
A Study on Real-time Multibody Simulation
with Contacts

Carl Johan Gribel
Numerical Analysis

Lund Institute of Technology

Supervisor: Prof. Claus Führer

November 11, 2009

Abstract

The so called contact problem, referring to the resolution of geo-
metric contacts in a dynamic simulation, is an interesting, multifaceted
one. Consider the simulation of a pile of bodies: most constellations of
bodies in contact are, directly or indirectly, dependent on many other
such constellations, forming an entangled web of bodies in collective,
yet fragile, equilibrium.

This thesis will present an impulse-based method for solving multi-
body systems with contact; in its theoretical formulation as well as in
its implementation. Contact resolution and behavior, including fric-
tion and elasticity, will be setup using kinematic constraints. Much
the same way, it turns out, as general joints, incentivizing a choice
of constraint solver method adapted for both. Each necessary simu-
lation component, from collision detection to visualization and user
interaction, will subsequently be detailed and combined into a simple,
yet fast and robust simulation framework.

1

Contents

1 Introduction 4
1.1 Scope of the Work . 5
1.2 Chapter Overview . 6

2 Kinematic Constraints 7
2.1 Constraint Solver Overview 7
2.2 The Constraint Equations . 9
2.3 Distance Joint . 11
2.4 Hinge Joint . 12
2.5 Slider Joint . 12
2.6 Angular Driver . 13
2.7 Contact Model . 13

2.7.1 Non-Penetration Constraint 15
2.7.2 Friction Constraint . 16

2.8 Constraint Stabilization . 18
2.8.1 Stabilizing Unilateral Constraints 19

2.9 Impulse-based Constraint Solver 19

3 Collision Detection 21
3.1 Narrow Phase Collision Detection 21

3.1.1 Polygon–Polygon Collision Test 22
3.1.2 Polygon–Circle Collision Test 23
3.1.3 Circle–Circle Collision Test 24

3.2 Collision Culling . 24

4 Implementation 25
4.1 Development Tools . 25
4.2 Basic Classes . 25
4.3 Simulation . 29

4.3.1 Sleeping . 30
4.4 Collision Detection . 31

4.4.1 Collision Filtering . 31
4.5 Rendering and User Interface 32

2

5 Testing and Evaluation 34
5.1 Stacking . 34
5.2 Hybrid Joint: Hydraulic Driver 36
5.3 Conclusion . 39

5.3.1 Future Work . 39

3

1 Introduction

Dropping a toy block to the floor, one expects it to accelerate through the
air for a short while, before landing violently. The impact will most likely
make the block spin and bounce off in a random direction. After a while,
past some chaotic tumbling, the block will eventually settle, surrendering to
friction. Easy enough in real life, but how can this behavior be re-created in
a simulation?

Interactive multibody simulation, from model to computer application,
spans several disciplines. The free motion of bodies in a mechanical system
is expressed by Newton’s second law: Ma = f . This formulation, called a
many-body system, is sufficient for systems with forces only. When adding
body geometry, and the notion of geometric overlap; collisions or contacts ;
motion is no longer free but constrained. The constrained system, now a
multibody system, include additional Lagrange Multipliers, λ: Ma = f+JTλ,
where J is a constraint matrix.

The issue of solving the multibody system equations eventually turns out
to be a Linear Complementarity Problem (LCP), which can be solved in dif-
ferent ways. In this thesis, an iterative method is used, in large based on
the merits of iterative methods in interactive, performance sensitive environ-
ments.

Then there is the collision detection process, in which collisions are de-
tected and data necessary to resolve them is gathered. Collision detection is
by itself a vast subject, rooted in computational geometry. Being one of the
most computationally expensive aspects of the simulation (näıvely, all bodies
need to be tested against all other bodies), it often requires supplementary
algorithms reducing this cost in different ways.

Finally, in order to produce and display the end results visually in a
credible manner, every part of the simulation must operate in symbiosis;
model, method and program implementation.

4

Figure 1.1 A truck model (left) with an articulated bed and suspended wheels,
and a humanoid, ”ragdoll” model (right), with body parts connected by joints.
Videos demonstrating both models can be viewed online [Grib08]. Humanoid
model courtesy of Mark Bayazit [Byaz08]

1.1 Scope of the Work

In this thesis, the following key directions have been made.

• 2D. Working in two instead of three dimensions simplify several aspects:
rotations have one instead of three degrees of freedom; there are no Cori-
olis forces; friction is simpler etc. However, 2D still reveals most relevant
dynamic effects. It also simplifies visualization and user interaction.

• Real-time and Interactivity. The simulation is expected to run in real-
time while simultaneously being subject to external input and system manip-
ulations. These criteria pose an extra challenge to the extent that, referring
back to the block-dropping scenario, humans possess an inherently well de-
veloped perception of how mechanics ought to behave: they know right from
wrong when they see it, thus, on one hand, demanding a high fidelity simula-
tion. On the other hand, however, this perception is based on heuristics and
patterns, not n:th-decimal accuracy, and so cutting some selected corners,
in the name of performance, can often be considered acceptable.

• Discrete time, fixed timestep. This is a consequence of how the system
equations are derived and solved, which will be apparent in due time.

• Rigid bodies. Only non-deformable bodies are used.

• Geometric primitives: polygon, circle. These primitives are simple
enough to represent, and to manage during collision detection, yet flexible
enough to combine into composite geometries.

5

1.2 Chapter Overview

The constrained system equations will be introduced and derived into a velocity
form LCP in chapter 2. The constraint equations and several types of joints will
be presented in 2.2-2.6. The contact model follows in 2.7, explaining restitution,
friction and other contact-related issues. The constraint solver is presented in 2.9.

In chapter 3 the various phases of collision detection is explained, as well as
its role in supplying the solver with contact data.

Chapter 4 details the implementation process; tools, classes and implementation-
specific aspects of the simulation. In chapter 5, two test cases are presented.

6

2 Kinematic Constraints

A mechanical system under the rule of Newton’s second law: f = ma, is consid-
ered a free system. Despite the fact that internal or external forces may effectively
impose limits on the motion of the system, all states are indeed still analytically
viable. In a constrained system however, motion is restricted according to kine-
matic relations called constraints, which are central in multibody dynamics. They
are for instance used to model joints, which can be seen as idealizations of real-
world mechanical devices such as hinges and sliders. In the context of this thesis,
constraints are also used to model more subtle applications such as motors and
friction.

A classical example of a constrained system is the simple pendulum: a bob
hanging in a mass-less rod, oscillating back and forth under the influence of grav-
itational force. The constraint relation in this case states that the length of the
rod must remain the same throughout the simulation.

2.1 Constraint Solver Overview

Several methods for solving constrained systems are available. One strategy is to
consider the kinematic topology of the system, and to express the motion of each
body with respect to its interconnections using relative coordinates [ESFu98]. Such
a system retains the form of an ordinary differential equation since no additional
equations are needed. A drawback is that the mass matrix may become position
dependent and non-diagonal. Another strategy is to use explicit forces, such as
springs, to uphold the constraints. This approach potentially raises stability issues,
since constraint accuracy require stiff springs, which might in some cases make
numerical integration less efficient.

In implicit or Lagrange multiplier-based methods, the constraint relations are
instead defined separately in the form of constraint equations, which are satisfied by
additional constraint forces acting on the system. By the introduction of algebraic
equations, the system no longer has the form of an ordinary differential equation
- but of a differential algebraic equation (DAE).

Since these methods enforce constraints essentially by applying forces in order
to alter accelerations, they are said to be force-based. Impulse-based methods, on
the other hand, alter velocities directly through the use of impulses. To make this
possible, the system equations needs some rewriting.

7

But let’s start by formalising from the original system equations. Consider an
N -body system with K holonomic constraints C = g(p) and 3N constraint forces
fc. The constrained motion then has the form

Mv̇ = fext(t, p, v) + fc(p, λf) (1)
0 = g(p) (2)

According to D’Alembert’s principle of virtual work it can be shown that the
manifold of free motion defined by the constraint equations is orthogonal to the
constraint forces [ESFu98]: fc(p, λf) = d

dpg(p)Tλf , and we define

J(p) :=
d

dp
g(p) (3)

as the constraint matrix or constraint Jacobian, J ∈ RK×3N . We now have

Mv̇ = fext(t, p, v) + J(p)Tλf (4)
0 = g(p) (5)

Solving this system is a matter of finding the K unknown Lagrange multipliers
λf , representing the magnitudes of the constraint forces J(p)Tλf . This procedure
is described further by [Bara96].

Now, in order to use an impulse-based solution we need to express (3) in terms
of velocities instead of accelerations [StTr96]. This is performed by numerical
integration. Assuming a fixed timestep h, explicit Euler-integration approximates
the acceleration v̇ in terms of velocities at the end and beginning of the timestep:

v̇(t) ≈ v(t+h) − v(t)

h
(6)

The time integral of the system in (4) thus reads

M(v(t+h) − v(t)) =
(
h · fext + h · JTλf

)(t)
(7)

Here, we recognize that under the duration of a timestep, the constraint forces
effectively turn into constraint impulses Pc(p, λf) = h ·J(p)Tλf = h · fc(p, λf). By
introducing as impulse magnitude λ, related to the force magnitude by λ = h ·λf ,
these impulses read

Pc(p, λ) = J(p)Tλ (8)

And the system in (7) evolves into

M(v(t+h) − v(t)) =
(
h · fext + JTλ

)(t)
(9)

8

The constraint equations in (5) are expressed at velocity level by time derivation.
The chain rule leads to

Ċ(p, v) =
d

dt
g(p) =

∂

∂p
g(p)

∂

∂t
p = J(p)v (10)

From the standpoint of discrete time, the constraint equation is to be satisfied at
the end of each timestep. Hence

Ċ(t+h) = Jv(t+h) (11)

Combining (9) and (11), and rewriting to matrix form [Bara96] [AnPo97], we arrive
at (

0
Ċ

)
=
(
M −JT
J 0

)(
v(t+h)

λ

)
+
(
−Mv(t) − h · fext

0

)
(12)

This is the core form of the discrete system equations in the context of this
thesis. It turns out, as will be further elaborated during the coming sections, that
this can be turned into a linear complementary problem (LCP). What’s missing
in its current form is a few additional condition, one of which permits for limits
to be applied to the constraint impulses λ. This is necessary for some type of
constraints, such as non-penetration contact and friction. We express these limits
in general as

lok ≤ λk ≤ hik (13)

It is important to note that impulse-based solvers operate solely on the velocity
level Ċ of the constraints. The mechanism by which the position level C is satisfied
will be presented in section 2.8.

2.2 The Constraint Equations

The broad and somewhat diverse use of constraints makes the constraint equation
an important topic to understand in order to grasp other, more abstract aspects
of the simulation such as joint design and the solver algorithm. This section will
explain the main shapes and characteristics of the constraint equations, yet without
revealing their actual algebraic content, which will be covered in the next section.

To reiterate, constraint equations express kinematic relationships between bod-
ies. They come in an assortment of categories, however this thesis will focus on
holonomic bilateral constraints, C(p) = 0 and holonomic unilateral constraints
C(p) ≥ 0. Unilateral constraints are used for instance in non-penetration contacts,
where constraint impulses are allowed to push bodies apart but not together. Go-
ing forward, we state that each individual constraint equation affect exactly two
bodies.

9

To determine whether a constraint equation is satisfied or not, it is simply
evaluated. A constraint that is completely and exactly satisfied evaluates to zero
at all available levels: Ck = Ċk = C̈k = 0. Since the impulse-based solver used in
this thesis operates on velocity level only, the velocity constraint equations (10)
are of foremost interest. That is

Ċk = Jkv = 0 (14)

To picture the form of the constraint matrix J , consider the elements jkn of K
velocity constraints in an N -body system:

j11v1 + . . .+ j1NvN = 0
j21v1 + . . .+ j1NvN = 0

...
jK1v1 + . . .+ jKNvN = 0

By defining J =

j11 · · · j1N
j21 · · · j2N
...

. . .
...

jK1 · · · jKN

 and

v1
v2
...
vN

,

the matrix form reads Ċ = Jv = 0. The elements of J constitute algebraic
expressions, but since we happen to know that only two bodies are affected by
each constraint, all but two elements will be zero. As a consequence, the ele-
ment arrangement of J often exhibit distinguished patterns. Some of which are
preferred, and some less so, by the solver. An overview of matrix patterns for
different system configurations is presented in figure 2.2.1-2.2.3.
Another consequence of this conclusion is that a more compact, two-body form
constraint equation can be used. Hence, a constraint k, acting on bodies i and j,
can therefore be expressed

Ċk = jkivi + jkjvj =
(
jki jkj

)(vi
vj

)
= Jkvij (15)

Before arriving at the final form of the constraint equation, an additional term
d will be included. This term will prove useful in several upcoming situations.
Appearing on the velocity level, it is consequently time-dependent. In conclusion,
a velocity-level constraint k, acting on bodies i and j, has the general form

Ċk = Jkvij + dk (16)

10

J =

A B C D j1A j1B
j2B j2C

j3C j3D

1
2
3

Figure 2.2.1 Constraint matrix topology for a sparse system.

J =

A B C D j1A j1B
j2A j2C
j3A j3D

1
2
3

Figure 2.2.2 Constraint matrix topology for a dense system.

J =

A B C D
j1A j1B

j2B j2C
j3C j3D

j4A j4D

1
2
3
4

Figure 2.2.3 Constraint matrix topology for a cyclic system.

2.3 Distance Joint

A distance joint proclaims a fixed distance L between two points. It can be sym-
bolized by a rigid, massless rod of length L. It is specified by:

Anchor points: ri, rj
Joint vector:

u =
(pj + rj)− (pi + ri)
||(pj + rj)− (pi + ri)||

Position constraint:

Ck = ||(pj + rj)− (pi + ri)|| − L (17)

11

Velocity constraint:

Ċk = u · (ṙj − ṙi)
= u · (vj + wj × rj − vi − wi × ri)

=

−u
−ri × u

u
rj × u

T

vi
wi
vj
wj

= Jkvij = 0 (18)

2.4 Hinge Joint

A hinge joint fixes two points to each other, effectively being a distance joint of
zero length (although such a distance joint is not recommended). It can be sym-
bolized by a pin, attaching two bodies together in one point. It is specified by:

Anchor points: ri, rj
Position constraint:

Ck = (pj + rj)− (pi + ri) = 0 (19)

Velocity constraint:

Ċk = ṙj − ṙi
= vj + wj × rj − vi − wi × ri

=

−12

−skew(ri)
12

skew(rj)

T

vi
wi
vj
wj

= Jkvij = 0 (20)

2.5 Slider Joint

A slider joint allow motion only along a predefined reference direction. Its func-
tion resembles that of a cylinder with a piston, but allowing angular motion as
well (unlike the cylinder). The slider joint can be used for instance in wheel sus-
pensions, permitting the wheel to move only up and down relative the chassis. It
is specified by:

12

Anchor points: ri, rj
Reference direction: l
Joint vector: d = (pi + ri)− (pj + rj)
Position constraint:

Ck = lTd = 0 (21)

Velocity constraint:

Ċk =
d

dt

(
lTd
)

= (wi × l) · d+ l · (vj + wj × rj − vi − wi × ri)

=

−l

(d+ ri)× l
l

ri × l

T

vi
wi
vj
wj

= Jkvij = 0 (22)

2.6 Angular Driver

Some constraints act directly to impose or restrict the relative angular velocity
of two bodies, regardless of absolute rotation. These are called drivers, motors
or actuators, and are often used in combination with torque limits to prevent
”infinite” accelerations. A wheel for instance can be made to spin, brake, or even
slow down gradually as if it where subject to rolling friction, by imposing a certain
angular velocity (possibly zero) between the wheel and the chassis. By using
torque limits, the capacity of the engine can be simulated. Without limits, the
wheel would reach its target velocity instantaneously.

Consider the form of (16) and a target velocity of wk, the constraint reads

Ċk = wj − wi − wk =

0
−1
0
1

T

vi
wi
vj
wj

 = Jkvij − wk = 0 (23)

2.7 Contact Model

In this section it will be explained how constraints can be used to model contact and
collision behavior. As with other constraints presented this far, contact constraints

13

dictate kinematic relationships between pairs of bodies, but unlike them, contact
constraints are short-lived (typically a single timestep) entities created and handed
to the constraint solver ”on the fly” by the collision detection module.
Some new semantics also arise. Anchor points are now referred to as the (single)
contact point ; the joint vector is referred to as the contact normal ; positional error
is referred to as penetration depth. Furthermore, while of less formal importance, a
contact can be said to represent the set of data relevant to the contact constraint;
bodies, contact points, contact normal etc; while a collision can be said to represent
the event causing it.

The contact model is set up by two constraint relations, both of which focus
on the relative velocity of the bodies: the first constraint relation eliminates its
normal component in order to avoid penetration, and the second manipulates its
tangent component in order to simulate friction.
To begin, let us consider the data at hand and then set up a few useful relations.
The data for a given contact k, provided by the collision detection module, consist
of

• Colliding bodies: i, j.

• Contact point: pc.

• Contact normal: nc.

• Penetration depth: δc. Assumed here: δc = 0.

Henceforth, implying that all results are related to this k:th contact, k will be
omitted for the sake of readability.
Contact point pc expressed in the local frame for each respective body (previously
referred to as anchor points)

ri = pc − pi
rj = pc − pj

Relative velocity at contact point

ṙrel = ṙj − ṙi = vj + wj × rj − vi − wi × ri

Normal component of relative velocity

ṙrel,n = nc · ṙrel

14

2.7.1 Non-Penetration Constraint

The non-penetration constraint resembles the distance joint in that it prevents
relative motion along a certain direction, in this case the contact normal nc. One
important difference, however, is that this constraint may only prevent the bodies
from moving toward each other, not apart. Preventing the latter would, poten-
tially, cause colliding but not approaching bodies to stick together. As such, the
non-penetration constraint is unilateral.

Ċn = ṙrel,n

= nc · (vj + wj × rj − vi − wi × ri)

=

−nc
−ri × nc

nc
rj × nc

T

vi
wi
vj
wj

= Jnvij ≥ 0 (24)

The position level of the constraint is, for now, assumed to be satisfied: Cn = δc = 0
(no penetration). During simulation, the constraint in (24) will guide the solver to
calculate a non-penetration constraint impulse according to (12) and (8), which,
when applied to both bodies at the contact point (in their respective frame; ri and
rj), eliminates all normal relative velocity

Pn = Jn
Tλn (25)

Also, since (24) is unilateral, the impulse magnitude in (25) is subject to the
following limits

0 ≤ λn ≤ ∞

Restitution

The non-penetration constraint can conveniently be extended to make the col-
liding bodies ”bounce” off from each other in an elastic manner. For this purpose,
the constraint is set up to generate a non-zero, post-collision velocity proportional
to the pre-collision velocity ṙrel,n. This is governed empirically by Newton’s law
of impact

ṙ
(t+h)
rel,n = −e · ṙ(t)rel,n (26)

15

Here, ṙrel,n is superscripted with time-state to distinguish between the velocity
before (t) and after (t + h) the collision. The coefficient of restitution e ∈ [0, 1]
states constitutively the fraction by which the kinetic energy is preserved and,
indirectly, how much is lost due e.g. to heat induction and structural deformation.
For e = 0 the collision is fully inelastic (”beanbag”), for e = 1 it is fully elastic
(”solid rubber ball”).
The post-collision velocity is included in the constraint equation (24) using an
additional term

Ċ(t)
n = ṙ

(t+h)
rel,n + e · ṙ(t)rel,n

= Jnv
(t+h)
ij + e · ṙ(t)rel,n ≥ 0 (27)

Using this constraint, the end impulse (25) will push the colliding bodies apart in
a bouncing manner.

Resting Contact

At low relative velocities, a special state of resting contact can be defined. This
is especially useful in an implementation aspect, whereas bodies may have a hard
time coming to rest due to numerical errors preventing the velocities to reach
exactly zero. This can be resolved by treating the collision as fully inelastic when
the relative velocity falls below a given tolerance, causing the remainder of the
velocity to be eliminated. The coefficient of restitution e is thus set according to
whether resting (28) or colliding (29) contact is present

e
′

=
{

0
e

if |ṙrel,n| ≤ tolvel,
otherwise

(28)
(29)

2.7.2 Friction Constraint

Unlike real-life objects, which constitute some level of surface roughness that cause
resistance during sliding and rolling contact, the rigid bodies in this thesis are,
unfortunately one might say, perfectly smooth. To add some realism, a friction-
esque behavior can be simulated using constraints in collaboration with Coulomb’s
law of friction.

First, we need to decide the tangent component of the relative velocity. direction.
Since the tangential component of the relative velocity can be calculated as ṙrel,t =
ṙrel − ṙrel,n, normalization leads to

tc =
ṙrel,t
‖ṙrel,t‖

16

The friction constraint is then set up to eliminate all tangential velocity between
the bodies in contact

Ċt = ṙrel,t

= tc · (vj + wj × rj − vi − wi × ri)

=

−tc
−ri × tc

tc
rj × tc

T

vi
wi
vj
wj

= Jtvij = 0 (30)

This constraint will eventually, through the relations in (12) and (8), be used to
calculate a friction impulse by the solver

Pt = Jt
Tλt (31)

Just like the non-penetration impulse Pn (25) eliminates the normal velocity com-
ponent, the friction impulse eliminates the tangent component. But even though
this is accurate according to the constraint equation in (30), it an unintended be-
havior. Some portion of the tangent velocity may well be eligible for removal – but
not necessarily all of it. In addition, we desire the ability to tune this behavior in
order to model different kind of materials. This is achieved by limiting the friction
impulse using Coulomb’s law of friction, which establishes a relationship between
the magnitudes of the tangential and the normal impulses. The normal impulse
magnitude in this context is the magnitude λn of the previously calculated non-
penetration impulse Pn (25).
Coulomb’s law distinguishes between static friction or stiction, and kinetic fric-
tion. Under static friction, the bodies in contact are ”stuck”, and should exhibit
no relative tangential velocity. Static friction is active when the friction impulse
magnitude λt is below a threshold |λt| ≤ µs|λn|, where µs ≥ 0 is the coefficient of
static friction. Under kinetic friction, λt is instead limited by a fraction µk of the
normal impulse magnitude λn. Here, µk > µs is the coefficient of kinetic friction.
The limits to be enforced on the friction impulse under static (32) and kinetic (33)
friction, respectively, thus read

−∞ ≤ λt ≤ ∞
−µk|λn| ≤ λt ≤ µk|λn|

if |λt| ≤ µs|λn|,
otherwise

(32)
(33)

17

The final friction impulse is then calculated using (30)

Pt = JTt λt (34)

Note that under static friction the impulse magnitude is not limited, since all
tangential velocity is indeed supposed to be eliminated.
Limits that depend on other simulation variables, such as in (33), are said to be
dependent [Bara94].

2.8 Constraint Stabilization

Since an impulse-based solver operates exclusively on the velocity level of the con-
straint equations, the position level (including rotation) needs special attention.
Ideally; if the velocity level were to be solved perfectly, and granted that no ini-
tial violations at the position level were present; the position level would indeed
remain satisfied throughout the simulation. But such are not the conditions, and
positions will, unattended, either remain wrong, if initially being so, or ”drift” out
of place due to errors at the velocity level. This issue is addressed by constraint
stabilization, also called error correction.

In Baumgarte’s stabilization method [Baum72], the positional error C is reduced
gradually over several timesteps by error correcting impulses. This is achieved by
settings up a velocity constraint that, based on C, will cause the error to be
reduced by some amount at each timestep. The amount of reduction is controlled
by a error reduction parameter, erp ∈ [0, 1] [Smit04].

Ċ = −erp

h
C (35)

This is a first order ODE which, analytically, will cause the error to decline over
time according to C(t) = C0e

− erp
h
t, where C0 is the inital error.

The right-hand side of (35) is then incorporated in the expression for the very
constraint k from which the error originates (be it a distance joint, a contact or
something else). It can be regarded as an error correcting bias on the original
constraint [Catt05].

Ċk = Jkvij + dk = Jkvij −
erpk
h

Ck (36)

The main challenge is to find a suitable value for erp. Too low – and the error
will disappear too slowly, causing joints to separate and colliding bodies to inter-
penetrate longer than desired. Setting it too high may cause the correction to
overshoot and create new errors, resulting in oscillating joints and bodies unable
to find a resting state of contact. Typically, each class of constraints has its own
appropriate erp value.

18

2.8.1 Stabilizing Unilateral Constraints

While the stabilization of bilateral constraints is straightforward; just feed a frac-
tion of the position error C back in the velocity constraint (36); the unilateral
constraints, such as contacts, are somewhat more tricky. Since it’s in their nature
to be either ”on or off”; permitting some configurations but not others; abrupt,
unpleasing behavior can occur when they switch between being active and inac-
tive. One way to work around this issue is to allow some small error, making the
stabilization process proceed until the constraint error is small enough, and then
stop, leaving the constraint still active.
In the case of contacts, we label this error tolerance the allowed penetration depth
εdepth. Now, instead of using C = δc in (36), we use

C
′
k = max (min (δc − εdepth,∞) , 0) (37)

This way, the position error will be corrected just short of being completely re-
moved, causing the non-penetration constraint to remain active.

2.9 Impulse-based Constraint Solver

Since unilateral constraints, such as contacts, introduce inequalities in the system
equations, they no longer form a traditional linear system, but a linear comple-
mentarity problem (LCP). This was first formulated by Lötstedt [Löts82]. LCP’s
in general are discussed at length by Cottle et al. [CoPS92]. Solving an LCP
involves using one of two principle techniques; pivoting methods, such as Lemke’s
method [Bara91], which generates a solution – if one exists – in a single com-
putational step; and iterative methods, such as the Jacobi and the Gauss-Seidel
method, which generate results that will converge towards a solution over several
iterations steps.
Direct methods are able to produce very accurate results, but cannot guarantee
solvability e.g. for systems with conflicting constraints. Iterative methods are
typically less accurate, but can guarantee a result (be it a good or a bad one)
regardless of the configuration. This is a compelling trait in an interactive simu-
lation. Iterative methods also produce accessible intermediate results which can
be used to set up criteria for iteration termination, such as error tolerances or
execution time.
In this thesis an iterative solver based on the Gauss-Seidel method, inspired by
Erleben [Erle04] and Catto [Catt05], is used. It is fast, easy to implement and, as
it turns out, well suited for multibody systems.

19

To reiterate, the constrained system of (12), with the extended constraint form
notion (16), reads(

0
Ċ

)
=
(
M −JT
J 0

)(
v(t+h)

λ

)
+
(
−Mv(t) − h · fext

d

)
(38)

Eliminating v(t+h) and expressing in terms of λ, the system can be rewritten to

JM−1JTλ = −d− J
(
v(t) + h ·M−1fext

)
(39)

Setting A = JM−1JT and b = −d−J
(
v(t) + h ·M−1fext

)
, we retrieve in compact

form the linear system

Aλ = b (40)

Here, it follows that A ∈ RK×K and λ, b ∈ RK , where K represent, as before, the
number of constraints.
In the Gauss-Seidel method, the A-matrix is decomposed into one diagonal, one
upper triangular and one lower triangular matrix, all of which contribute to the
solution through separate terms. The recursion takes, for some initial guess λ(0) ∈
RK , the form

λ
(ν+1)
i =

1
aii

bi −∑
j<i

aijλ
(ν+1)
j −

∑
j>i

aijλ
(ν)
j

 , i = 1, . . . ,K (41)

where ν = 0, 1, 2, . . . is an iteration counter.
After each iteration, the elements of λ are clamped to fit within the limits set
by the complementarity conditions of the LCP. That is, for the k:th constraint,
limited by lok ≤ λk ≤ hik, the clamped value is set by

λ
′
k = max (min (λk, hik) , lok)

By adding this step to (41), the resulting method is called projected Gauss-Seidel.

Now, as is thoroughly discussed in [Erle04], due to the block-wise characteristics
of A in a multibody system, where constraints act on bodies in pairs exclusively,
the A and b-matrices never need to be computed in their entireties. It is suffi-
cient to use an inner loop to solve the system, computing and applying impulses
individually per constraint, without large matrix-operations. This realization is
especially valuable from an implementation standpoint, since a sequential, block-
wise approach leads to a more compact simulation loop with smaller memory
requirements.

20

3 Collision Detection

In chapter 2, various aspects of contact behavior was discussed, assuming that
all necessary data; contact points etc; was readily available. In this chapter, we
will find out how this data is gathered by the process of collision detection. Col-
lision detection is typically made in a separate simulation module preceeding the
constraint solver, feeding it with contact data. It takes as input the (set of) ge-
ometry of the simulated bodies, and produces output according to the queries If
and Where. Is there a collision? Where is it?

An important consequence of time-discrete simulation schemes is that bodies
advance in ”steps”, possibly causing collision where the actual time of impact was
in-between the timesteps. This will cause geometric overlap or penetration, and is,
as we have already seen, accounted for in the contact model. Worse is, however,
when bodies move fast enough to pass right through each other, avoiding detection
altogether. This effect is called tunneling, and can be avoided by introducing
velocity caps and by keeping bodies from being too small.

Two different types of geometries are used in this thesis and its implementation:
convex polygon and circle. A convex polygon is represented explicitly by n counter-
clockwise ordered vertices Pk and normals Nk, 0 ≤ k ≤ n. A circle is represented
implicitly by the parametric equation x2 + y2 = r2, where r is the circle radius.

To represent concave geometries, one can use convex decomposition to assemble
multiple convex subsets into concave master sets [Eric05]. This is made possible
through the use of compound geometries, which will be discussed further in chapter
4.

3.1 Narrow Phase Collision Detection

During the narrow or exact phase of the collision detection, bodies are analyzed in
pairs. If they are considered to be colliding, one or multiple sets of contact data;
contacts; are computed:

• Contact point, pc: approximation of the point of impact.

• Contact normal, nc: direction of the collision; impact plane normal.

• Penetration depth, δc: the amount of geometric overlap along nc.

The actual test is carried in large by the separating axis theorem (SAT). It
states, in 2-dimensional space, that two given convex sets are not intersecting if
and only if there exist a line onto which their projections will be disjoint. This
line is referred to as the separating axis. The separating axis theorem is useful to

21

us since each separating axis represents a ”way out” for the overlapping bodies; a
direction along which the bodies can be separated.

Unfortunately, there are usually many, possibly infinitely many, separating
axes for a given pair of bodies. Therefore we also need to measure the distance
required for the bodies to be separated, and then pick the separating axis with the
shortest amount of required distance. This distance is called separation, δ, and
is δ < 0 when there is overlap along the separating axis. It is a generalization of
the penetration depth, since it is defined also when there is no penetration at all
(then δ > 0). When considering two bodies i an j, we are thus interested in the
maximum separation δijmax, or, simply put, the ”shortest way out”.

3.1.1 Polygon–Polygon Collision Test

In the polygon–polygon test, all edge normals are possible separating axes, and
therefore also δijmax-candidates. To decide δ for any given normal, it is evaluated
against the vertices of the opposite body. This test, for bodies i and j, is outlined
like this:

1. Decide the maximum δ from evaluating all vertices of i, against all edges of
j, where each test is given by

δ =
(
P jl − P

i
k

)T
N i
k

for 0 ≤ k ≤ ni, 0 ≤ l ≤ nj . If a positive separation is encountered, δ > 0,
the bodies are per definition disjoint and the test is aborted.

2. Repeat step 1 with bodies reversed: test all vertices of j against all edges of
i. Abort test whenever δ > 0.

3. It can now be concluded that the maximum δ from 1-2 is δijmax < 0. A
collision for this pair of bodies is confirmed, and we pick as contact normal,
the normal associated with δijmax.

The next step is to decide all contact points. First, we label the edge from which
nc was taken the reference edge, and the polygon it is part of the reference polygon.
The opposite polygon is then labeled the incident polygon [Catt06]. Contact points
are then picked using either of the following criteria:

• Vertices from the incident polygon being completely inside the reference
polygon.

22

• Points of intersection between the edges of the incident polygon and the side
planes of reference edge, having negative separation relative the reference
edge.

The penetration depth δc for every pc is then defined as the distance to its
closest point on the reference edge. Finally, all sets of pc, δc and nc (nc is the same
for all contacts of this current collision) are used to form new contact constraints,
which will eventually be reported to the simulation framework.

3.1.2 Polygon–Circle Collision Test

A simple way to test polygons and circles is first to classify regions of the polygon,
and then decide what region the circle is part of. These regions, called Voronoi
regions, are related to different features of the polygon; in 2-dimensional space
these features are either vertex or edge. The region defined by the edge feature is
the space extending the the edge outward, like a corridor, in the normal direction,
while the vertex feature regions are the open arcs separating the edge regions.

For a circle at position Pc with radius rc, and a polygon with n vertices Pk and
normals Nk, 0 ≤ k ≤ n, the test outline is:

1. Test if circle is within an edge region. This is the case if for any vertex
k of the polygon, the circle is close enough to the edge:

0 ≤ (Pc − Pk)T Nk ≤ rc,

and is within the side planes of it:

(Pk+1 − Pk)T (Pc − Pk) ≥ 0,

(Pk − Pk+1)T (Pc − Pk+1) ≥ 0

We can then compute the contact data:

• Contact normal: nc = Nk

• Contact point: pc = Pc −Nk (Pc − Pk)T Nk

• Penetration depth: δc = rc − (Pc − Pk)T Nk

2. Test if circle is within a vertex region. If 1 fails, the circle must be part
of one of the vertex regions. This is the case for the k:th vertex at which
‖Pc − Pk‖ ≤ rc. It then follows that

• Contact normal: nc =
Pc − Pk
‖Pc − Pk‖

• Contact point: pc = Pk

• Penetration depth: δc = rc − ‖Pc − Pk‖

23

3.1.3 Circle–Circle Collision Test

Testing circles for contact is straightforward; it is merely a a matter of testing the
distance from the center points. If they are closer than their combined radii, they
will be in contact with each other.

Consider two circles at Pi and Pj , with radii ri and rj : they collide
if ‖Pi − Pj‖ ≤ ri + rj . Contact data is then computed as:

• Contact normal: nc =
Pi − Pj
‖Pi − Pj‖

.

• Contact point: pc = Pj +
rj

ri + rj
(Pi − Pj).

• Penetration depth: δc = ri + rj − ‖Pi − Pj‖.

3.2 Collision Culling

Since each narrow phase test is computationally expensive, and the global collision
detection problem is of time-complexity O

(
N2
)
, there is a strong incentive to

implement algorithms limiting the number of exact tests. Many such algorithms
are sprung from two fundamental assumptions: temporal and spatial coherence.
Temporal coherence states that between timesteps, the world disposition will
stay roughly the same, while spatial coherence states that most pairs of
bodies will not collide at any given moment.

The Sweep and Prune broad phase, collision culling algorithm [Bara92] exploits
both assumptions. Its fundamental idea is to keep track of the spatial extent of
each body (each geometry, if multiple geometries are present). These extents are
kept in sorted interval lists, one for each individual dimension. From these lists, it
can be decided using very few operation whether the intervals of two given bodies
are overlapping or not. Only when they do is it necessary to proceed with further
testing. When they don’t, they can simply be ignored, saving the entire cost of
the narrow phase test.

Now, since the content of the simulated world will typically change contin-
uously, the interval lists will hence become outdated. Constant re-sorting seem
unappealing; however, under the assumption of temporal coherence, the lists can
still be considered to be ”almost” sorted, enabling some well suited sorting algo-
rithms to be applied. A common choice is insertion sort, which is optimal for
partially sorted sequences (O (N) best case) [TrBW09].

24

4 Implementation

By implementing the theoretical model it can be used in a variety of new ways: it
can be tested, visualized, interacted with, applied to real-world tasks and so on.
But while providing new opportunities, implementations often bring new problems
as well. Most numerical methods have limitations, or at least limited operating
ranges, computers have limited abilities to represent numbers etc. Compromises
usually needs to be made between model integrity, accuracy, error tolerance, per-
formance or other characteristics. This is not necessarily a problem however; the
important thing is to know the purpose of the implementation, and to know how
and when its strengths and weaknesses appear.

The purpose of this implementation is to display the aspects of the presented
theory in an interactive, real-time environment.

4.1 Development Tools

The programming language picked for the implementation was C++. While, one
might argue, it is somewhat less straightforward to use than other available al-
ternatives, it is a very dynamic and flexible language, providing all necessary
functionalities. Being object-oriented, the various content of the multibody sys-
tem, such as bodies and forces, can be organized in an intuitive way. Some data
structures utilize the Standard Template Library (STL).
Graphics were created using hardware support through OpenGL [OpGL92]. The
OpenGL Utility Toolkit (GLUT) was used for window management [Kilg98]. All
code was developed in Microsoft Visual Studio 2005, Professional Edition.

4.2 Basic Classes

The following section is intended to provide an overview of the classes used in the
implementation. They are presented in a pseudo-code, pseudo-UML style, aimed
not at covering all details exhaustively, but at outlining their principal content and
interrelationships.

Standard data types will be used, such as floating points, float (32 bit), inte-
gers, int (16 or 32 bit, signed or unsigned) and booleans, bool. Classes with itali-
cized titles are abstract base classes, meaning they are used only through classes de-
rived from them. Derived classes have the title format [DerivedClass]:[BaseClass].
Abstract classes are practical when several classes share the same characteristics.

The very basic thing needed is some 2-dimensional algebra. We need to be
able to represent vectors and matrices, as well as the adherent arithmetic. This

25

functionality is provided by the Vector2d and Matrix2d classes, presented below.

Vector2d

Euclidean coordinates float x,y

Euclidean norm float norm()

Dot product Vector2d dot(Vector2d)

Cross product Vector2d cross(Vector2d)

Projection Vector2d project(Vector2d)

Vector addition Vector2d +(Vector2d)

Vector subtraction Vector2d -(Vector2d)

Vector scaling Vector2d *(float)

Matrix2d

Elements float m11,m12,m21,m22

Inverse Matrix2d invert()

Matrix multiplication Matrix2d *(Matrix2d)

Transformation of vector Vector2d *(Vector2d)

Vectors are commonly used; in representing positions, velocities, forces, normals,
polygon edges and much more. They are also associated to several vector opera-
tions such as dot- and cross-product. Matrices are used primarily for transforma-
tion of vectors. They can be instantiated for instance like this:

/* initiate as rotation matrix */

Matrix2d(float phi) {
m11 = cos(phi); m12 = -sin(phi);

m21 = sin(phi); m22 = cos(phi);

}
/* initiate as uniform scaling matrix */

Matrix2d(float scale) {
m11 = scale; m12 = 0;
m21 = 0; m22 = scale;

}

Whenever suitable, operations are implemented using operator overloading.
The next key building block is the rigid body class. It contain all data relevant
for a simulated rigid body, such as the state vector (position, velocity etc) and
constitutive properties such as mass and friction, but also information about its
geometry.

26

RigidBody

Position Vector2d X

Linear velocity Vector2d V

Force accumulator Vector2d F

Rotation float R

Angular velocity float W

Torque accumulator float T

Mass float mass

Moment of inertia float I

Static & kinetic friction float friction s,friction k

Restitution float restitution

Static status bool isStatic

Sleep status bool isSleeping

Geometries Geometry[] geometries

Apply impulse at point applyImpulse(Vector2d,Vector2d)

Apply force at point applyForce(Vector2d,Vector2d)

Here, Geometry is an instance of either CircleGeometry or PolygonGeometry (also
derived further into for instance Box). Each Geometry is convex, but concave bodies
can be created by using multiple convex geometries – so called compound geome-
tries. However, since the properties of the body apply to the body in its entirety,
position (center of mass), mass, moment of inertia and similar entities must be
calculated with respect to all included geometries. This can be done manually or
by using some of the auxiliary functions included in the implementation, such as
PolyCOM() and PolyI() (both assume uniform mass distribution).
The isStatic-flag is used for bodies acting as ”ground” or other spatially fixed
objects. Static bodies will be treated as infinitely heavy and immovable during
simulation.

For simplicity, all springdamper configurations are combined into one single
class SpringDamper, inheriting from a general, two-body force base class Force.
The SpringDamper class can be setup with various linear and angular coefficients
according to the analytical equivalent. Force-classes thus ”know” by themself ev-
erything they need to know in order to calculate, and apply, the force or torque for
a given situation, and they do just that when called upon by the apply()-method.

Force (abstract)

Affected bodies RigidBody bodyA,bodyB

Anchor points Vector2d rA,rB

Calculate force and apply to bodies apply()

27

SpringDamper:Force

Linear stiffness & damping float K lin,D lin

Angular stiffness & damping float K ang,D ang

Resting length float L

Resting angle float phi

Additional, auxiliary forces based on SpringDamper are used in the implemen-
tation, including MouseTrackingForce and CameraTrackingForce. The former is
used to provide user interaction by attaching a springdamper between some body
”grabbed” by the user, and the mouse pointer. The latter enables a camera-
tracking effect by attaching the camera, represented in the simulation world by a
geometry-less rigid body, to other bodies with a springdamper.

The constraint base class contains several functionalities common for most
constraint, as well as one crucial component: the solve()-method, which instructs
the constraint to solve itself given its current state. It will be explained further in
section (5). The class has the following appearance:

Constraint (abstract)

Affected bodies RigidBody bodyA,bodyB

Anchor points Vector2d rA,rB

Error reduction parameter float ERP

Calculate impulse and apply to bodies solve()

Each specific constraint is then represented by its own derived class, two of which
are the DistanceJoint and the AngularDriver. In some cases, some of the func-
tionalities of the base class are redundant; purely angular constraints for instance,
such as AngularDriver, never use the anchor points rA and rB.

DistanceJoint:Constraint

Joint length float L

AngularDriver:Constraint

Target angular velocity float target vel

Max torque float max torque

Contact constraints are, as previously mentioned, somewhat special. They are
created, used and subsequently disposed of during each single timestep, and they
preside multiple internally dependent constraints related to non-penetration and
friction. The anchor points of the base class are not set beforehand, but are instead
calculated from the contact point.

28

Contact:Constraint

Contact point Vector2d c point

Contact normal Vector2d c normal

Penetration depth float depth

Note that contact-related information regarding coefficients of friction and resti-
tution is accessed through the body-references.

Finally, there is the World-class, containing bodies, constraints, simulation pa-
rameters and everything else necessary for the simulation. The simulation is pro-
gressed one timestep by its step()-method.

World

Timestep float h

Bodies RigidBody[] bodies

Forces Force[] forces

Constraints Constraint[] constraints

Collision Detector CollisionDetector col detector

Solver iterations int iterations

Simulation step step()

For practical reasons, a static geometry-less body acting as background is added
by default. This way forces and constraints can be attached to ”anywhere”, simply
by attaching them to the background body with some suitable anchor point.

4.3 Simulation

The simulation is progressed using the step()-method of the World-class. This
method performs the following actions in what is considered the simulation loop.

1. Apply forces.
Call apply() for all forces in forces, accumulating forces in the F- and T-
variables of the bodies of the system (= fext).

2. Update velocities.
Update V and W using numerical integration: v ← v + h ·M−1fext. This
leaves us with the linear system of (39).

3. Run collision detection.
Detect collisions and generate contact constraints.

29

4. Solve constraints.
Call solve() for all constraints, one at a time. Repeat as many times as is
set by the iterations parameter.
For each solve()-call, the constraint k in question is instructed to solve its
dedicated two-body i, j-block of (39). This is done internally in the following
steps:

• Calculate impulse magnitude: λk =
(
JkM

−1
ij J

T
k

)−1
(Jkvij + dk)

• Calculate impulse: Pk = JTk λk

• Apply to bodies: vij ← vij +M−1Pk

The k:th constraint is thereby satisfied, but may well be violated again
by other other constraints acting on these same bodies. By iterating all
constraint over and over however, the global solution will converge gradually.

5. Update positions.
Update P and R using numerical integration: p← p+ h · v.

4.3.1 Sleeping

In many common simulation scenarios the bodies will eventually settle on the
ground. Since they then have near-zero velocities and cause no or few new inter-
actions with other bodies, it is tempting to simply stop simulating them in order
to household processing power. This kind of actions are called sleeping, freezing
or deactivation, and use some predefined mechanism to stop, fully of partially, the
simulation of bodies near rest.

This implementation optionally applies a simple, velocity threshold -based sleep-
ing strategy, which suspends step 5 in the simulation loop (4.3) for bodies meeting
the sleeping criteria. It works as follows: if for some body, the absolute linear and
angular velocities stay below some predefined thresholds, εlin vel and εang vel, for
some predefined, minimum amount of time εt min, the flag isSleeping for this body
is set to true. As soon as any velocity threshold is broken, the flag is set to false

and the body must fulfill the critera anew.
Since only the position-update step is suspended, the actual gain in performance
of this strategy is low. The primary gain, rather, is that small velocities, re-
lated to ”numerical noise” rather than mechanics, are capped away, providing a
smoother, more relaxed resting behavior. As such it can be regarded as a form of
crude post-stabilization. The tuning of the time and velocity threshold are very

30

system-dependent, and in many cases geometry dependent. Large bodies for in-
stance, which can undergo significant movement even from low angular velocities,
are especially hard-tuned. In some cases, it might not be worth the effort.

4.4 Collision Detection

The collision detection can be set to use either a crude, O(N2) algorithm, always
testing all bodies against all other bodies, or a broad phase culling algorithm
using Sweep and Prune. For systems with few bodies, the crude algorithm can
well outperform the culling algorithm because of its low need for computational
overhead, but as the number of bodies grow, the culling algorithm turns more
and more advantageous. Overall, collision detection is the major bottleneck of the
simulation. Efficient algorithms and fast low-level vector operations are crucial in
order to keep the simulation speed up.

4.4.1 Collision Filtering

Occasionally there is a need to prohibit specific bodies, or groups of bodies, from
being tested for collision. One instance is when using a hinge joint with anchor
points located within the geometries of the bodies, potentially causing an endless
conflict between the joint and the non-penetration constraint, unless a collision
test exempt were made for the bodies.
One way to resolve this problem is to use bitmasks. Each body is assigned two bit-
masks: CollisionId, which identifies the collision group this body is part of, and
CollisionFilter, which contains information about which other collision groups
this body can collide with.
Consider the following sample identification masks:

/* create collision id for body BOX by assigning the first bit */

unsigned int BOX = 0x1;

/* create collision id for body BALL by assigning the second bit */

unsigned int BALL = 0x8;

Now different filters can be setup according to the desired collision behavior:

/* collide with everything (32-bit case) */

unsigned int COLLIDE ALL = 0xffffffff;

/* collide only with BOX */

unsigned int COLLIDE 1 = BOX;

/* collide only with BOX and BALL */

31

unsigned int COLLIDE 2 = BOX | BALL;

/* collide with everything except BOX */

unsigned int COLLIDE 3 = COLLIDE ALL ^BOX;

Here, the ^-symbol refers to the ”exclusive or”-operator (xor). Since each col-
lision group occupies one bit, the number of groups is limited by the memory size
of the data type. In this implementation, 32-bit unsigned integers are used, thus
allowing a maximum of 32 groups.

What happens internally during the actual collision test, is that the id and the
filter of every candidate pair is compared bitwise:

if (bodyA.CollisionId & bodyB.CollisionFilter)

/* proceed collision detection... */

4.5 Rendering and User Interface

At the end of each timestep, selected content of the system is visually rendered.
This is considered a frame of the simulation. The rate by which frames are drawn
is called frame rate, measured in frames per second (FPS) or Hertz (Hz). Real-
time rendering usually refer to a rate of 30-60 FPS.
Though visualization is a key part of this implementation, the sophistication of it
is not. The aim is first and foremost to provide useful information about world dis-
position, forces, joints and other aspects of the simulation. Rendering focused on
program information rather than aesthetics is sometimes called debug rendering.
When applied in an end-user application, such as a computer game, graphics are,
according to most programming models, made in a completely separate abstrac-
tion layer, usually with far higher geometric complexity than that of the dynamic
simulation.
The main runtime user interaction tool is the mouse, which enables the user to
”grab” and move bodies (using a springdamper), to move the camera and to add
new bodies, springdampers and joints.

32

a) b)

c) d)

e) f)

Figure 4.5.1 Rendering samples
a) Contact points
b) Geometry AABB’s
c) Edge normals
d) Hinge joint attaching a seesaw to the ground,

rendered with ”dummy” struts
e) Springdampers
f) Highlight of penetration

33

5 Testing and Evaluation

5.1 Stacking

Building stacks of aligned, equally sized bodies is a significant challenge (ask any
three year-old), putting every aspect of both model and implementation to the
test. What makes the task difficult is the fact that errors will propagate up and
down through the entire stack, and unlike chain-like multibody structures where
the bodies are well connected by constraints, these errors will eventually cause the
bodies to misalign enough for the stack to fall over.
The key to the simulation of stacks is first and foremost to keep the solver output
consistent: if the system configuration stays roughly the same from one timestep
to another, then so should the solution. This is achieved by keeping the input;
contact data produced by the collision detection module; as consistent at possible.
Second, since errors will nevertheless occur, the goal is to strike a balance between
how much error to allow, and how fast to correct it.

Stacks with 20 bodies of dimension 0.5 m and density ρ = 8.0 kg/m2 where
tested (sleeping disabled) with different number of solver iterations using the fol-
lowing parameters:

Simulation parameters
Timestep h = 10 ms
Solver Iterations 10/50/100
Gravitational acceleration g = 9.81 m/s2

Body Configuration
Restitution e = 0.25
Friction µs = µk = 0.25
Contact Parameters
Allowed penetration εdepth = 0.002 m
Velocity for resting contact εvel = 1.0 m/s
Error reduction parameter erp = 0.4

34

0 s 5 s 10 s 15 s

Figure 5.1.1 10 iterations, 0-15 s.

0 s 5 s 10 s 15 s

Figure 5.1.2 50 iterations, 0-15 s.

0 s 5 s 10 s 15 s

Figure 5.1.3 100 iterations, 0-15 s.

Remarks While falling over quickly at 10 iterations, the stack remains standing
for longer and longer at 50 and 100 iterations. The simulation runs at or near real-
time performance during all three simulations on a 2 GHz single core CPU, 1 GB
RAM computer. During the initial seconds of the simulation, the stack ”sways”
slightly to the side. At 10 iterations, the stack never recovers from this and falls
over, while at 100 and, to some extent, 50 iterations, the sway stops, turns and
starts oscillating slowly back and forth. Though all parameters are relevant to this
behavior, it can be related particularly to εdepth and erp. The former parameter
influences the amplitude of the sway, while the latter influence how fast the sway
recovers (its frequency). The objective in this case is to limit this swaying motion
enough to keep the stack standing, but in a moderate enough manner to prevent

35

error stabilization to overshoot and cause sliding.

5.2 Hybrid Joint: Hydraulic Driver

In hydraulic machinery, pressurized fluid is used to transport and transform hy-
drostatic energy into translational motion. The fluid, typically low-compressible
oil, first passes through a hydraulic pump before it is led to an end device located
where the desired motion is to take place. One common such device is the hydraulic
cylinder : a cylindrical barrel with a moving piston.

Under certain assumptions such a device can be modeled by a combination
of already presented techniques. The one novelty to account for is the fact that
a hydraulic device has different, externally issued operating states, such as ”ex-
tend piston”, ”contract piston” and ”hold piston”. Since each such state requires
a separate set of constraints, a state transition framework needs to be implemented.

Real-world to model setup

1. Attachment points: anchor points ri, rj.

2. Assume fluid is neither compress- nor expandable.

3. Limited pump capacity: max joint force |fmax|.

4. Limited piston velocity (limited fluid flow): max joint velocity |vmax|.

5. Operating length: joint length Lmin ≤ ‖ri − rj‖ ≤ Lmax.

Two constraints are setup to manage this behavior. A length-related constraint
Cl and a driver-related constraint Ċd. The driver constraint is straightforward; as
long as the device is of legal length, Ċd is set to the target velocity, with the max-
imum force as limits. The length constraint is responsible for keeping the device
within its legal length, and, importantly, to keep the current length L = ‖ri − rj‖
when the device is on hold. The constraint length, Cl = L, therefore must be up-
dated continuously as the piston moves (as long as it moves in a state-consistent
direction).

36

State constraint designation

State Length constraint Driver constraint
extend L ≤ Cl ≤ Lmax Ċd = vmax,

if Cl < L Ċl ≥ 0, −∞ ≤ λd
h ≤ fmax

0 ≤ λl
h ≤ ∞

if Cl > Lmax Ċl ≤ 0,
−∞ ≤ λl

h ≤ 0
contract Lmin ≤ Cl ≤ L Ċd = −vmax,

if Cl < Lmin Ċl ≥ 0, −fmax ≤ λd
h ≤ ∞

0 ≤ λl
h ≤ ∞

if Cl > L Ċl ≤ 0,
−∞ ≤ λl

h ≤ 0
hold Cl = L Ċd = 0,

if Cl 6= L Ċl = 0, 0 ≤ λd
h ≤ 0

−∞ ≤ λl
h ≤ ∞

The hydraulic driver was tested using a springdamper in a setup shown in figure
4.2.1a-c. The spring force fspring was plotted over time to monitor the actual force
generated by the driver for different settings of fmax. The springdamper had length
L = 2 m, k = 200 N/m and no damping. Piston velocity was set to vmax = 1 m/s.
The simulation timestep was h = 10 ms and the solver used 10 iterations.

37

Figure 4.2.1a Driver at hold. Spring at rest length.

Figure 4.2.1b Driver at contract, fmax = 200 Nm.

Figure 4.2.1c Driver at contract, fmax = 400 Nm.

Remarks The driver appears to deliver what it promises; a linear motion with
constant (maximum) velocity and force. As can be seen in the diagrams of figure
4.2.1b-c, the driver manages to extend the spring until the spring force reaches
that of fmax for the driver, at which point the driver stops. When the driver is
subsequently extended, the maximum velocity vmax is still held, despite the fact
that the spring now acts in the same direction, thus ”helping” the driver motion.
The driver is rendered to resemble a telescopic hydraulic cylinder, a device able to
extend in multiple piston stages.

38

5.3 Conclusion

The thesis presented a study on real-time multibody simulation using an impulse-
based system formulation solved by an iterative scheme. It was explained how
kinematic constraints can be used as multipurpose tools for various applications
such as joints, friction and angular drivers. A contact model was presented, as
well as a collision detection module. In addition, an outline of the implementation
of the model was presented, including key classes, the solver loop and rendering.

The main advantages of the impulse-based multibody approach used here is
that it is fast, lightweight and flexible. By being able to solve constraints block-
wise, the solver loop gets very compact, free from heavy matrix operations. Con-
straints can also be added and removed during simulation. Furthermore, is it
convenient to be able to express many key dynamic aspects of the simulation
uniformly as constraints; joints, drivers and more; all solved by the same solver.

One weakness is the explicit integrator, which can perform poorly and even
cause instability in systems with stiff elements such as springs or contacts with
aggressive error-correction. Another weakness is an occasional slow rate of solver
convergence; for instance when bodies with large mass-ratios interact. As for
collision detection, the performance of the Sweep and Prune broad phase algorithm
can dip significantly in certain situations when many bodies move simultaneously
(causing disarray in the interval lists).

Most weaknesses can be addressed by making the timestep smaller and increas-
ing the number of iterations used by the solver, but this of course takes its toll
on the performance. Other stability-related strategies include adding damping,
capping velocities or other system restrictions, depending on the problem.

It turns out that even with a well theoretically founded model, it is still a
significant challenge to implement it. Each algorithm and numerical method has
its limitations, urging compromise and delicacy. This is especially the case when
performance is of high priority. And however robust and sophisticated the imple-
mentation, in the end it will nevertheless be a matter of some degree of tuning.
As was shown earlier in this chapter, each setting, be it one with stacks or with
vehicle models, poses its own unique challenge and calls for its own unique system
calibration.

5.3.1 Future Work

Some suggestions for future work:

• Extending to three dimensions. This pose new challenges especially re-
garding rotations, which would then be represented by matrices, or possibly
quaternions, instead of scalars. Three new degrees of freedom also means

39

new possibilities in removing them – meaning new types of joints, such as
the Cardan joint.

• Warm starting. Instead of disposing of contact points after each timestep,
they can be stored and used to provide better initial guesses for the solver
at later times (as long as the contact persists) [Erle04].

• Optimization in general. Program code is, it seems, ever evolving, always
with areas for improvement. In this case, a smarter, more efficient collision
detection can be implemented, as well as a faster memory management sys-
tem. An interesting method to reduce redundant contact points, which are
not only costly but cause unwanted over-determined systems, is presented
by [Mora04].

40

Bibliography

[AnPo97] Mihai Anitescu and Florian A. Potra. Formulating Dynamic
Multi-Rigid-Body Contact Problems with Friction as Solvable
Linear Complementarity Problems. International Journal for
Numerical Methods in Engineering, Vol. 55, No. 7, 2002.

[Bara91] David Baraff. Coping with friction for non-penetrating rigid
body simulation. Computer Graphics 25(4): 31-40, 1991.

[Bara92] David Baraff. Dynamic Simulation of Non-Penetrating Rigid
Bodies, (Ph. D thesis), Computer Science Department, Cornell
University, pp. 5256. 1992.

[Bara94] David Baraff. Fast contact force computation for
nonpenetrating rigid bodies. Computer Graphics, 28 (Annual
Conference Series):2334, 1994.

[Bara96] David Baraff. Linear-time dynamics using Lagrange
multipliers. Computer Graphics Proceedings, Annual
Conference Series: 137-146, 1996.

[Baum96] J. Baumgarte. Stabilization of constraints and integrals of
motion in dynamical systems. Computer Methods in Applied
Mechanics and Engineering, (1):116, 1972.

[Byaz08] Mark Bayazit: http://mnbayazit.com (2009-11-05)

[Catt05] Erin Catto. Iterative Dynamics with Temporal Coherence.
http://www.gphysics.com/downloads (2009-11-05)

[Catt06] Erin Catto. Fast and Simple Physics using Sequential
Impulses. GDC 2009 presentation.
http://www.gphysics.com/downloads (2009-11-05)

[CaPS92] R.W. Cottle, J.S. Pang and R.E. Stone. The Linear
Complementarity Problem. Academic Press, Inc., 1992.

41

[Eric05] Christer Ericson. Real-Time Collision Detection. Morgan
Kaufmann Publishers, 2005.

[Erle04] Kenny Erleben. Stable, Robust, and Versatile Multibody
Dynamics Animation. Ph.D. Thesis, University of
Copenhagen, 2004.

[ESFu98] Edda Eich Soellner and Claus Führer. Numerical Methods in
Multibody Dynamics. Teubner, Stuttgart, 1998.

[Kilg98] Mark Kilgard. The OpenGL Utility Toolkit.
http://www.opengl.org/resources/libraries/glut (2009-11-05)

[Grib08] Carl Johan Gribel. Multibody simulation demos:
http://www.youtube.com/user/robbe21 (2009-11-05)

[Löts82] P. Lötstedt. Mechanical systems of rigid bodies subject to
unilateral constraints. SIAM Journal on Applied
Mathematics, 1982.

[Mora04] Adam Moravanszky and Pierre Terdiman. Contact Reduction
for Dynamics Simulation. In Game Programming Gems 4,
pages 253-263. Charles River Media 2004.

[OpGL92] OpenGL – The Open Graphics Library.
http://www.opengl.org (2009-11-05)

[Smit04] Russel Smith. Constraints in rigid body dynamics. In Game
Programming Gems 4, pages 241-251. Charles River
Media 2004.

[StTr96] D. E. Stewart and J. C. Trinkle. An implicit time-stepping
scheme for rigid body dynamics with inelastic collisions and
coulomb friction. Internat. J. Numer. Methods
Engineering, 1996.

[TrBW09] Daniel J. Tracy, Samuel R. Buss and Bryan M. Woods.
Efficient Large-Scale Sweep and Prune Methods with AABB
Insertion and Removal. 2009 IEEE Virtual Reality Conference.

42

