-tuple P = (X,D,C),
where X is a set of variables, D is a set of finite domains where Di

is the domain of Xi, and C is a set of primitive or global con-
straints containing several of the variables in X . Solving a CSP
means finding assignments to X such that the value of Xi is in Di,
while all the constraints are satisfied. The tuple P is referred to as
a constraint store.

Finding a valid assignment to a constraint satisfaction problem is
usually accomplished by combining backtracking search with con-
sistency checking that prunes inconsistent values. In every node of
the search tree, a variable is assigned one of the values from its do-
main. Due to time-complexity issues, the consistency methods are
rarely complete [2]. Hence, the domains will contain values that
are locally consistent, i.e., they will not be part of a solution, but
we cannot prove this yet.

P1 P2 P3

(a)

P1 P2 P3

(b)

Figure 1: The position of the solution in a search tree affects
the benefit of parallelism.

The examples in Fig. 1 illustrates the problem of parallelism in
CP. We use three processors: P1, P2, and P3 to find the solution.
We assign the different parts of the search tree to processors as in
the figure. The solution we are searching for is in the leftmost part
of the search tree in Fig. 1(a) and will be found by processor P1.
Any work performed by processor P2 and P3 will therefore prove
unnecessary and will only have added communication overhead.
In this case, using P2 and P3 for parallel consistency will be much
more fruitful. On the other hand, in Fig. 1(b), the solution is in
the rightmost part of the tree. Hence, parallel search can reduce
the total amount of nodes explored to less than a third. In this
situation, parallel consistency can still be used to further increase
the performance.

X ∈ {5..9}X ∈ {0..4}

Y ∈ {0..4}

P1

P2

Y ∈ {0..2}
X ∈ {5..9}
Y ∈ {2..4}

P3

Start

Figure 2: Parallel search in constraint programming.

In this paper, we will refer to parallel search (OR-parallelism)
as data parallelism, and parallel consistency (AND-parallelism) as
task parallelism. Parallelizing search in CP can be done by splitting
data between solvers, e.g., create a decision point for a selected
variable Xi so that one computer handles Xi <

min(Xi)+max(Xi)
2



and another handles Xi ≥ min(Xi)+max(Xi)
2

. An example of such
data parallelism in CP is depicted in Fig. 2. The different possible
assignments are explored by processors P1, P2, and P3. Clearly,
we are not fully utilizing all three processors in this example. At
the first level of the search tree, only two out of three processors
are active. Near the leafs of the search tree, communication cost
outweighs the benefit of parallelism. Hence, we often have a low
processor load in later part of the search.

X ∈ {0..9}

Y ∈ {0..9}

C2C1

P1

C2C1

C3

C3

P2 P3

Start

Figure 3: Parallel consistency in constraint programming.

Figure 3 presents the model of parallel consistency in constraint
programming which we will partly discus in this paper. In the ex-
ample, the search process is sequential, but the enforcement of con-
sistency is performed in parallel. Constraints C1, C2, and C3 can
be evaluated independently of each other on different processors,
as long as their pruning is synchronized. We do not share data dur-
ing the pruning, hence, we may have to perform extra iterations
of consistency. The cause of this implicit data dependency is that
global constraint often rely on internal data-structures that become
incoherent if variables are modified during consistency.

The problem of idle processors during the latter parts of the
search is pervasive [9, 1]. Regardless of the problem, the com-
munication cost will eventually become too big.

Data parallelism can be problematic or unsuitable for other rea-
sons. Many problems modeled in CP spend a magnitude more time
enforcing consistency than searching. Using data parallelism for
these problems often reduces performance. In these cases, task par-
allelism is the only way to take advantage of multicore processors.

By combining parallel consistency with parallel search, we can
further boost the performance of constraint programming.

The rest of this paper is organized as follows. In Section 2 the
background issues are explained, in Section 3 the parallel con-
sistency is described. Section 4 details how we combine parallel
search and parallel consistency. Section 5 describes the experi-
ments and the results, Section 6 gathers our conclusions.

2. BACKGROUND
Most work on parallelism in CP has dealt with parallel search [12,

5]. While this offers the greatest theoretical scalability, it is often
limited by a number of issues. Today, the main one is that pro-
cessing disjoint data will saturate the memory bus faster than when
processing the same data. In theory, a super-linear performance
should be possible for depth-first search algorithms [8]. This, how-
ever, has only rarely been reported, and only for small numbers
of processors [5]. The performance-limits of data parallelism in
memory intense applications, such as CP, are especially apparent
on modern multi-core architectures [14].

Task parallelism is the most realistic type of parallelism for prob-
lems where the time needed for search is insignificant compared to
that of enforcing consistency. This happens when the consistency
algorithms prune almost all of the inconsistent values. Such strong
pruning is particularly expensive and in a greater need of paral-
lelism.

Previous work on parallel enforcement of consistency has mostly
focused on parallel arc-consistency algorithms [6, 11]. The down-
side of such an approach is that processing one constraint at a time
may not allow inconsistencies to be discovered as quickly as when
processing many constraints in parallel. If one constraint holds and
another does not, the enforcement of the first one can be cancelled
as soon as the inconsistency of the second constraint is discovered.

The greatest downside of parallel arc-consistency is that it is not
applicable to global constraints. These constraints encompass sev-
eral, or all, of the variables in a problem. This allows them to
achieve a much better pruning than primitive constraints, which can
only establish simple relations between variables, e.g., X+Y ≤ Z.

We only know of one paper on parallel consistency with global
constraints [10]. That paper reported a speed-up for problems that
can be modeled so that load-balancing is not a big issue. For ex-
ample, Sudoku gave a near-linear speed-up. However, in this paper
we go further by looking at combining parallel search with parallel
consistency.

3. PARALLEL CONSISTENCY
Parallel consistency in CP means that several constraints will be

evaluated in parallel. Constraints that contain the same variables
have data dependencies, and therefore their pruning must be syn-
chronized. However, since the pruning is usually monotonic, the
order in which the data is modified does not affect the correctness.
This follows from the property that well-behaved constraint prop-
agators must be both decreasing and monotonic [13]. In our finite
domain solver this is guaranteed since the implementation makes
the intersection of the old domain and the one given by the con-
sistency algorithm. The result is written back as a new domain.
Hence, the domain size will never increase.

Our model of parallel consistency is depicted in Fig. 4, this model
is described in greater detail in [10] and in Fig. 6(b). At each level
of the search, consistency is enforced. This is done by waking
the consistency threads available to the constraint program. These
threads will then retrieve work from the queue of constraints whose
variables have changed. In order to reduce synchronization, each
thread will take several constraints out of the queue at the same
time. When all the constraints that were in the queue at the begin-
ning of the consistency phase have been processed, all prunings are
committed to the constraint store as the solver performs updates. If
there were no changes to any variable, the consistency has reached
a fix-point and the constraint program resumes the search. If an in-
consistency is discovered, the other consistency threads are notified
and they all enter the waiting state after informing the constraint
program that it needs to backtrack.

Constraint 
Queue

Thread 1 Thread 2 Thread 3

Barrier

Done, waiting
Done, waiting

Perform updates

Add changed constraints to queue

Figure 4: The execution model for parallel consistency.

Consistency enforcement is iterative. When the threads are ready,
the constraint queue is split between them, and an iteration of con-
sistency can begin. This procedure will be repeated until we reach
a fixpoint, i.e., the constraints no longer changes any domain. The



constraints containing variables that have changes will be added to
the constraint queue after the updates have been performed.

One of the main concerns in parallel consistency is visibility.
Global constraints usually maintain an internal state that may be-
come incoherent if some variables are changed while the consis-
tency algorithm is running. If we perform the pruning in parallel,
the changes will only be visible to the other constraints after the
barrier. This reduces the pruning per consistency iteration. Hence,
in parallel consistency, we will usually perform several more itera-
tions than in sequential consistency before we reach the fixpoint.

4. COMBINING PARALLEL SEARCH AND
PARALLEL CONSISTENCY

The idea when combining parallel search and parallel consis-
tency is to associate every search thread several consistency threads.
A simple example is depicted in Fig. 5. First the data is split from
processor P1 and sent to processor P2. Then the search running on
P1 will perform consistency by evaluating constraints C1 and C2 on
processors P1 and P3 respectively. The search running on P2 will,
completely independently, run consistency using processors P2 and
P4. Each search has its own store, hence, constraints C1 and C2 can
be evaluated by the two searches without any synchronization.

P1 P3 P2 P4
X ∈ {5..9}X ∈ {0..4}

P1

P2

C2C1C2C1

Start

Figure 5: An example of combining parallel search and parallel
consistency.

More formally, the execution of the combined search and con-
sistency in CP proceeds as follows. We begin with a constraint
store P = (X,D,C) as defined earlier. This gives us a search
space to explore, which can be represented as a tree. The chil-
dren of the root node represent the values in Di. In these nodes,
we assign Xi one of its possible values and remove Xi from X .
For example, assigning X0 the value 5 gives a node n with Pn =
(X \ X0, D ∪ D0 ∩ {5}, C). After each assignment, we ap-
ply the the function enforceConsistency, which runs the con-
sistency methods of C, changing our store to (X ′, D′, C) where
X ′ = X \Xi. D′ is the set of finite domains representing the val-
ues for X ′ that were not marked as impossible by the consistency
methods of C. The method enforceConsistency is applied it-
eratively until D′′ = D′. Now there are two possibilities: either
∃D′

i = ∅, in which case we have a failure, i.e., there are no solu-
tions reachable from this node, or we progress with the search. In
the latter case, we have two sub-states. Either X ′ = ∅, in which
case we have a solution, or we proceed recursively with a new Xi.

Parallel search means that we divide Di into subsets and assign
them to different processors. Each branch of the search tree start-
ing in a node is independent of all other branches. Hence, there is
no data dependency between the different parts of the search space.
Parallel consistency means parallelizing the enforceConsistency
method. This is achieved by partitioning C into subsets, each han-
dled by a different processor.

The pseudo code for our model is presented in Fig. 6. When
a search thread makes an assignment it needs to perform consis-
tency before progressing to the next level in the search tree. Hence,

processors P1 and P2 in the example are available to aid the con-
sistency enforcement. The consistency threads are idle while the
search thread works. If we only allocate one consistency thread per
processor a lot of processors will be idle as we are waiting to per-
form the assignment. Hence, it is a good idea to ensure that the total
number of consistency threads exceeds the number of processors.

As Fig. 6 shows, the parallel search threads will remove a search
node and explore it. In our model, a search node represents a set
of possible values for a variable. The thread that removes this set
guarantees that all values will be explored. If the set is very large,
the search thread can split the set to allow other threads to aid in
the exploration. When there are no more search nodes to explore,
the entire search space has been explored.

Since we have to wait for the different threads, some parts of
the algorithm are, by necessity, synchronized. In Fig. 6(a), line 15
requires synchronization while we wait for the consistency threads
to finish. In Fig. 6(b), lines 15 to 22, which represent the barrier,
are synchronized. However, each thread may use its own lock for
waiting. Hence, there is little lock contention. Furthermore, line 13
has to be synchronized in order to halt the other threads when we
have discovered an inconsistency. Depending on the data structure,
lines 6 and 7 may also have to be synchronized.

1 // search nodes to be explored N
2 // variables to be labeled V , with FDV xi ∈ V
3 // domain of xi is di, list of slave computers S
4
5 while N 6= ∅
6 Node ← N.first
7 N ← N \ Node
8 V ← Node.unlabeledV ariables
9 while V 6= ∅

10 V ← V \ xi
11 select value a from di
12 xi ← a
13 for each slave s in S
14 s.enforceConsistency
15 wait //wait for all slaves to stop
16 if Inconsistent
17 di ← di \ a
18 V ← V ∪ xi
19 end while
20 store solution
21 end while

(a)
1 // set of constraints to be processed PC
2 // set of constraints processed in this slave SC
3 // returns result to the constraint program
4
5 boolean enforceConsistency
6 while PC 6= ∅
7 PC ← PC \ SC
8 while SC 6= ∅
9 SC ← SC \ c

10 c.consistency
11 if c.inconsistent
12 for each slave s in S
13 s.stop
14 return Inconsistent
15 if all other slaves waiting
16 perform updates
17 for each changed constraint cd
18 PC ← PC ∪ cd
19 for each slave s in S
20 s.wake
21 else
22 wait //wait for updates
23 end while
24 end while
25 return Consistent

(b)

Figure 6: The combined parallel search and parallel consis-
tency algorithm. Parallel depth-first search (a), slave program
for parallel consistency (b).

By combining parallel search and parallel consistency we hope
to achieve a better scalability. Unlike data parallelism for depth-
first search, the splitting of data poses a problem in constraint pro-
gramming. The reason is that the split will affect the domains of
the variables that have not yet been assigned a value. In the exam-
ple in Fig. 2, with a constraint such as X > Y the consistency will



change the shape of the search tree by removing the value 4 from
the domain of Y for processor P1. For more complex problems, the
shape of both search trees may be affected in unpredictable ways.
Since the consistency methods are usually not complete, there is no
way to efficiently estimate the size and shape of the search trees af-
ter a split. Parallel consistency allows us to use the hardware more
efficiently when parallel search runs into these kinds of problems.

In [10] we showed that parallel consistency scales best on very
large problems consisting of many global constraints. Solving such
problems is a daunting task, which makes it hard to combine paral-
lel search with parallel consistency. Furthermore, finding just one
solution to a problem often leads to non-deterministic speed-ups.

5. EXPERIMENTAL RESULTS
We used the JaCoP solver [3] in our experiments. The experi-

ments were run on a Mac Pro with two 3.2 GHz quad-core Intel
Xeon processors running Mac OS X 10.6.2 with Java 6. These two
processors have a common cache and memory bus for each of its
four cores. Our parallelized solver is described in detail in [9].

5.1 Experiment Setup
We used two problems in our experiments: n-Sudoku, which

gives an n × n Sudoku if the square root of n is an integer and
n-Queens which consists in finding a placement of n queens on
a chessboard so that no queen can strike another. Both problems
use the AllDifferent constraint with bounds consistency [7], cho-
sen since it is the global constraint most well spread in constraint
solvers. The problem characteristics are presented in Table 1.

The results are the absolute speed-ups when searching for a lim-
ited number of solutions to n-Sudoku and one solution to n-Queens.
For Sudoku we used n = 100 with 85 % of values set and searched
for 200 and 5 000 solutions. For Queens we used n = 550 and
searched for a single solution. We picked these problems in order
to illustrate how the size of the search space affects the behavior
when combining parallel search with parallel consistency, while
still having a reasonable execution time.

For each problem we used between one and eight search threads.
For each search thread we used between one and eight consistency
threads. We used depth-first search with in-order variable selection
for both problems.

Table 1: Characteristics of the problems.
Problem Variables Primitive Global

Constraints Constraints
Sudoku 10 000 0 300
Queens 1 648 1 098 3

5.2 Results for Sudoku
The results for 100-Sudoku is presented in Table 2 and Table 3,

the speed-ups are depicted in Fig. 7 and Fig. 8. The bold number in
the table indicates the fastest time and the gray background marks
the times slower than sequential. The results show that there is a
clear difference in behavior as the search space increases. When
we have to explore a larger search space, parallel search is better
than parallel consistency. However, if we have a more even bal-
ance between search and consistency, combining the two types of
parallelism increases the performance.

From the diagrams, we can see that it is good to use more consis-
tency threads than there are processor cores. However, using many
more threads is not beneficial, especially when there are several
search threads.

Using too many threads will cause an undesirable amount of task
switching and saturation of the memory bus. We measured and
analyzed how the number of active threads, and their type, affects
performance. The average number of active threads when running
two search threads and four consistency threads per search thread
for 200 solutions to n-Sudoku was 5.5. This is the average over the
entire execution time. The same number for the slowest instance,
eight by eight threads, was 59 active threads. The first case achieves
a rather good balance given that it is hard to extract useful data
parallelism for the search threads. The number of active threads for
the search threads alone was 1.5 when using two search threads,
and 7.1 when using eight search threads.

Table 2: Execution times in seconds when searching for 200
solutions to 100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 176 125 122 145
2 176 124 143 177

4 158 110 142 210

8 162 127 192 269

Table 3: Execution times in seconds when searching for 5 000
solutions to 100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 3 663 1 882 1 720 1 649
2 3 931 2 293 2 565 2 782

4 3 995 2 161 3 224 2 735

8 4 254 2 556 3 997 3 192

1 2 4 8
0

0.5

1

1.5

2

1 2 4 8Consistency Threads per Search Thread

A
b

s
o

lu
te

 S
p

e
e

d
-u

p

Search Threads

Figure 7: Speed-up when searching for 200 solutions to 100-
Sudoku.

The main bottleneck for the performance is the increased work-
load to enforce consistency. The total number of times constraints
are evaluated per explored search node is depicted in Fig. 9 and
Fig. 10. Clearly, using parallel consistency increases the number
of times we have to evaluate the constraints. This is because we
cannot share data between constraints during their execution.

The second bottleneck for the performance of parallel consis-
tency is synchronization. In our solution, we have several points of
synchronization. The barrier before updates is particularly costly
as the slowest consistency thread determines the speed.

The third bottleneck is the memory bus. Parallel search can
quickly saturate the bus. Adding parallel consistency will worsen
the performance. The performance clearly drops off towards the
lower right hand corner of Table 2 and to the left of Table 3.

The only way to fruitfully combine parallel search with paral-
lel consistency is if we reduce the number of search nodes more
than we increase their computational weight. The inherent prob-
lem in doing this is clear from the differences in results between



1 2 4 8
0

0.5

1

1.5

2

2.5

1 2 4 8Consistency Threads per Search Thread

A
b

s
o

lu
te

 S
p

e
e

d
-u

p

Search Threads

Figure 8: Speed-up when searching for 5 000 solutions to 100-
Sudoku.

Table 4 and Table 5. As shown by Fig. 9, when the problem is
small there is an almost linear increase in the number of consis-
tency checks per search node as we add search threads. On the
other hand, Fig. 10 shows that the number of consistency checks
varies a lot depending on the number of consistency threads. The
reason is that when we have to explore a large search space we will
run into more inconsistencies, which can be detected faster when
using parallel consistency. However, inconsistent nodes have less
computational weight. In conclusion, when parallel search starts
to become useful, parallel consistency cannot pay off the computa-
tional overhead it causes.

Table 4: Number of times consistency was called for the con-
straints in 100-Sudoku when searching for 200 solutions.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 23 475 47 487 122 587 217 339
2 36 585 73 017 171 613 243 754
4 36 585 72 833 169 849 231 745
8 36 585 73 369 160 696 242 317

Table 5: Number of times consistency was called for the con-
straints in 100-Sudoku when searching for 5 000 solutions.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 364 718 435 524 1 102 162 1 613 385
2 721 723 933 104 2 453 025 1 604 395
4 720 976 925 494 2 089 093 1 571 044
8 720 980 920 276 1 731 205 1 470 914

Table 6: Number of search nodes explored when searching for
200 solutions to 100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 35 953 34 914 44 473 52 382
2 35 953 35 394 41 669 45 467
4 35 953 35 358 41 785 45 380
8 35 953 35 296 40 949 45 832

Table 7: Number of search nodes explored when searching for
5 000 solutions to 100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 763 827 784 204 958 969 1 002 032
2 763 827 784 980 920 223 881 475
4 763 827 785 547 915 305 894 489
8 763 827 784 443 923 470 886 828

1 2 4 8
0

1

2

3

4

5

6

1 2 4 8Consistency Threads per Search Thread

C
o
n
s
is

te
n
c
ie

s
 p

e
r 

S
e
a
rc

h
 N

o
d

e

Search Threads

Figure 9: Consistency enforcements per search node when
searching for 200 solutions to Sudoku.

1 2 4 8
0

1

2

3

1 2 4 8Consistency Threads per Search Thread

C
o

n
s
is

te
n

c
ie

s
 p

e
r 

S
e

a
rc

h
 N

o
d

e

Search Threads

Figure 10: Consistency enforcements per search node when
searching for 5 000 solutions to Sudoku.

5.3 Results for Queens
It is much harder to achieve an even load-balance for Queens

than for Sudoku. The structure of Queens is quite different from
Sudoku. In Sudoku we only have global constraints with a high
time complexity. In Queens, there are lots of small constraints to
calculate the diagonals. Hence, for most of the execution, we have
a very low processor load if we only use parallel consistency [10].

We used Queens in order to illustrate how parallel consistency
can be useful when parallel search is not. Problems with little
need for parallel consistency have more room for the parallel search
threads to execute. However, Queens is a highly constrained prob-
lem. Even with 550 queens, there are very few search nodes that
need to be explored. Hence, parallel search will usually only add
overhead. However, adding parallel consistency can compensate
for the performance loss.

As shown in Table 8 and Fig. 11, parallel search reduces perfor-
mance. However, parallel consistency gives a speed-up even when
we loose performance because of parallel search. We can also see
that adding search threads can lead to sudden performance drops.
This is largely because we end up overloading the memory bus and
the processor cache. For eight search threads the performance in-
creases compared to four threads. The reason is that we find a
solution in a more easily explored part of the search tree.

Table 9, Table 10, and Fig. 12 all support our earlier observa-
tion that the workload increases heavily if we use barrier synchro-
nization. The results come from that we have to evaluate the sim-
ple constraints many more times if we do not share data between
them and the alldifferent constraints. The reason why we still get
a speed-up is that the alldifferent constraints totally dominate the
execution time and do not have to be run that much more often in
parallel consistency.

6. CONCLUSIONS
The main conclusion is that it is possible to successfully combine

parallel search and parallel consistency. However, it is very hard to
do so. The properties of a problem, and size of the search space
determines whether parallelism is useful or not. When trying to



Table 8: Execution times in seconds when searching for one
solution to 550-Queens.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 107 109 464 325

2 95 101 454 191

4 77 82 405 213

8 77 82 426 215

1 2 4 8
0

0.5

1

1.5

1 2 4 8Consistency Threads per Search Thread

A
b

s
o

lu
te

 S
p

e
e

d
-u

p

Search Threads

Figure 11: Speed-up when searching for one solution to 550-
Queens.

Table 9: Number of times consistency was called for the con-
straints in 550-Queens when searching for one solution.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 322 415 662 392 2 475 709 2 560 781
2 772 585 1 566 891 5 551 542 6 159 671
4 771 537 1 554 595 5 182 159 6 153 881
8 769 972 1 543 778 5 014 605 6 152 789

Table 10: Number of search nodes explored when searching for
one solution to 550-Queens.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 1 246 2 624 20 866 11 200
2 1 246 2 787 23 114 10 193
4 1 246 2 735 22 072 10 292
8 1 246 2 834 23 025 10 591

1 2 4 8
0

100

200

300

400

500

600

1 2 4 8Consistency Threads per Search Thread

C
o
n

s
is

te
n

c
ie

s
 p

e
r 

S
e

a
rc

h
 N

o
d
e

Search Threads

Figure 12: Consistency enforcements per search node when
searching for one solution to Queens.

add two different types of parallelism, these factors become doubly
important.

In general, if a problem is highly constrained, there is little room
to add parallel search. If it is not constrained enough, there will
be too many inconsistent branches for successfully adding parallel
consistency. Finally, if a problem is reasonably constrained, the
size of the search space, the uniformity of constraints, and the time
complexity of the consistency algorithms determine whether fruit-
fully combining parallel search and parallel consistency is feasible.

In order to make sure that parallel consistency becomes less prob-
lem dependent, the need for synchronization must be reduced. This

requires data to be shareable between global constraints within the
barrier. Since pruning is usually monotonic, this should be possi-
ble.

7. REFERENCES
[1] G. Chu, C. Schulte, and P. J. Stuckey. Confidence-based

work stealing in parallel constraint programming. In I. Gent,
editor, Fifteenth International Conference on Principles and
Practice of Constraint Programming, volume 5732 of
Lecture Notes in Computer Science, pages 226–241, Lisbon,
Portugal, Sept. 2009. Springer-Verlag.

[2] R. Dechter. Constraint Processing. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2003.

[3] K. Kuchcinski. Constraints-driven scheduling and resource
assignment. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 8(3):355–383, July 2003.

[4] K. Marriott and P. J. Stuckey. Introduction to Constraint
Logic Programming. MIT Press, Cambridge, MA, USA,
1998.

[5] L. Michel, A. See, and P. V. Hentenryck. Parallelizing
constraint programs transparently. In C. Bessiere, editor, CP,
volume 4741 of Lecture Notes in Computer Science, pages
514–528. Springer, 2007.

[6] T. Nguyen and Y. Deville. A distributed arc-consistency
algorithm. Sci. Comput. Program., 30(1-2):227–250, 1998.

[7] J.-F. Puget. A fast algorithm for the bound consistency of
alldiff constraints. In AAAI/IAAI, pages 359–366, 1998.

[8] V. N. Rao and V. Kumar. Superlinear speedup in parallel
state-space search. In Proceedings of the Eighth Conference
on Foundations of Software Technology and Theoretical
Computer Science, pages 161–174, London, UK, 1988.
Springer-Verlag.

[9] C. C. Rolf and K. Kuchcinski. Load-balancing methods for
parallel and distributed constraint solving. Cluster
Computing, 2008 IEEE International Conference on, pages
304–309, Oct 2008.

[10] C. C. Rolf and K. Kuchcinski. Parallel consistency in
constraint programming. PDPTA ’09: The 2009
International Conference on Parallel and Distributed
Processing Techniques and Applications, 2:638–644, July
2009.

[11] A. Ruiz-Andino, L. Araujo, F. Sáenz, and J. J. Ruz. Parallel
arc-consistency for functional constraints. In Implementation
Technology for Programming Languages based on Logic,
pages 86–100, 1998.

[12] C. Schulte. Parallel search made simple. In N. Beldiceanu,
W. Harvey, M. Henz, F. Laburthe, E. Monfroy, T. Müller,
L. Perron, and C. Schulte, editors, Proceedings of TRICS:
Techniques foR Implementing Constraint programming
Systems, a post-conference workshop of CP 2000, Singapore,
Sept. 2000.

[13] C. Schulte and M. Carlsson. Finite domain constraint
programming systems. In F. Rossi, P. van Beek, and
T. Walsh, editors, Handbook of Constraint Programming,
Foundations of Artificial Intelligence, chapter 14, pages
495–526. Elsevier Science Publishers, Amsterdam, The
Netherlands, 2006.

[14] X.-H. Sun and Y. Chen. Reevaluating amdahl’s law in the
multicore era. J. Parallel Distrib. Comput., 70(2):183–188,
2010.


