
PyGPU: A high-level language for high-speed image
processing

Calle Lejdfors Lennart Ohlsson
Dept. of Computer Science

Lund University
{calle.lejdfors | lennart.ohlsson}@cs.lth.se

Abstract

Image processing is an area with many com-
putationally demanding algorithms. When im-
plementing an algorithm the programmer has
to make the choice of either using a high-level
language, thereby gaining rapid development at
the expense of run-time performance. Or, us-
ing a lower-level language having higher run-
time performance, but also a higher implemen-
tation cost. In this paper we present PyGPU,
an embedded language that enables image pro-
cessing algorithms to be written in the high-
level, object-oriented language Python. PyGPU
functions are compiled to execute on the graph-
ics processing unit (GPU) present on modern
graphics cards, a streaming processor capable
of speeds more than a magnitude higher than
those of current generation CPUs. We demon-
strate a number of common image processing
algorithms, showing how these can be imple-
mented succinctly and clearly using high-level
abstractions, while at the same time achieving
high performance.

Keywords: Image processing, Image analy-
sis, GPGPU, GPU, Embedded languages, High-
level languages

1 Introduction

Using a high-level language for writing software
comes with many benefits. The code is typically
easier to read and understand, making spotting

bugs easier. The time spent programming is
reduced since the programmer need not worry
about low level details such as memory man-
agement and data storage formats. In the field
of image processing, MATLAB [1] is a popu-
lar choice of high-level language. MATLAB is
based around an array programming model in
which algorithms are expressed on whole im-
ages instead of their individual pixels. For ex-
ample, adding two equal sized imagesA andB
is written simplyA + B.

The downside of high-level languages is poor
performance. Even though the individual opera-
tions have efficient implementations, the overall
performance is generally not enough for com-
putationally intensive applications such as real-
time motion-tracking or high-resolution video
post-processing. To overcome this lack of per-
formance it is often necessary to implement
the algorithm in a lower-level language, such
as C/C++ or FORTRAN, instead. However,
this comes at a substantial increase in imple-
mentation cost, mainly in terms of programmer
effort. Using a third-party image processing
library such as Intel’s Integrated Performance
Primitives (IPP) [2], OpenCV [3], or Mimas [4],
that provide optimized versions of standard al-
gorithms, it is possible to reduce this cost some-
what. However, the total implementation cost
of using a high-performance, lower-level lan-
guage is typically much greater than when using
a higher-level language.

Recently, there has been increased interest
in using the graphics processing unit (GPU)

1

present on modern graphics cards as a com-
putational co-processor. The GPU is a highly
specialized processor that provides very good
performance. On some problems it is capable
of outperforming current-generation CPUs by
more than a factor of ten [5]. Programming the
GPU is done using specialized languages such
as NVIDIA’s Cg [6], Microsoft’s HLSL [7], or
GLSL by the OpenGL ARB [8].

Unfortunately, taking advantage of the per-
formance of the GPU requires expressing an al-
gorithm in terms of graphics primitives such as
polygons and textures. Doing this requires in-
timate knowledge of modern real-time graphics
programming. Consequently, implementing im-
age processing algorithms to take advantage of
GPU comes at a significant implementation cost,
even compared to using lower-level languages.

In this paper we present PyGPU, a language
for programming image processing algorithms
that run on the GPU. It is implemented as an
embedded language[9] in the high-level, object-
oriented language Python [10]. PyGPU using a
point-wise image abstraction that, together with
the high-level features of Python, allows image
processing algorithms to be expressed at a high
level of abstraction. By using the GPU for exe-
cution, PyGPU is able to achieve performance
in the order of 0.5–4 GFLOPS without opti-
mizations even on mid-range hardware. This
is more than enough to perform real-time edge-
detection, for instance, on high-definition video
streams.

The rest of this paper is organized as follows:
In Section 2 we introduce PyGPU and show a
number of example image processing-related al-
gorithms. In Section 3 we discuss performance
considerations. Section 4 contains an overview
and discussion of PyGPU and how the restric-
tions and capabilities of the GPU affect how
algorithms are implemented. In Section 5 we
summarize the contributions made in this paper.

2 PyGPU

PyGPU is a domain-specific language for im-
age processing with a compiler that can gener-
ate code which executes on the GPU. It is im-
plemented as an embedded language in Python.
An embedded language is constructed by inher-

Figure 1: Skin detection

iting the functionality and syntax of an existing
host language. This enables PyGPU to get a lot
of high-level language features for free. Python,
with its dynamic typing and flexible syntax, al-
lows the embedding to be made very natural
manner. Furthermore, using the extensive re-
flection support of Python, the PyGPU compiler
can be implemented very concisely as described
in [11].

The fundamental abstraction in PyGPU is its
image model. An image is modeled as a func-
tion from points on a 2-dimensional discrete grid
to some space of colors (RGB, YUV, gray scale,
CMYK, etc). As will be shown, this functional
model admits expressing image processing algo-
rithms concisely using the high-level language
constructs of Python. Also it has the advantage
of mapping naturally to the capabilities and re-
strictions of the GPU.

Below is a small PyGPU function implement-
ing a simple skin detector. It uses the fact that
the color of human skin typically lies within a
bounded region in the chrominance color plane:
@gpu
def isSkin(im=DImage, p=Position):

y,u,v = toYUV(im(p))
return inRange(u, uBounds) and \

inRange(v, vBounds)

Looking at the function we see that it has a
decorator named@gpu. This is a directive to
PyGPU’s compiler to generate code for the GPU
for this function. The default values,DImage and
Position , are type-annotations that are required
to compile the function for the GPU.

Apart from these details the function looks
like ordinary Python code. The function body
shows that to determine if the pixelp contains
skin we first transform the color value of the
pixel p in the imageim to the YUV color space.
Then we check if the red and blue chrominance
values u and v both lie within the specified
bounds.

Applying the skin detector to an image is

2

done by calling it as an ordinary Python func-
tion:

skin = isSkin(hand)

Note that the position argument is omitted, the
skin detector is applied to the whole image. The
result is shown in Figure 1.

The functionstoYUV and inRange are ex-
amples of functions from the standard library
of PyGPU. This library also provides standard
mathematical operations such as basic arith-
metic operators, trigonometric functions, and
logarithms. These operations work on both
scalars and, element-wise, on vectors. PyGPU
provides vectors of dimension two, three, or
four. Vector operations such as scalar prod-
ucts, and multiplication by scalars are provided
through operator overloading, giving an obvious
semantics to an expression such as

v + a

wherev is some vector anda either a vector or a
scalar.

2.1 Convolutions

The skin detector is an example of the most ba-
sic kind of image operations where each pixel
in the result image only depends on the pixel at
the same position in the sources image(s). Many
algorithms, however, require access to multiple
source image pixels to compute a single pixel in
the result image. Convolution operations, such
as differentiations and filters, are typical exam-
ples of such algorithms. One example of a con-
volution is the Sobel edge detector seen below.
The edge strength of a pixel is determined as the
length of an approximation of the image gradi-
ent.

@gpu
def sobelEdgeStrength(im=DImage, p=Position):

Sx = outerproduct([1,2,1], [-1,0,1])
Sy = transpose(Kx)
return sqrt(convolve(Sx, im, p)**2 + \

convolve(Sy, im, p)**2)

The gradient is estimated by the convolution of
the so called Sobel kernels, one for the horizon-
tal and one for the vertical direction. One can
conveniently be expressed as the outerproduct
of two vectors and by symmetry the other is the
transpose of the first one.

This example shows a particularly powerful
aspect of PyGPU. The functionsouterproduct

and transpose are not PyGPU functions but
come from Numarray, an established high per-
formance Python array programming library im-
plemented in C [12]. And yet these functions
can be used in code that is compiled for the
GPU. The reason this works is that the compiler
uses generative techniques [13] to partially eval-
uate the code at compilation time [11].

In addition to allowing the use of third-
party extension libraries, this generative fea-
ture makes it possible to use high-level lan-
guage constructs such as lists and list com-
prehensions or built-in standard Python func-
tions even though these features cannot be di-
rectly translated to the GPU. For example, the
convolve function used above can be succinctly
expressed as:

def convolve(kernel, im, p):
return sum([w*im(p+o)

for w,o in zip(ravel(kernel),
offsets(kernel))])

The Numarray functionravel is used to com-
pute the column-first linearization of the kernel.
Using the built-in Python functionzip to com-
bine each kernel element with its corresponding
offset (computed by theoffsets helper func-
tion), the list of weighted image values can be
expressed as a list comprehension. The final re-
sult is then computed by the standard Python
functionsum.

2.2 Iterative algorithms

The operations presented thus far have been al-
gorithms where the result is computed in a sin-
gle pass. Many operation use an iterative strat-
egy where successive applications gradually im-
prove the quality of the result. One example of
such an algorithm is anisotropic diffusion filter-
ing [14] that allows efficient removal of noise
without simultaneously blurring edges in an im-
age. One step of Perona-Malik anisotropic dif-
fusion can be expressed as

@gpu
def pmAniso(edge=DImage, im=DImage, p=Position):

offsets = [(1,0), (-1,0), (0,1), (0,-1)]
return im(p) + 0.25*sum([f(edge, im, p+dp, p)

for dp in offsets])
def f(edge, im, x, p):

return g(0.5*(edge(x)+edge(p)))*(im(x)-im(p))

def g(x):
return e**(-x/(K*K))

3

Figure 2: Perona-Malik anisotropic diffusion.

The functionpmAniso is the main function that
is compiled for the GPU and the functionsf and
g are helper functions which are generatively
evaluated during the compilation process. The
function g controls the conduction coefficients
of the diffusion process withK determining the
slope. The choice here is one of the functions
used in the original paper.

Iteratively applying the diffusion operator to
an image can either be done by the standard
PyGPU functioniterate or by direct loop as
shown below:

edges = edgeStrength(im)
for i in range(n):

im = pmAniso(edges, im)

This results in successively more smoothed ver-
sions of the original image. Figure 2 shows an
example image and the result of applying 400 it-
erations of the anisotropic diffusion operator us-
ing K = 0.25.

2.3 Reductions

One common pattern in the above examples is
that the result of the operation is always another
image. In image analysis, however, it is often
the case that the result of an operation is instead
some overall property of the image, for exam-
ple the maximum or average image color. These
kinds of operations are calledreductions, oper-
ations which reduce the size of an image down
to a single value or set of values. For example, a
function which computes the pixel-wise sum of
an image can be implemented as:

def sumIm(im):
return reduceIm(add, im)

Here, the functionadd is passed as an argument
to a generalreduceIm operation. This function
is provided by PyGPU and works analogously to
Python’s built-inreduce but on 2-dimensional
images instead of on lists. It is implemented as

Figure 3: Center of mass

an iterative algorithm similar to the example in
the previous section. Its implementation will be
shown in Section 2.6.

A useful example of a reduction is the calcula-
tion of the center of mass of a region in a binary
image. It can be used, for instance, to approxi-
mate the center of a hand or face detected by the
skin detector above. The center of mass is the
average position of all pixels in the region and
can be computed as:

def centerofmass(im):
return sumIm(pos(im))/sumIm(im)

@gpu
def pos(im=DImage, p=Position):

return p*im(p)

The result of applying the center of mass detec-
tion algorithm to the result of the skin detector
above can be seen in Figure 3.

2.4 Multi-grid operations

One of the advantages of programming in high-
level languages is that the abstraction mecha-
nisms available makes it possible to package
complex operations as basic building blocks that
can be used to construct even more complex op-
erations. As an example we will show the im-
plementation of an operation from the notion of
Poisson editingintroduced by Pérez, Gangnet,
and Blake in [15]. The example is called seam-
less cloning and it is a technique for pasting
parts of one image into another in such a way
that there is no visible seam between the two im-
ages. The idea is to solve the Laplace equation
for both images and only replace the differences
from these solutions in the pasting operation.

The Laplace equation states that the sum of
the second derivates should be equal to zero. In
the case of discrete images this is equivalent to
saying that a pixel should be equal to the aver-
age of its four nearest neighbors. This average
is computed by the following PyGPU function.

4

source target

source0 target0

mask result

Figure 4: Seamless cloning

@gpu
def crossAverage(im=DImage, p=Position):

offsets = [(1,0), (-1,0), (0,1), (0,-1)]
return sum([im(p+o) for o in offsets])/4

Using the standard higher-order PyGPU func-
tion masked, that applies a function within a
given mask and leave the values outside un-
changed, we can express one part of the Laplace
equation solver as:

x = masked(crossAverage, m)(x)

The statement is of the same form as in the
anisotropic diffusion example above. It can be
used as the basic step in an iterative solver where
each iteration yields a successively better solu-
tion. The complete implementation of seamless
cloning can be expressed succinctly as:

def solveLaplace(x, mask):
return iterate(n, masked(crossAverage, mask), x)

def seamlessCloning(source, target, mask):
source0 = solveLaplace(source, mask)
target0 = solveLaplace(target, mask)
return = (source-source0) + target0

An example of seamless cloning can be seen in
Figure 4.

The Laplace solver above will eventually
reach a solution, but it converges very slowly.
For the example in Figure 4 it requires on the
order of 10 000 iterations to computesource0

and target0 , respectively. A standard tech-
nique to improve convergence is to use amulti-
grid approach where solutions are first found at
a lower resolution. This approximate solution
is then used as input to solving the problem at
the higher resolution level, giving a better ini-
tial value for the solution and thereby achieving
faster convergence. By changing the definition
of solveLaplace to
def solveLaplace(x, mask):

return maskedMultigrid(n, crossAverage, mask, x)

The example instead converges in around 200 it-
erations. ThemaskedMultiGrid solver is avail-
able in the standard library of PyGPU. Its imple-
mentation will be shown in Section 2.6.

2.5 Sparse operations

The kind of image operations where the paral-
lelism of the GPU is most efficiently used are
denseoperations, where the computations in-
volve all pixels in the image. All operations
we have shown so far are all examples of this
kind. Sparse operationson the other hand oper-
ate only on a well chosen subset of points in the
images, for example feature points such as de-
tected corners. The irregular access pattern used
by sparse methods make them less suitable for
implementation on the GPU.

Some kinds of operations use a combination
of dense and sparse methods. One class of
such operations are active contours or snakes
[16] where a polygon is used to define an im-
age area that is interesting in some sense. The
contour can automatically search for its area
by iteratively moving the polygon until a local
minimum is found on a suitably definedenergy
function. This function typically consists of a
weighted average of two separate components:
the internal energy and the external energy. The
external energy is a measure of the image be-
ing analyzed, whereas the internal energy is a
measure of the shape of the contour itself, for
example its smoothness.

The idea is to sample the neighborhood of
each vertex of the snake and if any position in
this neighborhood gives the vertex a lower en-
ergy it is moved to this position. This step is
then repeated as many times as needed. A sim-
ple implementation of active contours is:
def externalEnergy(im, vs, o, v):

5

Figure 5: Contour detection using the snake al-
gorithm

return im(vs(v)+o)[0]

def internalEnergy(vs, o, v):
p,x,n = [vs((v+i)%nVerts)[0:2]

for i in [-1,0,1]]
x += offset
m = (p+n)/2
return norm(x-m)/norm(p-m)

def totalEnergy(wInt, wExt, im, vs, o, v):
return wInt*internalEnergy(vs, o, v) + \

wExt*externalEnergy(im, vs, o, v)

@gpu
def energyOptimize(wInt=Float, wExt=Float,

im=DImage, vs=DImage, v=Int):
offsets = array([[0,0],

[1,0], [-1,0],
[0,1], [0,-1]])

energies = [totalEnergy(wInt,wExt,im,vs,v,o)
for o in offsets]

return vs(v) + min(zip(energies, offsets))[1]

Here, the parametersim andvs contain the im-
age we are optimizing over and the vertices of
the polygon, respectively. The weightswExt and
wInt contain the relative weights of the external
and internal energy. The use ofmin relies on the
fact that comparison between tuples in Python
is defined lexicographically. This means that we
will find the energy minimum since this is the
first member in each tuple. The corresponding
offset of that energy minimum is given as the
second tuple entry.

The input image used for the external energy
is typically not the image being analyzed but
rather some preprocessed version, for example
a segmented version with edge enhancements.
The internal energy shown here is simply a mea-
sure of how far a position is from the midpoint
of the two neighboring vertices. This choice will
give a “rubber band”-like snake contour where a
enclosed region is always convex. Many other
variants are possible. The result of applying the
snake algorithm is shown in Figure 5.

Figure 6: Block-wise reductions

2.6 Implementation of some generic
operations

In the previous sections we have used some
generic high-level operations such asreduceIm

andmaskedMultigrid . Although these are very
general and powerful, their implementation in
PyGPU is still fairly simple.

The reduction operator is implemented by
successively applying the base operation to
blocks of the image, resulting in smaller and
smaller intermediary results. When the size of
the image is1×1 it will contain the sought quan-
tity as illustrated in Figure 6. For a square image
having sides that are a power of two, the opera-
tion can be implemented in PyGPU as:

block = array([(0,0),(0,1),(1,0),(1,1)]

def reduceIm(f, im):
@gpu
def _reduce(im=DImage, p=Position):

return f([im(2*p+o) for o in block])

while im.size[0] >= 1 and im.size[1] >= 1:
im = _reduce(im, _targetSize=im.size/2)

return im

This inner function, which is the one executed
on the GPU, successively applies the functionf

to 2 × 2 blocks of the imageim until it is re-
duced to a single1×1 image. The actual reduc-
tion in image size is achieved by the parameter
_targetSize which is implicitly made available
on all PyGPU compiled functions with a default
value of the size of the input image.

A multi-grid solver first finds an iterative so-
lution on a coarse resolution of the image which
is then used as the initial value on successively
finer resolutions. This masked multi-grid solver
in PyGPU can be expressed as:

def maskedMultigrid(n, f, mask, x, minSize):
y = None
for x, m in reversed(zip(averageR(im, minSize),

averageR(mask, minSize)):
if not y: y = x

6

else : y = masked(inflate(y), m)(x)
y = iterate(n, masked(f, m), y)
return y

The averageR helper function generates a se-
quence of successively coarser representations
of an image down to sizeminSize . The func-
tion inflate does the opposite,i.e., it computes
the input to the next higher resolution level.

3 Performance

Although the compiler of PyGPU does not yet
implement a number of important optimiza-
tions it typically achieve between 0.5 and 4
GPixel operations per second (roughly equal to
GFLOPS) on the examples shown in this paper.
This means that a 9-tap convolution filter can
be applied to a500 × 500 RGBA color image
in about 13 ms. The examples were run on a
NVIDIA GeForce 6600 graphics card, a lower
mid-range card at the time of writing.

Table 1 gives a summary of the performance
figures for the most representative examples in
this paper. The execution times are essentially
proportional to the number of pixels times the
number of instructions in the compiled shader
program to execute for each pixel. They also in-
clude a constant overhead for each pass for set-
ting up the graphics cards, passing parameters
to the GPU program, and constructing the result
texture. This overhead corresponds roughly to
the computation of a couple of thousand pixels,
meaning that it is negligible for larger images.

The theoretical peak performance of the
NVIDIA 6600 card of our test setup is approx-
imately 4.8 GPixel operations per second (300
MHz core clock, 8 pixel pipelines using instruc-
tion co-issuing) with an peak memory band-
width of 4 GB/s (500 MHz bus clock, 128 bit
bus bandwidth, 64 bits per memory access). As
we see from the performance figures, programs
that perform more computations relative to the
number of texture accesses per pixel perform
very well. For example, the skin detection algo-
rithm is able to reach80% of the computational
peak performance.

However, programs that perform many tex-
ture accesses per computed pixel quickly be-
come bounded by the available memory band-
width. This is particularly true for the convolu-

tion filters that achieve75% and85% bandwidth
utilization, but with only11% and13% compu-
tational efficiency, for the3× 3 and7× 7 case,
respectively.

This figures indicate that the key limiting fac-
tor in many GPU programs is memory band-
width. At present, PyGPU is not optimized for
minimizing bandwidth consumption. For exam-
ple, all computations are carried out on 32-bit
floating point 4-tuples, which means that both
gray scale and binary images are treated as full
four channel RGBA images. By using more
compact storage formats, as well as reducing the
precision to 16-bits where possible, the band-
width requirements will be reduced and perfor-
mance increased further. These improvements,
as well as trying to locate other bottlenecks in
the processing pipeline, are things which will be
incorporated in future versions of PyGPU.

4 Discussion

As we have seen the PyGPU language com-
bines high-level programmability with high per-
formance. Being embedded in Python allows
functions running on the GPU to be called trans-
parently from Python, greatly facilitating inte-
gration of GPU algorithms in larger applica-
tions. Furthermore, since PyGPU functions are,
at the same time, valid Python functions GPU
programs can be tested on the CPU before be-
ing run on the GPU. This allows standard de-
bugging and testing tools to be used for GPU
programs also, reducing the need for more spe-
cialized GPU debugging tools [17].

The performance of the GPU comes from it
having a pipelined, highly parallel architecture.
This introduces a number of restrictions on what
kinds of operations are possible to implement
on the GPU. It lacks writable memory. Mem-
ory is read only and may only be accessed only
in the form of textures containing up to 4-tuples
of floating point values. This means that Python
features such as lists and objects cannot be used
directly on the GPU. But, as we have seen, they
may be used to construct programs. For infor-
mation on how this is achieved, see [11].

Also, GPU programs can only write output
to a predetermined image location. This means
that GPU algorithms must be, using the termi-

7

No. pixel ops. No. texture accesses Gpixel ops./s Texture reads (GB/s)
Convolve (3× 3) 27 9 0.56 3.0
Convolve (7× 7) 151 49 0.65 3.4
Skin detection 57 1 3.9 1.1
Anisotropic diffusion 43 10 0.58 2.1
Laplace solver 18 4 0.60 2.8

Table 1: Performance figures for some of the examples

nology of parallel computation, written using a
gather, rather thanscatter, approach. This re-
striction is encoded in PyGPU’s image model,
where algorithms are expressed in a point-wise
manner using only gather operations. This is
also the reason why the generalreduce opera-
tor, used to do summation for example, is im-
plemented as a iteration over a sequence of pro-
gressively smaller images, rather than using a
straightforward accumulation loop.

This lack of scatter support sometimes creates
difficulties. One such problematic example is
computing histograms. This operation is tradi-
tionally implemented as a loop over all pixels,
having time-complexity linear in the number of
pixels. Since the GPU does not support for scat-
tered writes it must instead be implemented as a
reduction
histogram = reduce(countBins, toBins(im))(0,0)

where toBins sorts pixels to their respective
bins andcountBins count the number of oc-
currences in each bin. GPUs only support out-
putting a limited number of values per pixel,
currently 16 floating point values. With a
larger number of bins than this the algorithm
must be run multiple times resulting in a time-
complexity on the order of the number of pixels
times the number of bins. This illustrates that
not all kinds of image processing algorithms are
suitable for the GPU.

4.1 Related work

PyGPU was inspired by Pan written by Elliottet
al. [18], which is an domain-specific language
for image synthesis embedded in the function
language Haskell [19]. In particular, the func-
tional image model of PyGPU is very similar to
that of Pan, but where Pan uses a smooth model,
PyGPU focuses on a discrete formulation that
allows easier pixel-wise addressing for opera-
tions such as convolutionsetc.

Other domain-specific languages for using the
GPU as a computational co-processor have been
proposed. For example, BrookGPU by Buck et
al. [20] is a compiler for writing numerical GPU
algorithms in the Brook streaming language, an
extension of ANSI C that incorporatesstreams
andkernels, representing data and operations on
data, respectively. The stream and kernel primi-
tives can be mapped to efficient programs run-
ning on the GPU. Also, Sh by McCoolet al.
[21], for instance, uses C++ templates to pro-
vide stream processing abstractions similar to
those of Brook. These two projects are based
on C and C++, respectively. By using Python,
PyGPU is able provide higher-level facilities for
writing GPU image processing algorithms than
currently possible with these approaches.

4.2 Future work

The current syntax of PyGPU requires the pro-
grammer to clearly make the distinction be-
tween the parts of the code that should execute
on the GPU and the parts that should executon
the CPU. A nice feature would be to have the
compiler be able to do this allocation by itself.
Apart from relieving the responsibilities of the
programmer, it would also allow the compiler to
perform more optimizations, both on for storage
requirements and also load-balancing.

Also, in order to translate a Python function
to the GPU, PyGPU’s compiler must know the
types of the function parameters. Currently, this
information must be provided by the program-
mer. An interesting improvement would be to
remove this requirement and instead have the
compiler automatically infer the necessary type
information.

8

5 Summary

We have presented PyGPU, a language for
image processing on the GPU embedded in
Python. The functional programming model
used by PyGPU allows algorithms to be trans-
lated to efficient code running on the GPU,
while still retaining the high-level language fea-
tures allowing them to be implemented con-
cisely and clearly. The performance of PyGPU
is good, allowing many algorithms to be run
on real-time streaming video sequences without
need for special optimization. This enables the
implementor to receive rapid feed-back during
algorithm development and debugging.

Also, by using language embedding the high-
level benefits of Python are transferred onto
PyGPU, allowing features such as list compre-
hensions and higher-order functions to be used
in the construction of image processing algo-
rithms. By writing at a higher level of abstrac-
tion the code is easier to read and understand.
Furthermore, constructing more complex algo-
rithms from simpler building blocks facilitates
error detection, making algorithm development
and implementation faster and easier.

References

[1] Matlab. http://www.mathworks.
com/ .

[2] Intel integrated performance primitives.
http://www.intel.com/cd/
software/products/asmo-na/
eng/perflib/ipp/ .

[3] Open source compter vision li-
brary. http://www.intel.
com/technology/computing/
opencv/ .

[4] Bala Amavasai. Mimas toolkit.
http://www.shu.ac.uk/mmvl/
research/mimas/ .

[5] Jens Krüger and Rüdiger Westermann.
Linear algebra operators for gpu imple-
mentation of numerical algorithms.ACM
Trans. Graph., 22(3):908–916, 2003.

[6] William R. Mark, R. Steven Glanville,
Kurt Akeley, and Mark J. Kilgard. Cg:

a system for programming graphics hard-
ware in a C-like language.ACM Trans.
Graph., 22(3):896–907, 2003.

[7] Kris Gray. DirectX 9 programmable
graphics pipeline. Microsoft Press, 2003.

[8] John Kessenich, David Baldwin, and
Randi Rost. The opengl shading language.
http://developer.3dlabs.com/
documents/index.htm . 3DLabs, Inc
Ltd.

[9] Paul Hudak. Building domain-specific em-
bedded languages.ACM Comput. Surv.,
28(4es):196, 1996.

[10] The Python language. http://www.
python.org/ .

[11] Calle Lejdfors and Lennart Ohlsson. Im-
plementing an embedded gpu language by
combining translation and generation.To
appear in SAC’06 Programming Language
track, 2006.

[12] Perry Greenfield, Jay Todd Miller, Jin
chung Hsu, and Richard L. White. nu-
marray: A new scientific array package for
python. PyCon DC 2003, March 2003.

[13] Krzysztof Czarnecki and Ulrich W.
Eisenecker. Generative programming:
methods, tools, and applications. ACM
Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 2000.

[14] Pietro Perona and Jitendra Malik. Scale-
space and edge detection using anisotropic
diffusion. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence,
12(7):629–639, July 1990.

[15] Patrick Pérez, Michel Gangnet, and An-
drew Blake. Poisson image editing.ACM
Trans. Graph., 22(3):313–318, 2003.

[16] Michael Kass, Andrew Witkin, and
Demetri Terzopolous. Snakes: Active
countour models.International Journal of
Computer Vision, pages 321–331, 1988.

[17] Nathaniel Duca, Krzysztof Niski, Jonathan
Bilodeau, Matthew Bolitho, Yuan Chen,

9

and Jonathan Cohen. A relational debug-
ging engine for the graphics pipeline.ACM
Trans. Graph., 24(3):453–463, 2005.

[18] Conal Elliott, Sigbjorn Finne, and Oege
de Moor. Compiling embedded languages.
In SAIG ’00: Proceedings of the Inter-
national Workshop on Semantics, Appli-
cations, and Implementation of Program
Generation, pages 9–27, London, UK,
2000. Springer-Verlag.

[19] Simon Peyton Jones, editor. Haskell
98 Language and Libraries. Cambridge
University Press, April 2003. ISBN:
0521826144.

[20] Ian Buck, Tim Foley, Daniel Horn,
Jeremy Sugerman, Kayvon Fatahalian,
Mike Houston, and Pat Hanrahan. Brook
for gpus: stream computing on graphics
hardware.ACM Trans. Graph., 23(3):777–
786, 2004.

[21] Michael McCool, Stefanus Du Toit,
Tiberiu Popa, Bryan Chan, and Kevin
Moule. Shader algebra. ACM Trans.
Graph., 23(3):787–795, 2004.

10

