
Supporting Release Planning of
Quality Requirements: The Quality

Performance Model

Richard Berntsson Svensson

Doctoral Dissertation, 2011

Department of Computer Science
Lund University

ii

LU-CS-DISS:2011-3
Dissertation 36, 2011
ISSN 1404-1219
ISBN 978-91-976939-4-3

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: Richard.Berntsson_Svensson@cs.lth.se
WWW: http://www.rbsv.eu
WWW: http://www.quper.org

Typeset using LATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2011

c© 2011 Richard Berntsson Svensson

ABSTRACT

In a competitive environment, as experienced by market-driven organizations, it
is important to plan software product releases with time-to-market in mind. To
increase the chances of market success, software products need to be released to
the market, not only at the right time, but also with higher level of quality than the
competitors’ products. Thus quality requirements can be seen as a key competitive
advantage. An especially challenging problem for an organization that develops
software products offered to a market is to set the right quality target in relation
to future market demands and competitor products. When is the quality level a
competitive advantage? The goal of this thesis is to increase the awareness and
understanding of quality requirements, and to find means for improving the ability
to make early estimates of quality requirements, e.g., performance requirements,
in order to enhance high-level decision-making related to release planning and
roadmapping.

This thesis is based on empirical research using a flexible research design.
The research contains two qualitative surveys of quality requirements challenges
in market-driven software product development organizations based on interviews
with practitioners. From these surveys, issues emerge such as when the qual-
ity level is good enough, and how to get quality requirements into projects when
functional requirements are prioritized. A case study within the embedded soft-
ware domain investigates how quality requirements are classified and specified (in-
cluding quantification) in an industrial context, which concludes that for a method
to be successful, it is important that the method itself is flexible enough to han-
dle the diverse nature of quality requirements. A model called QUPER (QUality
PERformance) is evolved and evaluated in two organizations. The model aims at
supporting release planning of quality requirements, and was found relevant by
both organizations. Finally, a prototype tool for the QUPER model was devel-
oped and evaluated in a software organization. The QUPER prototype tool was
found to provide a clear overview of the current market situation by the generated
roadmaps, and to reach an alignment between practitioners, e.g., product managers
and developers, of what level of quality is actually needed.

ACKNOWLEDGEMENTS

The work presented in this thesis was partly funded by the Swedish Governmen-
tal Agency for Innovation Systems under the grant for MARS, Methods for early
analysis and specification of non-functional system requirements on mobile ter-
minals and by the Industrial Excellence Center EASE - Embedded Applications
Software Engineering, (http://ease.cs.lth.se).

I would like to extend my sincere gratitude to my supervisor and collaborator
Professor Björn Regnell, for giving me the opportunity to be part of the Software
Engineering Research Group, and for his guidance and advice. I would also like to
thank my assistant supervisor, Professor Martin Höst, for his support and advice.

The research presented in this thesis was conducted in close cooperation be-
tween academia and industry. I would like to thank all participants and their com-
panies who have helped in making the data collection possible for this thesis. The
industry cooperation has been a valuable learning experience, and I would like to
thank all involved for their help and patience.

I am grateful to the co-authors of my papers, in particular Associate Professor
Tony Gorschek. I would like to thank my colleagues in the Software Engineer-
ing Research Group, for an inspiring and supporting atmosphere. I would also
like to mention the colleagues at the Department of Computer Science, thanks for
providing an excellent environment to work in.

Last but not least I would like to thank my family and friends for their under-
standing and support.

LIST OF PUBLICATIONS

This thesis is comprised of 6 papers that are either published or in print (4 papers),
or submitted and under review (2 papers) for publication. In addition, 15 published
papers were not included in the thesis, but are related to the thesis.

Publications Included in the Thesis

I Quality Requirements in Industrial Practice - an extended interview
study at eleven companies
Richard Berntsson Svensson, Tony Gorschek, Björn Regnell, Richard Torkar,
Ali Shahrokni, and Robert Feldt
IEEE Transactions on Software Engineering, 2011, in print.

II Prioritization of Quality Requirements: State of Practice in Eleven Com-
panies
Richard Berntsson Svensson, Tony Gorschek, Björn Regnell, Richard Torkar,
Ali Shahrokni, Robert Feldt, and Aybüke Aurum
In Proceedings of the 19th IEEE International Requirements Engineering
Conference (RE’11), Trento, Italy, pp. 69–78, 2011.

III How are quality requirements specified? A document analysis case
study
Richard Berntsson Svensson, Thomas Olsson, and Björn Regnell
Submitted to Information and Software Technology, 2011.

IV The Quality Performance Model: Supporting Release Planning of Qual-
ity Requirements
Richard Berntsson Svensson, Björn Regnell, and Jane Cleland-Huang
Submitted to IEEE Transactions on Software Engineering, 2011.

V Setting quality targets for coming releases with QUPER - an industrial
case study

viii

Richard Berntsson Svensson, Yuri Sprockel, Björn Regnell, and Sjaak Brink-
kemper
Requirements Engineering, 2011, in print.

VI A Prototype Tool for QUPER to Support Release Planning of Quality
Requirements
Richard Berntsson Svensson, Pontus Lindberg Parker, and Björn Regnell
In the Fifth International Workshop on Software Product Management (IWS-
PM’11), Trento, Italy, 2011.

Related Publications

VII An Empirical Study on the Importance of Quality Requirements in In-
dustry
Jose Luis de la Vara, Krzysztof Wnuk, Richard Berntsson Svensson, Juan
Sanchez, and Björn Regnell
In Proceedings of the 23rd International Conference Software Engineering
and Knowledge Engineering, (SEKE’11), Miami Beach, USA, pp. 438–
443, 2011.

VIII Cost and Benefit Analysis of Quality Requirements in Competitive Soft-
ware Product Management: A case study on the QUPER model
Richard Berntsson Svensson, Yuri Sprockel, Björn Regnell, and Sjaak Brink-
kemper
In Proceedings of the fourth International Workshop on Software Product
Management, (IWSPM’10), Sydney, Australia, pp. 40–48, 2010.

IV Towards Modeling Guidelines for Capturing the Cost of Improving Soft-
ware Product Quality in Release Planning
Richard Berntsson Svensson, Björn Regnell, and Aybüke Aurum
In Proceedings of the 11th International Conference on Product Focused
Software Development and Process Improvement, (PROFES’10), Limerick,
Ireland, pp. 20–23, 2010.

X Managing Quality Requirements: A Systematic Review
Richard Berntsson Svensson, Martin Höst, and Björn Regnell
In Proceedings of the 36th EUROMICRO Conference on Software Engi-
neering and Advanced Applications, (SEAA’10), Lille, France, pp. 261–
268, 2010.

XI Quality Requirements: Trade-off Analysis of Benefits and Cost
Richard Berntsson Svensson
12th Australian Workshop on Requirements Engineering (AWRE’09), Syd-
ney, Australia, 2009.

ix

XII Investigating Upstream versus Downstream Decision-Making in Soft-
ware Product Management
Krzysztof Wnuk, Richard Berntsson Svensson, and Björn Regnell
In Proceedings of the third International Workshop on Software Product
Management (IWSPM’09), Atlanta, USA, pp. 23–26, 2009.

XIII Stakeholders Perception of Success: an Empirical Investigation
Evgenia Egorova, Marco Torchiano, Maurizio Morisio, Claes Wohlin, Ay-
büke Aurum, and Richard Berntsson Svensson
In Proceedings of the 35th EUROMICRO Conference on Software Engi-
neering and Advanced Applications (SEAA’09), Patras, Greece, pp. 210–
216, 2009.

XIV Quality Requirements in Practice: An Interview Study in Requirements
Engineering for Embedded Systems
Richard Berntsson Svensson, Tony Gorschek, and Björn Regnell
In Proceedings of the 15th International Working conference on Require-
ments Engineering: Foundation for Software Quality (REFSQ’09), Amster-
dam, Netherlands, pp. 218–232, 2009.

XV Supporting Roadmapping of Quality Requirements
Björn Regnell, Richard Berntsson Svensson, and Thomas Olsson
IEEE Software, vol. 25, no. 2, pp. 42–47, 2008.

XVI Introducing Support for Release Planning of Quality Requirements -
An Industrial Evaluation of the QUPER Model
Richard Berntsson Svensson, Thomas Olsson, and Björn Regnell
Second International Workshop on Software Product Management (IWSPM-
’08), Barcelona, Spain, 2008.

XVII Can We Beat the Complexity of Very Large-Scale Requirements Engi-
neering?
Björn Regnell, Richard Berntsson Svensson, and Krzysztof Wnuk
In Proceedings of the 14th International Working conference on Require-
ments Engineering: Foundation for Software Quality (REFSQ’08), Mont-
pellier, France, pp. 123–128, 2008.

XVIII A Quality Performance Model for Cost-Benefit Analysis of Non-functio-
nal Requirements Applied to the Mobile Handset Domain
Björn Regnell, Martin Höst, and Richard Berntsson Svensson
In Proceedings of the 13th International Working conference on Require-
ments Engineering: Foundation for Software Quality (REFSQ’07), Trond-
heim, Norway, pp. 277–291, 2007.

XIX Non-functional requirements metrics in practice - an empirical docu-
ment analysis

x

Thomas Olsson, Richard Berntsson Svensson, and Björn Regnell
Workshop on Measuring Requirements for Project and Product Success (Me-
ReP’07), Palma de Mallorca, Spain, 2007.

XX Successful Software Project and Products: An Empirical Investigation
Comparing Australia and Sweden
Richard Berntsson Svensson, Aybüke Aurum, Claes Wohlin, and Ganglan
Hu
17th Australian Conference on Information Systems (ACIS06), Adelaide,
Australia, 2006.

XXI Successful software project and products: An empirical investigation
Richard Berntsson Svensson, and Aybüke Aurum
In Proceedings of the IEEE/ACM fifth International Symposium on Empiri-
cal Software Engineering (ISESE’06), Rio de Janeiro, Brazil, pp. 144–153,
2006.

Contribution Statement
The author of this thesis is the main author of all of the six included papers. This
means responsibility for running the research process, dividing the work between
co-authors, and conducting most of the writing. Paper I and II were produced in
cooperation with other universities. In both cases, most of the design was per-
formed together with the co-authors, while most of the analysis, writing, and di-
vision of work was performed primarily by the main author. For Paper III, the
main author’s contribution is part of coding quality requirements which was per-
formed in parallel by all authors. All authors contributed in the discussions and
writing; however, the main author wrote most of Paper III. The research in Paper
IV was performed mainly by the main author, who designed and conducted most
of the work, as well as reported on the study. Paper V was produced in coopera-
tion with another university. Most of the design was performed together with the
co-authors, while most of the analysis and writing was performed primarily by the
main author. The execution of the study was performed by the second author of
Paper V. Paper VI describes a tool which was designed by the main author, but
developed by the second author of paper VI. The paper is written primarily by the
main author.

CONTENTS

Introduction 1
1 Background and Related Work 2
2 Research Focus . 34
3 Research Methodology . 38
4 Results . 51
5 Synthesis . 57
6 Research Agenda . 59
7 Conclusion . 61
Bibliography . 63

Quality Requirements Challenges 79

I Quality Requirements in Industrial Practice - an extended interview
study at eleven companies 81
1 Introduction . 82
2 Background and Related Work 83
3 Research Methodology . 84
4 Results and Analysis . 89
5 Conclusions . 104
Bibliography . 107

II Prioritization of Quality Requirements: State of Practice in Eleven
Companies 111
1 Introduction . 112
2 Related work . 112
3 Research Methodology . 114
4 Results and Analysis . 118
5 Conclusions . 128
Bibliography . 130

xii CONTENTS

III How are quality requirements specified? A document analysis case
study 133
1 Introduction . 134
2 Related Work . 135
3 Case Company Description . 136
4 Research Methodology . 138
5 Results and Analysis . 141
6 Conclusions . 158
Bibliography . 161

The Quality Performance Model 165

IV Validation of the Quality Performance Model: Supporting Release
Planning of Quality Requirements 167
1 Introduction . 168
2 Related Work . 169
3 Background and Motivation . 171
4 QUPER Structure and Guidelines 174
5 QUPER Validation . 185
6 Limitations . 192
7 Conclusions . 193
Bibliography . 196

V Setting quality targets for coming releases with QUPER - an industrial
case study 199
1 Introduction . 200
2 Background and related work . 201
3 Case company . 208
4 Model tailoring . 211
5 Evaluation design . 211
6 Evaluation results . 215
7 Conclusions . 224
Bibliography . 227

VI A Prototype Tool for QUPER to Support Release Planning of Quality
Requirements 231
1 Introduction . 232
2 Background and Related Work 233
3 Case Company Description . 235
4 QUPER Prototype Tool . 236
5 Industrial Evaluation . 243
6 Conclusions and Future Work . 246
Bibliography . 248

INTRODUCTION

Software continually becomes more important and composes a large share of to-
day’s products, thus gaining more importance in our lives. As a result, our depen-
dence on software intensive systems in everyday life increases. Several different
domains need to handle software development, e.g., developers of IT systems in
banking, the automotive industry, train control systems, telecommunication sys-
tems, and developers of consumer products (e.g., mobile phones). As software be-
come more important, the complexity, which is determined partly by functionality
and partly by quality requirements (QR) [41], of the software products increases.
Moreover, the intangible and flexible nature of software causes software products
to be over-represented in project failure statistics, where typical problems include
budget overruns, missed deadlines, and poor quality.

The handling and balancing of QR play a crucial role in software product de-
velopment. In particular in market-driven organizations, which release their prod-
ucts to an open market with numerous potential customers and users. The ability
to develop software products that meet customers’ needs and expectations, and
offers high value increases the likelihood of market success. In addition, to in-
crease the chances of market success, the software product needs to be released
to the market at the right time with higher level of quality than the competitors’
products, thus QR can be seen as a key competitive advantage. However, despite
their importance, QR are often poorly understood, generally stated informally in a
non-quantifiable manner, often contradicting, and difficult to validate.

In market-driven software product development, customer expectations are
gathered, analyzed, specified, and validated in the market-driven requirements
engineering (MDRE) activity. Market-driven requirements engineering is recog-
nized as a key area for software product development companies since it lays the
foundation for successful planning, prioritization and development of the software
product before it is released to the market. In a competitive environment, as expe-
rienced by market-driven organizations, it is important to plan the product releases
with time-to-market in mind. Release planning is the processes of deciding which
features should be included in the next releases, when it should be released (time)
and at what cost this should be achieved. An especially challenging problem for
an organization that develops software products offered to a market is to set the

2 INTRODUCTION

right quality target in relation to future market demands and competitor products,
when is the quality level good enough, when is the quality level a competitive
advantage?

The main goal of this research is to increase the awareness and understand-
ing of quality requirements, and to find means for improving the ability to make
early estimates of quality requirements, e.g., performance requirements, in order
to enhance high-level decision-making related to release planning and roadmap-
ping. The main contributions are: increased understanding of QR challenges in the
software industry based on a qualitative survey, understanding of QR specification
and prioritization based on a case study and a qualitative survey, and a model for
supporting release planning and roadmapping of QR, more specifically with the
goal to provide concepts for qualitative reasoning of orders of magnitude rather
than precise mathematical formulas, evaluated in two companies from different
domains in two countries using action research.

The remainder of this section is structured as follows. Section 1 provides back-
ground information and related work on the investigated areas. First, software
product management (SPM) is presented, followed by one of the main activities
in SPM, namely MDRE. Then, the release planning process, which is part of both
SPM and MDRE, is presented. Finally, background information and related work
on quality requirements are provided. Section 2 identifies research gaps in the
related work and discuss how the research questions address these research gaps.
Moreover, the research questions arising form the research gaps are stated and
motivated, and the relation between the research questions and included papers
is presented. The research methodologies used to answer the research questions
are presented in Section 3. Furthermore, the motivations of chosen the research
methodologies are discussed. The results are summarized for each individual pa-
per, and linked to research questions and research gaps in Section 4, while Section
5 draws together the obtained results in order to provide answers to the research
questions. Section 6 describes how the research could be continued in the future.
Finally, Section 7 concludes the thesis.

1 Background and Related Work

This section gives some background to software product management, require-
ments engineering focusing on market-driven requirements engineering, release
planning, and quality requirements. Each section is summarized in a number of
challenges/issues.

1.1 Software Product Management

Software product development is more and more commercialized as standard
products [178], and less customized software is developed [177]. At the same

1 Background and Related Work 3

time, market-driven product development gains greater acceptance [8]; therefore,
a new role within software companies has emerged, namely that of product man-
ager [177]. However, product management is not a new domain; it has been es-
tablished in other sectors, such as manufacturing since the 19th century [109].
Only recently has software product management (SPM) received attention in the
software industry [178], for example, in companies like Microsoft [52] and Alca-
tel [65]. Product management is defined as:

”The discipline and role, which governs a product (or solution or
service) from its inception to the market/customer delivery in order to
generate biggest possible value to the business.”

[64]

Product management covers all phases of the life-cycle, from strategy defini-
tion down to delivery, until retirement of the product. Figure 1, which is adapted
from [64], illustrates product management and the lifecycle.

Strategy Planning Development Launch Service

Execution

Vision, business model, development, distribution, operation, service

Software project
(defined time and scope)

Maintenance project
(defined time and scope)

Product management
(covers several projects, no time limits)

Figure 1: Product management and the lifecycle [64]

The role of the product manager has been studied, analyzed, and reported in
the literature. Gorchels reports a general description of the role of product man-
ager, the responsibilities, and the product manager’s interfaces to other roles, such
as marketing [74]. In another study, Cooper describes the importance of the prod-
uct manager in order to drive the new product introduction and to drive the product
lifecycle [51]. However, these general descriptions of the product manager role do
not specifically deal with software products. Others have studied the relation be-
tween software engineering (SE) and business perspectives, for example, Lehtola
et al. describe how roadmapping links to product requirements [119].

In software engineering, the role of software product manager has emerged
over recent years and plays an important and critical role in the success of a soft-
ware company’s product [50]. The success of the product is dependent on the

4 INTRODUCTION

skills and the competence of the product manager [64], and to create successful
products, the software product manager has to manage product requirements, re-
lease planning, and launching products [50], [64], [177]. Moreover, the software
product manager has to understand and define stakeholders [50], and market needs
must be successfully identified and translated into the scope of the product [63].
However, deciding what requirements to include in a product’s scope is not a triv-
ial task [27], [182], and some requirements may be postponed to a later point in
time [79], [183]. Reaching this, often uneasy compromise, sometimes means that
the development of already made commitments may need to be sacrificed at the
expense of wasted effort.

To reach a more mature SPM process, methods and standards are needed [19],
but most software engineering standards only look into the engineering aspects
within a single project [64]. Not even some of the best-known methods, such as
the Capability Maturity Model (CMM) [132] and its follow-up CMMI [47] include
product management related processes [39]. The ISO standards for systems life
cycle processes [87] and software life cycle processes [86], and the IEEE stan-
dard for application and management of the systems engineering process [84] do
not detail upstream activities before project start or product launch, nor do they
mention how requirements are decided and how the system is defined.

Later research in the field of SPM has lead to the development of SPM frame-
works, the reference framework for software product management [177], [178],
the software product management framework [85], the situational assessment met-
hod (SAM) [18], and the software product management competence model [20].

The SPM framework [85], which is visualized in Figure 2, has seven main
activities such as product strategy, product planning, development, and marketing.
Each of the seven main activities has several sub activities. For example, product
planning includes MDRE (described in Section 1.2), release planning (described in
Section 1.3) and roadmapping, while development includes project management
and quality management. The SPM maturity matrix [20] is a key component in
SAM which is used to determine the SPM maturity level of an organization. In
addition, the SPM maturity matrix identifies areas that the organization needs to
improve to be able to reach a higher maturity level.

The SPM competence model [20], which is illustrated in Figure 3, consists of
four main business functions, namely: requirements management, release plan-
ning, product planning, and portfolio management. The four main business func-
tions are based on a structure where a portfolio (represented in portfolio manage-
ment) consists of products, a product (represented in product planning) consists of
releases (represented in release planning), and releases consists of requirements
(represented in requirements management). Each business function includes a
number of focus areas (see Figure 3). Each of the four main business functions
and its focus areas are described below.

Portfolio management is related to decision-making about introduction of
new products (based on market trends and product development strategy), the

1 Background and Related Work 5

Sales Support

Marketing
Support

Technical
Support

Services
Preparation

Evolution
and Service

Customer
Relationship
Management

Channel
Preparation

Sales Strategy
and Planning

Sames
Management

Sales and
Distribution

Market Analysis

Corporate
Strategy

Portfolio
Management

Innovation
Management

Strategic
Management

Market-Driven
Requirements
Engineering

Product Life-
Cycle

Management

Release
Planning

Roadmapping

Product
Planning

Project
Requirements
Engineering

Engineering
Management

Project
Management

Quality
Management

Development

Product Launch

Marketing
Planning

Marketing Mix
Optimization

Customer
Analysis

Marketing

Opportunity
Management

Operational
Marketing

Performance
and Risk

Management

Positioning
and Product

Definition

Pricing

Sourcing

Delivery
Model

Business Case
and Costing

Product
Strategy

Ecosystem
Management

Legal and IPR
Management

Resource
Management

Product
Analysis

Operational
Distribution

Services
Provisioning

Figure 2: Software product management framework [85]

Core asset
roadmapping

Roadmap
intelligence

Product
roadmapping

Product planning

Requirements
prioritization

Scope change
management

Release definition
validationRelease definition

Build
validation

Launch
preparation

Release planning

Requirements
gathering

Requirements
organizing

Requirements
identification

Requirements management

Product lifecycle
management

Partnering &
contractingMarket analysis

Portfolio management

Software Product Management
Internal

stakeholder
External

stakeholder

Research &
innovation

Company board

Sales

Marketing

Development

Support

Services

Market

Customers

Partners

Figure 3: Software product management competence model [20]

6 INTRODUCTION

product lifecycle, and establishing partnerships. As illustrated in Figure 3, port-
folio management has three focus areas. The first focus area is market analysis
where information about the market is gathered for decision-making about an or-
ganization’s product portfolio. The second focus area is product lifecycle manage-
ment, which includes key decision-making about product life and product changes
across the entire product portfolio. Third, partnering & contracting focuses on the
establishment of partnerships, pricing, and distribution.

Product planning includes the gathering of information and creation of a
roadmap for a product, or product line, and its core assets. Product planning con-
sists of three focus areas, roadmap intelligence, which is about gathering support-
ing information for creating a roadmap, product roadmapping, which is the actual
creation of the roadmap, and core asset roadmapping, which includes the planning
of the development of components that are shared by multiple products.

Release planning is a process applying various types of upstream decision-
making that combines market considerations with implementation concerns [143]
in order to successfully create and launch a release. The business function release
planning starts with requirements prioritization where requirements are prioritized
(see Section 1.3 for a more detailed description of requirements prioritization),
and is followed by release definition, which includes selecting requirements for
the next release. Release definition validation is focused on the validation of the
selected requirements by internal parties. Scope change management is the focus
area for handling scope changes that may occur during the development. Once the
development department has approved the release definition, the built release is
validated (build validation) before it is released, and a launch preparation package
is constructed. For a more detailed description of release planning, see Section 1.3.

Requirements management includes the activities of continuos management
of requirements that are not part of a release. Requirements management consists
of three focus areas, eliciting (requirements gathering), identifying (requirements
identification), and organizing (requirements organizing) the incoming require-
ments from all of the internal and external stakeholders. For a more detailed de-
scription of requirements managements, see Section 1.2.

Software Product Management - Challenges

Although several of the existing product management challenges may exist in
SPM, specific challenges have been identified in SPM ([20], [27], [64], [178],
[182]). A selection of the identified challenges are:

• Changing software and release frequency
Software products can be changed easily, sold products can be updated by
release updates, and distribution of extra copies of the software product do
not add extra cost for the organization [178]. However, since software prod-
ucts can be more easily changed and updated compare to other products, the

1 Background and Related Work 7

release frequency is higher. Hence, organizing and tracking the changes in
the design are complex [178].

• Lack of authority
The software product manager has many responsibilities; however, he/she
often has no authority over the development team, which requires consent
from several players in the decision-making process [178].

• Lack of knowledge
Despite the importance of software product management, and the product
manager’s function, little education [64], [178] and knowledge [20] exist
in the area of SPM. According to [20], [64], not even a reference body
of knowledge, such as PMBOK [139] and SWEBOK [1] exists for SPM.
Therefore, for a product manager to learn the necessary skills and functions
of the role, they need to learn ’on-the-job’ [20].

• Overscoping
The difference between release planning and scoping can in general be de-
scribed as, release planning prioritizes features to releases while scoping
identifies and categorizes features [176]. That is, scoping identifies individ-
ual products and assign features to the products [164], which means creating
the product portfolio [163] without taking resources, capacities, or techno-
logical constraints into consideration [176]. While release planning priori-
tizes the features and assign them to releases. The scoping process is a chal-
lenge in SPM due to the continuous flow of requirements. The challenge lies
in the changes to the scope that happens throughout the entire requirements
engineering process, including both scope inclusions and exclusions [182].
One of the main causes for overscoping is an unclear vision of the overall
goal [27].

1.2 Market-Driven Requirements Engineering
This section offers an introduction to requirements engineering (RE) and then
moves on to introduce market-driven requirements engineering (MDRE) where
some of the differences between customer-specific RE and MDRE are presented.
In addition, challenges faced in MDRE are presented.

Requirements Engineering

Traditionally, RE takes place in the beginning of every project, and results in a
specification that defines the product to be developed. This view is based on the
waterfall model [150], where requirements engineering is followed by design, im-
plementation, testing, and maintenance activities. However, this cascade process
may not be the most appropriate in practice, since the flexible nature of software
requires the development process to be more iterative and evolutionary. New and

8 INTRODUCTION

changed requirements appearing during development calls for continuous RE ef-
forts.

There are many definitions of RE in literature, for example, Sommerville [170]
describes RE as an process of understanding and defining required services for the
system, and identifying possible constraints of the system’s operation and develop-
ment. On the other hand, Kotonya and Sommerville [112] compares RE to system
analysis, which is mainly concerned with analyzing and specifying business sys-
tems. However, while system analysis is mainly focused on the business aspects,
RE is often concerned with both business and system concerns for the system to be
developed. The importance of RE is stressed by Aurum and Wohlin [12] as one of
the most crucial stages in software design and development when the critical prob-
lem of designing the right software product for the customer is tackled. Aurum
and Wohlin [12] describe that RE is concerned with the identification of goals for
a proposed system, and the operation and conversion of these goals into services
and constraints.

Requirements engineering can be described as a process that involves activities
that are required to gather (eliciting), create (specifying), and maintain a software
product’s requirements specification. In literature, several different RE processes
and activities are proposed ([23], [112], [120], [122], [127], [129], [170], [171]).
Moreover, the proposed RE process models have different structures: linear, linear
with iterations between activities, and iterative.

RE processes are often depicted with a linear, incremental model where com-
mon RE activities, such as elicitation, analysis, and specification are combined
under different headings, nevertheless they still follow a similar linear transition.
Kotonya and Sommerville [112] suggest a linear RE process model that indicates
iterations between the activities, which is illustrated in Figure 4. According to
Kotonya and Sommerville [112], the activities in the model overlap and are often
performed iteratively.

Requirements
elicitation

Requirements
analysis and
negotiation

Requirements
documentation

Requirements
validation

Requirements
document

System
specification

Agreed
requirements

User needs
domain

information,
existing system

information,
regulations,

standards, etc.

Figure 4: Kotonya and Sommerville [112] RE process model

1 Background and Related Work 9

Macaulay [122] presents a pure linear RE process model (see Figure 5). The
model does not indicate overlapping or iterations of activities as suggested by
Kotonya and Sommerville [112].

Concept Problem
analysis

Feasibility and
choice of options

Analysis and
modeling

Requirements
documentation

Figure 5: Macaulay [122] RE process model

The third RE process model structure, iterative, is suggested by Loucopoulos
and Karakostas [120]. Their model depicts the RE process as iterative and cycli-
cal, which is illustrated in Figure 6. The model shows interactions between elicita-
tion, specification, validation, user, and the problem domain. Although Loucopou-
los and Karakostas [120] model includes similar activities as Kotonya and Som-
merville [112], and Macaulay [122], the order in which they occur is non-linear.

User

Problem
domain

Domain
Knowledge

User
requirements

Requirements
specification

User Feedback

Models to be
validated by user

Elicitation Specification Validation

Knowledge

Request more
knowledge

Validation
results

Requirements
Models

Domain
Knowledge

Figure 6: Loucopoulos and Karakostas [120] RE process model

Sommerville [170] defines the RE process in four main activities, which is il-
lustrated in Figure 7. The feasibility study is performed before the requirements
elicitation starts, and the activities are performed iteratively in order to handle
changing requirements. In addition, requirements management is performed con-
tinually throughout the product lifecycle to understand and control requirements
changes. Each of the activities is described in more details below.

10 INTRODUCTION

Requirements
elicitation and

analysis

Requirements
specification

Requirements
validation

Feasibility
study

User and system
requirements

Requirements
document

System
models

Feasibility
report

Figure 7: Sommerville [170] RE process model

Feasibility study is performed to decide weather or not it is worth carrying on
with the development. The system should contribute to the overall objectives of
the organization and be possible to implement with the current technology and
within the given cost and schedule constraints.

Requirements elicitation and analysis starts with gaining application domain un-
derstanding and then moves on to gathering (eliciting) requirements from different
sources. The main sources of information are usually the stakeholders of a prod-
uct. The term stakeholder is comprised of any person or group who will be affected
by the system, directly or indirectly, e.g., customers, end-users, engineers produc-
ing and managing the product, business managers, and third party bodies such as
regulators. Within the elicitation area there are many elicitation techniques, for
example (see Lauesen [115] for more techniques and detailed descriptions):

• Interviewing is the most effective and commonly used elicitation technique
for gathering requirements [55]. Interviewing is a good elicitation technique
for gathering knowledge about the present work and problems in the domain
[115]. Although interviewing may not be a good option for identifying goals
and critical issues, other information, such as opinions about what is realistic
and where potential conflicts may lie, could be elicited.

• Observation can be a good way of gathering how things are done instead
of asking stakeholders what is done and how. Moreover, the context and
environment in which the stakeholder works may be of importance. Ob-

1 Background and Related Work 11

servation vastly improves the knowledge of current work and associated
problems [115]. However, critical issues and tasks may not be captured
by observations.

• Brainstorming can also be valuable for elicitation of requirements. Brain-
storming sessions gather a group of people to let people come up with ideas
where a facilitator takes notes of all ideas. An important rule of brainstorm-
ing is not to criticize any idea [115]. The focus of a brainstorming session
should be on goals and requirements for the new product to be developed.
Other similar group elicitation techniques include group interviews and joint
application design.

Next, the requirements are classified, and conflicting views among stakehold-
ers are resolved as some requirements are more important than others. In addition,
different stakeholders have different power over the decisions being made [48],
[112]. Another activity here is usually prioritization of requirements to ultimately
decide which requirements should be included in the requirements specification.
For an overview of prioritization techniques, see [12], [22].

Requirements specification involves documenting the elicited functional and non-
functional requirements in detail (see Section 1.4 for requirements classification).
Requirements can be documented in several forms, e.g., use-cases, requirements
modeling [123], and formal specifications [137], but specification in natural lan-
guage is most common. Moreover, the specification may include purpose and
scope of the product, user characteristics, and development constraints.

Requirements validation is in the final stage of RE and involves validating the re-
quirements, i.e., check the requirements to certify that they represents the descrip-
tion of the system which the customer wants. Moreover, requirements validation
involves finding problems with the requirements. Requirements validation can be
performed with different techniques, for example:

• Reviews and inspections can be used to identify defects in the requirements,
assure traceability, and improve quality.

• Checklists can be used to assure that everything is there, check the struc-
ture of the requirements specification, and to identify missing parts and/or
inconsistencies [115].

Requirements Management is an ongoing process lasting the entire development
lifecycle, and is the process of managing changes to a system’s requirements. Dur-
ing the development of software systems, requirements change. One reason is
that stakeholders’ understanding of the system and what it should do constantly

12 INTRODUCTION

changes. Furthermore, new requirements inevitably emerge and need to be ana-
lyzed, and decisions whether or not a change should be accepted must be made.

Requirements management is the process of understanding, reviewing, ana-
lyzing, controlling, and communicating to all stakeholders changes to a system’s
requirements. A part of the management process is keeping track of individual
requirements and maintain links between dependent requirements.

Market-Driven Requirements Engineering

A software product can be developed by two different approaches depending on
the type of market, customer-specific (also called bespoke or contract-driven) or
market-driven development (also called packaged software or commercial off-the-
shelf).

In customer-specific development, the product is ordered by a specific cus-
tomer and the supplier develops and maintains the product for that customer. A
requirements specification and a contract are negotiated to specify what the sup-
plier shall deliver. The customer-specific requirements engineering process, thus
covers the four activities of requirements engineering proposed by [170].

In market-driven development, the software product is developed for an open
market instead of a single customer. The market-driven requirements engineering
process consists of the same four activities as in Figure 7. In addition, the MDRE
process consists of specific activities such as release management and market anal-
ysis [142]. Moreover, MDRE is often under the pressure of competitors’ products
and the evolvement of the market and product [142]. The characteristics of market-
driven development are described in [121], [138], [160].

Market-driven requirements engineering is in many ways similar to customer-
specific RE. Although many practices and necessary skills are the same, there
are several crucial differences between customer-specific RE and MDRE which
need to be recognized to fully understand the challenges faced in a market-driven
environment. According to [160], there are differences of such kind that theses
need to be made explicit. However, there is no clear distinction between market-
driven and customer-specific development, for example, it is not unusual for a
supplier to provide products to an open market and at the same time customizing
their product for specific customers wanting to pay for tailoring of the products.
The major differences include the characteristics of stakeholders [159], release
planning and managing the constant flow of new requirements [37], [138].

The main distinguishing feature that separates MDRE from customer-specific
RE is that there is no customer, but rather a market(s) consisting of any number of
customers, which influences other aspects of MDRE such as elicitation and anal-
ysis. Eliciting requirements from the market (potential users, an imagined group
of people who may fit the profile of the products users) is another major differ-
ence between MDRE and customer-specific RE [138], [161]. The elicitation of
requirements is mainly managed through marketing, users groups, and trade pub-

1 Background and Related Work 13

Table 1: Examples of stakeholders that generate requirements [141]

External Stakeholders Internal Stakeholders
Competitors Accessories
Consumers of different segments Customer Services
Content providers Market research
Legislation authorities Marketing & customer relations
Operators Platform development (SW+HW)
Retailers Product, application & content planning
Service providers Product development (SW+HW)
Share holders Product management
Standardization bodies Sourcing, supply & manufacturing
Subcontractors & component providers Technology research & development

Usability engineering

lication reviews [37]. However, certain entities within the market can be identified,
for example, key-customers may have the possibility to put forward requirements
directly to the developing organization due to their importance. Table 1 provides
examples of stakeholders that generates requirements, where some stakeholders
may be counted in millions (e.g., consumers), while others may be counted in
hundreds. Figure 8 gives a simplified overview of different types of requirements
and their relations.

Many requirements are invented by the developers [138], e.g., based on prod-
uct vision, to add new and unique features to a product. The developing organi-
zation is the main stakeholder, and hence decides which requirements should be
included in the product. However, in order to keep, or increase market shares, the
requirements that most customers want need to be selected, which puts an empha-
sis of marketing in the market-driven development environment [57].

The characteristics of MDRE include, e.g., that the mass market product often
has a lifecycle with several consecutive releases and it lasts a long as there is a
market for it. Therefore, release planning is a major determinant of the success
of a product [34]. Within market-driven development, time-to-market is an im-
portant attribute [161]. If the product is not released to the market at the right
time, there is a risk of losing market shares and customers to competitors. Re-
lease planning can be described as selecting an optimal subset of requirements
for the next releases that maximizes customer value taking into account available
resources [34]. Due to the constant flow of new requirements from both internal
and external sources in market-driven development, decisions of which require-
ments that should be implemented, and which are not vital for the coming release
needs to be made [140]. Having accurate estimates of implementation cost and re-

14 INTRODUCTION

126 B. Regnell, R.B. Svensson, and K. Wnuk

requirements are mainly generated by operators submitting specifications with thou-
sands of requirements that require statements of compliance. The total volume of
market requirements at Sony Ericsson exceeds 10000 as well as the total volume of
platform system requirements. In order to make scoping feasible, platform system
requirements are bundled into hundreds of features that represent the smallest units
that can be scoped in or out. In order to support product development the platform
capabilities are organised into configuration packages that improve over time as more
and more features are implemented for each new version of a platform. Products are
configured through assemblies of configuration packages according to the rules of
how they can be combined based on their interdependencies. All categories of re-
quirements are expressed in natural language text and include a set of attributes ac-
cording to a requirements data model for a requirements data base implemented in a
commercial requirements engineering tool. Based on our experience with the com-
plexity of this VLSRE case we bring forward three key research opportunities in the
next section.

MR Market Requirement
PSR Platform System Req
P Product
SR Supplier Requirement
Cv Component version
Pv Platform version
CP Configuration Package
F Feature

Market Requirements
~10000

MR1

Platform System Requirements ~10000
Features ~100
Configuration Packages ~100

PSR1

PSR2

PSR3

Products ~100

F1

Platform
Versions ~10

Supplier
Requirements ~1000

SR1

SR2

SR3

Cv1

Cv2

Pv3

CP1

CP2MR2

P1

P2

P3MR3MR4 CP3

Pv1

Pv2

Component
Versions ~100

F2

F3

MR Market Requirement
PSR Platform System Req
P Product
SR Supplier Requirement
Cv Component version
Pv Platform version
CP Configuration Package
F Feature

Market Requirements
~10000

MR1

Platform System Requirements ~10000
Features ~100
Configuration Packages ~100

PSR1

PSR2

PSR3

Products ~100

F1

Platform
Versions ~10

Supplier
Requirements ~1000

SR1

SR2

SR3

Cv1

Cv2

Pv3

CP1

CP2MR2

P1

P2

P3MR3MR4 CP3

Pv1

Pv2

Component
Versions ~100

F2

F3

Fig. 1. Orders of magnitude in different artifacts of a specific VLSRE case

4 Three Key Research Opportunities in VLSRE

Based on our experience from working several years in the previously described
VLSRE context, we have chosen to highlight three areas where we believe RE re-
search can and should contribute:

• Sustainable requirements architectures: Fighting information overload. With
the term requirements architecture we mean the underlying structure by which the

Figure 8: Orders of magnitude in different artifacts of a specific VLSRE case
[141]

sources is directly related to the ability to perform requirements prioritization and
release planning [144]. Regarding estimation techniques, several methods such as
algorithmic models [28], estimation by analogy [167], and COCOMO II [28] have
been introduced in literature. However, the use of expert judgment is the domi-
nant estimation method employed in industry [93]. The objective of requirements
prioritization is to get input for requirements selection for subsequent release plan-
ning. Some examples of prioritization techniques are listed below. For a detailed
description of release planning and release planning methods, see Section 1.3.

• Planning Game is about ranking and grouping requirements on an ordinal
scale [17]. Usually based on the criteria value, cost, and risk.

• Pair-wise comparisons, as suggested by [99], is based on the Analytical Hi-
erarchy Process [157]. In this technique, pairs of requirements are compared
according to their importance, and an understanding of each requirements
share of the total value is provided.

• Numeral Assignment is the most traditional and common prioritization tech-
nique [22], [117]. Numerical assignment is based on grouping requirements
into different categories, where three groups are common in practice [171].

1 Background and Related Work 15

Table 2: Overview of customer-specific RE vs. MDRE [142]

Customer-specific RE MDRE
Initiation RE process is initiated and

terminated based on a devel-
opment project

RE process is continuous,
projects are initiated as
needed

Objective Fulfillment of a contract and
compliance to the require-
ments specification

Deliver the right product at
the right time

Success Customer satisfaction and
user acceptance

Determined by sales, market
share, and product reviews

Life cycle First development, then
maintenance. Often one
major release

Long series of releases and
the product is undergoing
continuous evolution

Domain knowl-
edge

Supplier and customer can
cooperate to ensure that the
domain is understood

Supplier has to be domain
experts, or having internal
experts

Elicitation Collects information from
one customer

Innovation of new require-
ments and market analysis

Specification More formal Less formal
Negotiation Negotiation and conflict res-

olution
Focused on prioritization,
cost estimation, and release
planning

Validation Continuously through the
contract

Delayed until late stage in
the development

However, using categories like high, medium, and low may confuse the
stakeholders, e.g., high and medium may mean different things for differ-
ent stakeholders [179].

Distinguishing Features of Market-Driven Requirements Engineering

To get an overview, the main distinguishing features of MDRE in comparison to
customer-specific RE is illustrated in Table 2, which is based on [142].

Market-Driven Requirements Engineering - Challenges

Several challenges in relation to MDRE have been identified in literature ([35],
[36], [78], [82], [105], [117], [138], [144]). A selection of the identified challenges
are discussed below.

16 INTRODUCTION

• Communication gap between marketing and development
Communication between different parts of the organization, especially be-
tween marketing and development is seen as a challenge in MDRE [105].
Both marketing and development are substantial requirement sources in them-
selves; however, their views of specifying requirements differ. While mar-
keting’s view of specifying requirements is to write down future ideas of
functionality, development expects clear and detailed requirements. More-
over, it is important to provide the sales department with sufficient informa-
tion before the sales staff promise certain functionality to customers.

• Requirements interdependencies
Requirements interdependencies (a.k.a. dependencies) are usually used for
bundling related requirements that need to be implemented together [105],
[35], which influences requirements selection and release planning. Another
challenge related to requirements interdependencies is duplicated require-
ments, i.e., the same requirements comes up several times, but in differ-
ent shapes [105]. According to [36], the most important interdependencies
types to identify in MDRE are value related, e.g., one requirement affects the
value of a second requirements for a customer, and when one requirement
affects the cost of implementing another requirement.

• Constant flow of new requirements
In market-driven product development, a constant flow of new requirements
must be dealt with [105]. Moreover, the flow of requirements is not limited
to, e.g., one project, but rather continuos in nature [78]. It is important to
gather all new and potentially valuable requirements, which are generally
generated by multiple sources, both internal (e.g., engineers) and external
(e.g., customers) [78], [138]. The large amount of requirements may be
a potential threat (requirements overload [82]), hence, efficient means to
manage the constant flow of requirements is important.

• Inventing requirements
Requirements can either be invented by the developing organization or based
on actual customer (the market) needs/requests. The trade-off between an
organization’s own innovated requirements and requirements suggested by
the customer is a challenge [105], and may have consequences. For exam-
ple, in [105], the results show that a risk for a newly started technology-
focused company is that the focus is on having some new technology and
that there is no need to think of the customers. The consequences may be
that the customers are unsatisfied, hence the company may not sell any prod-
ucts. On the other hand, only considering the customers’ needs/wants may
lead to missing innovations that could potentially generate great value in the
future.

1 Background and Related Work 17

• Requirements Prioritization
Another challenge in MDRE is related to requirements prioritization [35],
[117], [144], especially when information form different market segments
needs to be collected, combined, synthesized, and trade-offs between their
priorities should be made [35], [144]. Moreover, only a limited number of
requirements can be implemented in one product, but the product should;
however, meet customers’ expectations and reach the markets in time [117].

• Release planning
Estimation and prioritization activities are pre-requisites for release plan-
ning taking time-to-market into account. Release planning requires consid-
eration of may different aspects, such as customer and user value, develop-
ment cost, and marketing positioning. Furthermore, even more aspects need
to be considered for embedded systems, e.g., component size and availabil-
ity [105]. For a more detailed description of challenges in release planning,
see Section 1.3.

1.3 Release Planning
In software engineering, humans make decisions based on both explicitly and im-
plicitly known objects and constraints. Any computational technique, in isolation,
is unlikely to provide meaningful results since only a small part of the reality
can be captured in these techniques [128]. Humans, such as domain and solu-
tion experts, are more likely to address hidden factors that are part of the human
decision-making [128].

Release planning, which is both a cognitively and computationally difficult
problem [128], is classified as a wicked problem [34] since different kinds of un-
certainties make it difficult to formulate and solve the problem. Moreover, the
objective of release planning is to ”maximize the benefit”; however, the difficulty
lies in how to give a measurable definition of ”benefit” [158].

Before the release planning process starts, a product roadmap can be used
to document and communicate the plans for future releases [111]. Regnell and
Brinkkemper [142] define a roadmap as a document that provides a layout of the
product release to come over a time frame of three to five years. There are many
types of roadmaps described in the literature [162], and the one used in release
planning is the Product-Technology Roadmaps, where the purpose is to map and
align efforts towards a common goal. A roadmap should communicate several as-
pects such as themes of a certain release (e.g. improving quality, performance),
goals, and milestones (for releases). Roadmaps can be seen as a concentration of
the strategies for certain software product that depicting the long-term plans. Not
only should the product strategies reflect current market and customer priorities,
but also the goals that are set for a certain software product. The release planning
process of selecting requirements for a certain release should be performed within
the defined strategies of the product [12], [78].

18 INTRODUCTION

In incremental software development, one key question is to decide which fea-
tures can be offered in which release. These decisions depend on customer needs,
technological constraints, and the resources and time frame available to imple-
menting the features [5], [151]. In addition, these decisions are dynamic in nature
as the features are under continuous change [172]. The process of selecting an
optimum subset of features to be delivered in a release where given constraints is
considered, is called strategic release planning [4], [153].

Release planning is the process of planning for the next release of an evolv-
ing product [151], applying various types of upstream decision-making (deci-
sions that are made before the requirements are settled and the implementation
phase starts [181]) that combine market considerations with implementation con-
cerns [143]. Release planning involves activities such as selecting what features
and requirements should be in a certain release, when it should be released, and at
what cost [176].

Software release planning is conducted at two levels, strategic and operational
[6]. It is important to have a good release plan on both the strategic, as well as the
operational level [133]. Not having a good release planning process may cause late
delivery, unsatisfied customers, budget overruns, and decreasing competitiveness
[5]. Hence, release planning is a major determinant of the success of a product.

In strategic release planning, managers decide what features to implement in
which release to meet technical and resource constraints to achieve maximum
customer satisfaction. Operational release planning takes place after the strate-
gic release planning process with the focus of deciding the allocation of devel-
opers to tasks to develop the selected features. In addition to these two levels,
Al-Emran et al. adds a third level, performing dynamic re-planning on the op-
erational level, which involves decision-making about re-allocation of developers
due to, e.g., resource changes, changed requirements, and wrong assumptions of
features value [5].

The release planning process should be continued as long as the software prod-
uct evolves. Figure 9 (which is adapted from [151]) illustrates the release planning
process (at strategic level) as part of an ongoing product evolution. In Figure 9,
the planning is conducted for the next three releases for a certain product.

Features (an abstraction from requirements) are input to the release planning
process and needs to be prioritized. Requirements prioritization is the process of
assigning a priority to the features, which may be done by multiple stakeholders
that need to consider multiple criteria [151]. Requirements prioritization is de-
scribed in the following section.

Requirements Prioritization

A product’s quality is often determined by the ability to satisfy the needs of the
customers/users [24], [165]. All stakeholders and their requirements need to be
identified, as well as their conflicting preferences and expectations [101]. When

1 Background and Related Work 19

Product release k

Product release k+1

Product release k+2

Release period k+1

Release period k+2

Fe
at

ur
e

re
po

si
to

ry

Re
lea

se
 p

er
iod

 k

Figure 9: Release planning of selecting features to releases [151]

developing a software product for an open market, it is not possible to involve
all stakeholders to prioritize requirements. Conflicting priorities between stake-
holders are an issue that is addressed by many software product managers [22].
In these situations, it is important to handle different stakeholders in a structured
way. Regnell et al. suggest adjusting each stakeholder’s influence by prioritizing
different aspects. Which aspects depend on the strategy that is most suitable in the
current market segment [144].

In most software product development, there are more candidate requirements
than are possible to implement within the time and budget constrains [21]. Hence,
the objective of requirements prioritization is to select and implement a sub-set of
these requirements based on effort and value estimates, and still meet the stake-
holders needs and to satisfy the customers [102]. Moreover, other issues to con-
sider during the requirements prioritization are, importance to users and customers
and implementation order [118]. In addition, requirements interdependencies and
the product’s scope should also be taken into account. Moreover, requirements are
often specified at different levels of abstraction [78], and deciding on what level
of abstraction should be used can be difficult. In small-scale or even in medium-
scale requirements engineering [141], it may be possible to prioritize requirements
on a low level of abstraction. However, in very large-scale requirements engi-
neering [141], there are often too many requirements to prioritize. Regnell et al.
suggest grouping the requirements to make the prioritization easier [144].

Dependencies have a large impact on requirements prioritization, which makes
the requirements prioritization process even more complex when including qual-

20 INTRODUCTION

ity requirements. The increased complexity of prioritizing quality requirements is
related to difficulties to trace quality requirements since they tend to have a global
impact on the whole system, and an extensive network of interdependencies be-
tween them [45]. In addition, quality requirements can be in conflict with each
other, therefore, trade-offs need to be made.

Although there are several prioritization techniques introduced in the litera-
ture, requirements prioritization in industry is often performed informally [117].
A selection of requirements prioritization techniques are summarized in Table 3.
For a more detailed description of requirements prioritization techniques, see [22].
Karlsson et al. evaluated different methods for prioritizing software requirements
involving pair-wise comparisons [103]. The study concluded that the Analytical
Hierarchical Process (AHP) [157] is superior but also time-consuming. In addi-
tion, AHP assumes that requirements are independent, even though that is seldom
the case [145]. Karlsson [99] suggested using a cost-value approach based on the
AHP. This approach supports trade-off analysis, but is mainly used for functional
requirements. However, quality requirements can be included as objects of priori-
tization in AHP.

Release Planning Methods

There are several release planning methods in the literature, varying from informal
approaches such as planning games in agile development [49] to more rigorous
and formal methods as described in [13], [79], [104] [154], [158]. A selection of
release planning methods is presented below. For more details regarding release
planning methods, see e.g., [91], [151], [173].

Svahnberg et al. identified 24 methods for strategic release planning, where 10
methods are extensions of others, thus 14 original methods were identified [173].
Of the 24 identified methods, 16 are related to the EVOLVE-family (EVOLVE
[79], EVOLVE+ [152], EVOLVE* [154], Evolutionary EVOLVE+ [128], S-EVO-
LVE* [158], EVOLVEext [153], and F-EVOLVE* [124]). The EVOLVE family
is illustrated in Figure 10.

EVOLVE
EVOLVE+

EVOLVE*

Evolutionary
EVOLVE

EVOLVEext
F-EVOLVE*

S-EVOLVE*

Figure 10: The EVOLVE-family [173]

1 Background and Related Work 21

Table 3: A selection of requirements prioritization techniques

Technique Description
Planning
game [17]

Grouping requirements on an ordinal scale using the crite-
ria value, cost and risk

Cumulative voting
[116]

Based on assigning fictional money to requirements. When
the money has been distributed, the requirements are
ranked on a ratio scale

Numerical As-
signment [99]

Based on grouping requirements into different categories,
where three groups are common in practice. The result is
presented on an ordinal scale

pair-wise compar-
isons [103]

A technique where all pairs of requirements are compared
using the criteria cost and value. Based on the Analytical
Hierarchical Process (AHP) [157] and the result is on a ra-
tio scale

Cost-value ap-
proach [102]

A prioritization technique based on AHP that uses a
two-dimension graph that displays the requirements value
against its cost

Quality Function
Deployment [100]

Is a comprehensive, customer and user oriented approach.
The QFD process starts by organizing the project, includ-
ing the formation of a cross- functional team, followed by
the establishment of relationships among requirements and
then prioritization

22 INTRODUCTION

EVOLVE [79] is an evolutionary and iterative method that looks ahead for more
than one release. The method balances stakeholders’ conflicting opinions to achieve
the highest degree of satisfaction with the available resources. EVOVLE generates
more than one alternative for a release where each alternative represents a trade-off
between stakeholder expectations and the total benefit.

EVOLVE* [154] is a hybrid intelligent framework with the objective to create
synergy between computational intelligence and the knowledge and experience of
human experts. The method generates an optimal feature assignment to different
releases that maximizes stakeholder satisfaction by balancing the trade-offs be-
tween release time, effort and value.

Software product release planning through optimization and what-if analy-
sis [3] is a method that applies mathematical programming to provide a solution
for the next release problem. The method’s main planning criterion is projected
revenue of the features, and different types of dependencies, such as implication
and exclusion, are taken into account. The method emphasize on different scenar-
ios that are related to number of teams needed to implement the feature.

Combining optimized value and cost with requirements interdependencies
[34] selects requirements based on the trade-off between a requirement’s cost and
value, while considering the requirement’s interdependencies.

Optimizing value and cost [94] is a cost-value requirements analysis method that
uses mathematical programming, which is an improvement of the cost-value ap-
proach by [102] that uses AHP. Optimizing value and cost applies a rigorous algo-
rithm to balance the cost and value of the requirements to decide which require-
ments should be included in the next release.

The REPEAT (Requirements Engineering Process at Telelogic) process [35] is
based on fixed release dates and intervals, which allows the requirements to be
allocated to lists with a ”must” part and a ”wish” part. For further elaboration of
the REPEAT, see [140].

The incremental funding method [58] aims at delivering functionality in chunks
of customer-value. The method uses a single value function, namely Net Present
Value to determine how the next release of selected features affects the potential
income for the software development organization. This method is focused on the
maximization of the overall financial value.

An approach using integer linear programming [2] is based on the assump-
tion that the best release is the one that provides the maximum projected revenue
compared to available resources in a given period of time. The approach takes

1 Background and Related Work 23

candidate requirements, estimated revenue for each requirement, and available re-
sources as input. Moreover, requirements dependencies are taken into account.

In Saliu and Ruhe [158], seven different release planning methods using algo-
rithms are compared and evaluated. The evaluated methods are: estimation-based
management framework for enhancive maintenance, incremental funding method,
cost-value approach for prioritizing requirements, optimizing value and cost in re-
quirements analysis, the next release problem, planning software evolution with
risk management, and EVOLVE*. The main difference between the methods is in
how many properties that are considered. In addition, three main deficits in the
evaluated methods were discovered: (1) no major focus on system constraints, (2)
not enough decision support tools that are fully developed (except for Release-
Planner, which is a tool based on the overall architecture of EVOLVE*), and (3)
largely focused on ”fixed release intervals”.

Release Planning - Challenges

Several challenges in relation to release planning have been identified in literature
(e.g., [15], [91], [151], [155], [158]). A selection of the identified challenges are
presented below.

• Size and uncertain information
Release planning is a very complex and challenging problem due to its size
in terms of, number of involved stakeholders, the variety of variables that
need to be considered, competing objectives and different types of con-
straints, and the uncertainty of the information it is relying upon [151],
[158]. In addition, a proper understanding of the planning objectives and
the important stakeholders’ feature preferences is needed [155].

• Prioritization
A review [91] of existing literature identified prioritization as one of the
main challenges in release planning. To determine priorities of requirements
has proved to be difficult, and coping with multiple aspects, such as impor-
tance, cost, time, and risk, has turned out to be difficult in practice [91]. One
issue faced by decision-makers is, which aspect is important when prioritiz-
ing requirements. Moreover, the number of aspects affecting a requirement’s
priority seem to expand in software product companies compared to com-
panies in project business [117]. Furthermore, to be able to collect ”real”
information on the important aspects has been difficult [118].

• Requirements interdependencies
Another release planning challenge found in [91] is requirements interde-
pendencies, which tend to grow in time. The complexity of requirements
interdependencies is even more difficult and dramatic when products are

24 INTRODUCTION

introduced to new markets or customer segments [92]. The reason is that
customers from different geographical locations, or from different market
segments, often have different preferences of a product’s functionality [91].
In addition, customers at different locations often have different technolog-
ical maturity levels.

• Problem definitions and viewpoints
Changing problem definitions and viewpoints are challenges in the release
planning process [91]. For example, the criteria for what a successful solu-
tion is keep changing all the time. Reasons for these changes include, (1)
constant evolving technologies, which enable new possibilities, (2) changes
in regulations, and (3) competitors, or other market changes, force the soft-
ware product company to change its focus [91]. Under these circumstances,
it is important to react quickly and efficiently in order to exploit the opportu-
nities of new technologies, which is a driving factor for a software product’s
success [151].

1.4 Quality Requirements

Similar to RE, there are several definitions of the term ”requirement” in the lit-
erature. A general definition of the term requirement is given by Singer [169]:
a requirement is a portrait of a user’s needs. The definition by Singer [169] ex-
cludes all stakeholders except the users; however, the definition includes that re-
quirements can both be explicit as well as implicit (aka tacit requirements [115]).
Explicit requirements are requirements that stakeholders can express, while im-
plicit requirements are requirements that stakeholders may not know they need, or
requirements that are obvious to stakeholders so they take them for granted.

Requirements engineering should focus on what is needed, and leave the how
for the designers. This is reflected in the definition of the term requirement by
Davis [56]: a user need or a necessary feature, function or attribute of a system
that can be sensed from a position external to that system. Kotonya and Som-
merville [112] have a similar definition of what requirements are, defining what
the system is required to do, and the circumstances under which it is required to
operate.

Distinctions between different requirements are found in the literature. The
classification of requirements is discussed below.

Classification of Requirements

In the literature (e.g., [112], [113]), different types of requirements are discussed,
and often classified as functional or non-functional requirements. However, in a
study by Olsson et al. [130], 14% of all requirements in a requirements speci-
fication from a case study were classified as both functional and non-functional
requirements. That is, when non-functional requirements and functional aspects

1 Background and Related Work 25

are combined and intermingled in the same requirement. These non-functional re-
quirements, including requirements that are a combination of functional and non-
functional requirements, are subsequently called quality requirements (QR).

The definition of the term functional requirement (FR) has broad consensus
in the literature. Functional requirements are characterized by the focus of what
is needed, e.g., ”what the product must do” [146], and ”what the system must
do” [170]. However, there is no consensus about how to define the term quality
requirement. There are several definitions of QR in the literature, for example,
Glinz [73] compiled a list of 13 selected definitions of QR. Table 4 provides an
overview of a selection of QR definitions which includes a subset of the definitions
in [73]. For a more detailed discussion about definitions and classifications of QR,
see to [40].

In the literature, quality requirements have been categorized based on differ-
ent characteristics. However, there is no formal definition, nor a complete list of
quality requirements [41]. Neither is there a universal classification of quality re-
quirements characteristics, and different people use different terminologies [41].
In 1976, Boehm et al. [29] presented a tree of software quality characteristics.
Fulfilling the parent quality characteristics in the quality tree, implies that the
child quality characteristics are also fulfilled. Examples of parent quality require-
ments are reliability, modifiability, and human engineering. Later on, in 1985,
Roman [149] classified quality requirements into several classes such as perfor-
mance constraints, lifecycle constrains, and economic constrains. Each class of
quality requirements had several subclasses. Another classification divides qual-
ity requirements into three general groups: organizational, product, and external
requirements [170]. An example of organizational requirements is delivery re-
quirements, while legislative requirements belongs to the external group. For fur-
ther elaboration of classifications of quality requirements, see [41]. In addition
to the classifications of quality requirements, several standards have been pub-
lished, such as the ISO/IEC 9126 [88], McCall and Matsumoto [125], and IEEE
830 [10]. In this thesis, the ISO/IEC 9126 standard has been used. The ISO/IEC
9126 standard defines a quality model that comprises of six characteristics and 27
sub-characteristics (see Table 5). Standards for quality requirements are described
in [115] and [175].

According to [73], the problems with QR lies in their definition, classifica-
tion, and representation. Glinz [73] propose a faceted classification (see Figure
11), which separates the concepts of kind, representation, satisfaction, and role, to
overcome the classification and definition problems of QR. In the faceted classifi-
cation [73], requirements are divided into four concerns, functional requirements,
performance requirements, specific quality requirements, and constraints. The
reason that performance requirements are a concern of its own is that performance
requirements are typically treated separately in practice [73].

26 INTRODUCTION

Table 4: Definitions of quality requirements

Source Definition
Wiegers [179] A description of a property or characteristic that a software

system must exhibit or a constraint that it must respect, other
than an observable system behavior

Lauesen [115] Quality requirements specify how well the system performs
its intended functions

Mylopoulus et
al. [126]

”... global requirements on its development or operational
cost, performance, reliability, maintainability, portability, ro-
bustness, and the like. (...) There is not a formal definition or
a complete list of nonfunctional requirements.”

Pfleeger [136] Quality requirements put restrictions on the system. That is,
quality requirements or constraints describe a restriction on
the system that limits our choices for constructing a solution
to the problem

Jacobson et al.
[90]

A requirement that specifies system properties, such as envi-
ronmental and implementation constraints, performance, plat-
form dependencies, maintainability, extensibility, and relia-
bility. A requirement that specifies physical constraints on a
functional requirement.

Sommerville
[170]

Quality requirements are not directly concerned with the spe-
cific functions delivered by the system. They may relate to
emergent system properties such as reliability and response
time. Alternatively, they define constraints on the system such
as capabilities of I/O devices and the data representations used
in system interfaces

Davis [56] The required overall attributes of the system, including porta-
bility, reliability, efficiency, human engineering, testability,
understandability, and modifiability

Glinz [73] A non-functional requirement is an attribute of or a constraint
of a system

Thayer and
Dorfman [175]

In software engineering, a software requirement that describes
not what the software will do, but how the software will do it,
for example, software performance requirements

Kotonya
and Som-
merville [112]

Requirements which are not specifically concerned with the
functionality of a system. They place restrictions on the prod-
uct being developed and the development process, and they
specify external constraints that the product must meet

1 Background and Related Work 27

Table 5: Characteristics and subcharacteristics in ISO/IEC 9126

Characteristics subcharacteristics
Functionality Suitability, accuracy, interoperability, security, function-

ality compliance
Reliability Maturity, fault tolerance, recoverability, reliability com-

pliance
Usability Understandability, learnability, operability, attractiveness,

usability compliance
Efficiency Time behavior, resource utilization, efficiency compli-

ance
Maintainability Analyzability, changeability, stability, testability, main-

tainability compliance
Portability Adaptability, installability, replaceability, coexistence,

portability compliance

Requirement

Representation
Operational
Quantitative
Qualitative
Declarative

Kind
Function
Data
Performance
Specific Quality
Constraint

Role
Prescriptive
Normative
Assumptive

Satisfaction
Hard
Soft

Figure 11: A faceted classificaton [73]

Importance of Quality Requirements

The body of research that currently exists in the RE and SE arena is focused on
the notions and techniques for FR, even though the functionality is not useful or
usable without the necessary quality characteristics [40]. For software product to
be successful, it is not enough to fulfill the FR, for example, even if the software
product works, and all FR have been implemented, the product may be difficult to
use, or too costly to maintain [62]. Moreover, when it comes to customer satisfac-
tion, end-customers are often dissatisfied with software quality [95]. Not dealing,
or ineffectively dealing with QR may lead to more expensive software and longer-

28 INTRODUCTION

time-to-market [54], or in worst case, failures in software development [32], [68].
For example, In 1992, the London Ambulance Service made newspaper headlines
after their implementation of a Computer-Aided Dispatch System broke down,
which lead to information system failure [69]. Two key issues were identified for
the failure, lack of robustness and poor performance [68]. This is an example to
illustrate the potential size, cost and extent of the impact of unsuccessful manage-
ment of QR. It only takes a small system to crash, or not perform to the required
standard of quality to trigger a whole network of interrelated systems to experi-
ence failure. In addition, studies (e.g., [33], [53]) have showed cases where QR
are the most expensive and difficult aspects to handle, and according to Chung
et al., QR are often poorly understood in comparison to less critical aspects of
software development [41].

Another aspect of the importance of QR is illustrated in Figure 12. The gen-
eral trend in the embedded system industry is a tremendous shift from isolated
software product developers that compete, to a landscape with more complexity in
the relation between different players on the market. They both collaborate, and
compete at the same time and the most critical requirements in this situation are
often QR such as performance and reliability. The ability to develop a software
product that meets customers’ requirements, and offers high value to both the de-
velopment company and the customer, increases the likelihood of market success
substantially, thus QR can be seen as a key competitive advantage [9], [15].

Integrator 1 Integrator 2 Integrator 3Product
developer 1

Product
developer 2

Sub-
contractor 1

Sub-
contractor 1

Sub-
contractor 2

Sub-
contractor 2

Supplier 1
(UI components)

Supplier 2
(database

components)

Sub-
contractor 1

Sub-
contractor 2

Figure 12: General trend in the embedded system industry

A third aspect of why QR are important is dynamic interdependencies, i.e.,
quality requirements, which may influence most (if not all) parts of the function-
ality as well as other QR of the product [105]. In addition, QR interdependencies
may impact the order of development and the design of the product. Due to the
global nature of QR, they are hard to build into a design and are often treated post
facto in terms of metrics that are applied to the final product [66]. It is generally
agreed that decisions about what QR to state on a product have large effects on the
development project and the choice of architecture. This means that the area of QR
is important to understand in more detail and to understand which dependencies

1 Background and Related Work 29

there are between different QR. The ability of a software-intensive system to meet
a set of QR is to a large degree depending on the software architecture [38], and
the SA thus constraints the achievement of various QR [16]. Consequently, QR
are a driving force for architectural design [16]. Despite their importance, QR are
often discovered late in the development process in an ad-hoc fashion, which may
lead to problems such as architectural solutions failing to take into account critical
QR, and systems may fall short of meeting users’ real needs [46]. Therefore, one
of the most critical tasks for a software architect is to create a design that can meet
the QR that are vital to the success of the software product [70].

Difficult to Manage Quality Requirements

To be able to handle QR at all, quality requirements need to be gathered in the first
place, but the general opinion is that QR are difficult to capture. Borg et al. [30]
investigated the difficulties in managing QR at two development organizations,
the results showed that QR are discovered too late, if discovered at all. The next
problem with managing QR is the specification, QR are written with vague words,
for example, ”the system shall be easy to use”, which makes the requirement
impossible to test.

Another difficulty is the nature of QR. Chung et al. [41] identifies three aspects
of quality requirements, first, QR can be subjective, which means that the quality
requirement can be evaluated and interpreted differently. Some people may con-
sider the QR to be accomplished, while others do not. Second, quality require-
ments can be relative, meaning that some level of quality has been reached. For
example, the system may have slow response time, medium response time, or high
response time. Third, quality requirements can be interacting, by accomplishing
one quality requirement can have a positive or negative affect on other quality re-
quirements. For example, improved security may affect the usability in a negative
way.

Most of the attention in both RE and SE has been centered on notions and tech-
niques for defining and providing the functions of a product [40], [112], hence QR
are only treated as technical issues related to the design and testing of a software
product [40]. The reason most of the existing RE methods and approaches do not
adequately cover QR is because it is difficult to manage QR [112], for example,
certain QR are unknown at the requirements phase, that QR tend to conflict each
other, and difficulties in determining when QR are optimally met. Despite the
difficulties in managing QR, and lack of focus in the RE and SE arena, there are
several methods and approaches that address the treatment of QR. These methods
and approaches are presented below.

Managing Quality Requirements

There are several methods and techniques in the literature that address the handling
and managing of QR in various ways and areas. A selection of these methods are

30 INTRODUCTION

presented below.

Elicitation methods
Elicitation methods support stakeholders to reason about, identify, and negotiate
QR. These methods rely upon brainstorming or the use of checklists. A selection
of elicitation methods for QR is presented below.

• A method for eliciting, analyzing, and tracing QR using a language extended
lexicon is proposed in [54]. The method is based on the use of a lexicon that
will anchor FR and QR models, and drive QR elicitation. The method com-
prises of four major activities. First, a lexicon based on the Language Ex-
tended Lexicon is built. Second, the functional model is built. Third, build
the quality perspective, which adds the QR to the created lexicon. Fourth,
the functional and quality perspectives are integrated. The elicited QR are
then integrated into UML (Unified Modeling Language).

• An elicitation method where functional use cases are created, and then iden-
tify associated QR by the use of a checklist is proposed in [61]. The aim
of the method is to achieve a set of measurable and traceable QR. The main
features of the method include, a process for common treatment of high
level QR, quality models that capture experiences with QR, detailed elicita-
tion guidelines in terms of checklists and prioritization questionnaire, docu-
mentation guidelines, rationales to justify QR, and requirement management
support in terms of dependency analysis.

• A similar use case approach to [61] is proposed by Kaiya et al. [97]. How-
ever, Kaiya et al. use the goal-question-metric (GQM) model to explore
quality requirements and their interdependencies.

• Misuse-oriented quality requirements engineering (MOQRE) [131] is a met-
hod for eliciting and prioritizing QR. One outcome of MOQRE is a misuse
tree which shows the relationships between quality goals, misuses, counter-
measures, and business goals. The misuse tree helps in making dependen-
cies explicit, which can be exploited during the prioritization process.

Modeling and analysis methods
In addition to elicitation methods, several QR modeling and analysis techniques
are proposed in the literature.

Goal-Oriented methods focus on the actual software development process where
the software product’s goals are the focus. Thus, goal-oriented methods can be
seen as process-oriented approaches. Examples of goal-oriented methods includes:
The NFR framework [41], Kaos [114], and i* [186]. For a more detailed overview
of goal-oriented methods, see, e.g., [113].

1 Background and Related Work 31

The NFR Framework is one of the most comprehensive method for QR. The
method defines quality goals, potential implementation solutions, and interdepen-
dencies between QR. The important quality goals are decomposed by the use of the
softgoal interdependency graph (SIG) [41], [45] using AND and OR refinement. In
addition to the NFR framework, techniques such as Kaos and i* provide an envi-
ronment for the analysts to model QR and evaluate their constraints and tradeoffs.
Both Kaos and i* use a structured approach for brainstorming and documenting
QR; however, there is no guarantee that the important stakeholders’ concerns will
be included in the goal models. While the NFR Framework is a framework towards
satisfying goals, the Kaos method concentrates on goal satisfaction and building
complete requirements (including QR) models. In the Kaos method, goals are
identified and refined, and objects and actions are identified based on the refined
goals. The i* framework is applicable in requirements engineering as well as in
the business process modeling.

Evaluating QR of the software architecture. The ability of a software product
to meet a set of QR is depending on the software architecture (SA), thus the SA
constraints the achievement of various QR. In the literature, there are various SA
design methods, for example:

• Architecture Trade-off Analysis Method (ATAM) [108], the most well-known
and used method for architectural analysis [60], is developed to find trade-
offs among QR that affect each other at the architectural level. For example,
high performance may be in conflict with high flexibility since typically in-
corporating flexibility has the price of lower performance. ATAM identifies
high priority QR, which are business critical and develop a SA concept that
can support the QR.

• Cost-Benefit Analysis Method (CBAM) [11], [107] is built upon ATAM.
CBAM elicits scenarios expressing important QR and prioritize the scenar-
ios using a 100-point method, where the top 50% scenarios are analyzed
in more detail. Each scenario is estimated in terms of their worst-case to
best-case quality response level, and architectural strategies are developed.
Finally, cost and schedule estimations are performed for each architectural
strategy where the return-of-investment (ROI) is computed. The architec-
tural strategy with the highest ROI that can fit within the budget is selected
for implementation.

• Quality Attribute Workshop (QAW) [14] is similar to ATAM in terms of
eliciting business critical QR. QAW explicitly captures the QR that have the
largest impact on the SA.

• Scenario-Based Architecture Analysis Method (SAAM) [106] uses scenar-
ios for evaluating quality attributes, and is applied to a final version of the
SA, but prior to the detailed design.

32 INTRODUCTION

• Quality Attribute-Oriented Software Architecture Design Method (QASAR)
[31] is a method for software architecture design that employs explicit as-
sessment of, and design for QR of a software product.

Measurement and metrics
To measure and verify the performance of a software product before it is released
to the market/customer is important, thus the ability to specify QR that are mea-
surable is essential [89]. In the literature, only two methods for specifying mea-
surable QR are empirically evaluated [26], the QUPER model (for details about
the QUPER model, see Paper IV, V and VI) and the Gilb style method. The Gild
style method, which is an adaption of the Planguage [71] method was introduced
at a telecommunication company [89]. To make QR measurable, several concepts
form the Planguage, such as scale (the unit in which the requirement should be
measured) and meter (how the measurement will be performed) were used. The
Gilb style method has concepts for identifying measurements for the supplier’s
current products and what the market expects. In addition, the method specifies
QR by using an interval estimate.

Besides these methods, different standards to ensure the quality of all soft-
ware products exist. The IEEE Standard for a Software Quality Metrics Method-
ology [83] is an approach for applying metrics on different levels. The method
establishes QR and identifies, implements, analyses, and validates the measure-
ments, and it spans over the entire software lifecycle. In addition, the ISO/IEC
9126 [88] is an international standard for quality requirements where the aim is
to ensure the quality of all software products. However, the ”common language”
proposed by ISO/IEC9126 do not have a standard interpretation as it is difficult to
interpret the quality characteristics in the standard [7].

Traceability
One of the main tasks of requirements management is to assure requirements trace-
ability from start throughout the artifact’s lifetime. Traceability of QR is difficult,
which is due to the fact that extensive interdependencies and trade-offs exist be-
tween them. A selection of traceability methods related to QR are presented below.

• Goal-centric traceability (GCT) is a technique to trace QR [45]. In GCT a
softgoal interdependency graph (SIG) is used to model QR as goals and op-
erationalizations. The SIG is a framework which helps developers to model
QR during software development. In a SIG, goals are the QR to be satis-
fied, whereas operationalizations are development, design or implementa-
tion techniques that help in satisfying QR [41].

• The event-based traceability approach (EBT) was proposed by Cleland-Huang
et al. in [43], [44] to handle FR and QR, and it provides a solution to the
traceability update problem. The main reason for developing EBT was to
provide maintenance of traceability relationships. Cleland-Huang et al. de-
fine traceability relationships as publisher-subscriber relationship. In this

1 Background and Related Work 33

relationship, dependent objects, i.e. artifacts, have to subscribe to their re-
spective requirements on which they are dependent. Whenever a require-
ment change occurs, an event message is published, which is then notified
to all dependent objects.

• In the scenario-based approach, traceability is established by mapping sce-
narios with design elements [42], [148]. Scenarios are created to trace only
the interesting cases therefore they might not provide complete coverage.
However, scenarios are frequently used by several architectural assessment
methods like ATAM.

• A technique using design patterns for tracing QR was proposed by [80].
The technique was utilized by [42] in a model to depict traceability links
between a SIG and underlying object-oriented design. This model is based
on the application of pattern detection algorithms within a subset of high-
level explicitly traced classes. The technique supports traceability of any
QR that can be implemented as a design pattern.

Quality Requirements - Challenges

Several challenges in relation to QR have been identified in the literature ([26],
[30], [54], [61], [81], [98], [105], [121]). A selection of the identified challenges
are discussed below.

• Elicitation of QR
To elicit and discover QR for a software product is not a trivial task. The
difficulties of gathering QR is reported in [30]. Another challenge lies in
how QR should be elicited. Cysnerios and Leite argue that QR should be
dealt with within the scope of FR since QR require a more detailed reason-
ing [54]. On the other hand, Doerr et al. argue that elicitation of QR, FR
and SA must be intertwined because the refinement of QR is not possible
without detailed FR and SA [61]. Moreover, Hassenzhal et al. suggest to
gather different aspects such as QR, design approach, and the relationships
between them [81]. According to [26], there is no unified view of current
QR elicitation practice.

• Specification of QR
Writing understandable requirements in general, and specifically QR using
natural language is an issue, particular when different stakeholders use dif-
ferent vocabulary [98], [105], [121]. In terms of QR specific challenges
in relation to specification, challenges of writing performance requirements
[121] and usability requirements [98] have been reported in the literature.
The difficulties with performance requirements are, for example, the ratio-
nale is not always obvious and there are difficulties to associate performance

34 INTRODUCTION

requirements with parts of dataflow or control flow specifications. In addi-
tion, difficulties in achieving testable (quantifying) QR, i.e. making QR well
specified and quantified, is a challenge faced by practitioners [25].

• QR dependencies
One challenge is related to QR interdependencies, which was identified as a
major problem in Karlsson et al. [105]. Quality requirements can influence
a large part of the functionality or other QR. This is not only related to
finding the existing interdependencies, but also assessing to what extent that
requirements affect each other, and determining how to deal with this.

• QR in the release planning process
In release planning, consideration of several aspects such as customer value,
market position, and architecture are required. Therefore, it is important to
consider QR before applications, as the architectural aspects may change the
structure of the system [105]. One issue, which also affects the release plan-
ning process is QR interdependencies (which is described above). Problems
with considering quality requirements in release planning were identified as
a challenge in market-driven software development [105].

2 Research Focus

Software product development is more and more commercialized as standard prod-
ucts. Software products may consist of both hardware and software, such as em-
bedded products (e.g., mobile phones), or a software product can be pure software
applications [174]. The software product manager plays an important role in the
success of a software company’s products. The software product manager man-
ages product requirements (through MDRE, see Section 1.2), release planning (as
described in Section 1.3), and launching products. In addition, the software prod-
uct manager needs to understand stakeholder and market needs (part of portfolio
management, see Section 1.1) and translate them into the scope of the product (see
SPM in Section 1.1). The ability to develop a software product that meets cus-
tomers’ requirements and offer high value to both their own business and to the
customer, increase the chance of market success [15]. However, this provides that
the software product is released to the market at the right time and offers a higher
level of quality than the competitors’ products [15]. If the product is not released
to the market at the right time, there is a risk of losing market shares and customers
to competitors; hence release planning is a major determinant of the success of a
product. In addition, the value of a software product is related to quality require-
ments (described in Section 1.4) [15], and is increased in direct proportion to the
advantage over competitors’ products [9]. Hence, a challenging problem for an or-
ganization that develops software products offered to an open market is to set the

2 Research Focus 35

right quality targets in relation to future market demands and competitor products,
when is the quality level a competitive advantage?

The main goal of this research is to increase the awareness and understanding
of quality requirements, and to find means for improving the ability to make early
estimates of quality requirements, e.g., performance requirements, in order to en-
hance high-level decision-making related to release planning and roadmapping.
Research gaps (RG) have been identified based on literature reviews on quality re-
quirements and release planning in market-driven software product development.
We observed that:

• RG1: Quality requirements can be seen as a key competitive advantage in
software product development for an open market. Despite their importance,
it is generally acknowledged that QR are difficult to capture, often poorly
understood, and generally stated in a non-quantifiable manner. To be able
to improve how QR are handled, it is important to understand their char-
acteristics and the challenges of dealing with QR in industry. Challenges
associated with QR have been addressed in part in the literature, for ex-
ample, elicitation and specification of QR, and managing interdependencies
between QR. However, none of the studies in literature, with the exception
of [25] and [30] have primarily focused on QR. Even though [25] and [30]
solely focused on QR, only five respectively two companies were included
in the studies.

• RG2: Requirements prioritization is an important part of release planning.
For a software product to be successful, it is important to find the right
balance among competing QR. Although several methods and tools for re-
quirements prioritization have been developed, evaluated, and compared in
the literature, requirements prioritization is seen as a challenging part of
MDRE, and as a part of the release planning process. However, research on
prioritization of QR is limited.

• RG3: A characteristic of QR is that they specify certain quality levels, and
can hence often be quantified. At the same time, there is a general opinion
that QR are difficult to capture and define. Moreover, another QR related
problem that has been discussed in the literature is where to document QR,
separated from FR, attached to FR, or even the option of treating perfor-
mance requirements separately? However, no study has looked into how
QR are quantified, how they are specified, or if QR generally are stated in a
non-quantifiable manner in an industry requirements specification.

• RG4: In market-driven software product development it is important to de-
liver an ”optimal” subset of features and quality in a certain release, at the
right time, which makes these decisions (release planning) a major determi-
nant of the success of the product. Release planning is viewed as a chal-
lenge in SPM and MDRE, and the constant flow of requirements increases

36 INTRODUCTION

the complexity of release planning due to its size. In addition, changing
problem definitions, e.g., the criteria for what a successful solution is keep
changing all the time. An especially challenging problem is to set the right
quality targets (i.e., release planning of QR), when is the quality level good
enough? Although several release planning methods and tools have been
developed, no method, or tool, addresses quality levels and cost constraints
of QR.

The identified research gaps (RG1-RG4) makes the general need for studying
quality requirements in a market-driven software product development environ-
ment explicit, and in particular the specification of future quality requirements’
targets for future releases.

The first research gap (RG1) is addressed in this thesis by investigating ex-
perienced challenges in relation to quality requirements by practitioners in eleven
market-driven software development companies (research question 1 (RQ1) in Ta-
ble 6). The second research gap (RG2) is covered in this thesis by investigating
the prioritization process of quality requirements in detail at eleven market-driven
software development companies (RQ2 in Table 6). Since difficulties in elicita-
tion, specification, and quantification of quality requirements were identified as
reasons for difficulties in prioritization of quality requirements, research gap RG3
is covered in this thesis as we examined a requirements specification at one case
company in detail (RQ3 in Table 6). The fourth research gap (RG4) is addressed
by; first, developing and evaluating a model for supporting release planning of
quality requirements in close collaboration with industry (RQ4 in Table 6), second,
evaluating the model in relation to improvements of high-level decision making,
e.g., release planning (RQ5 in Table 6). Third, the possibility to tailor the model
to different industrial environments was investigated (RQ6 in Table 6).

The resulting main research questions (RQ) investigated in this thesis are as
follows:

The relationships between the research questions and the included papers in
this thesis are depicted in Figure 13.

RQ1 was posed in order to discover and understand QR challenges faced by prac-
titioners, and to select focus for the research. Among the found challenges, issues
regarding the prioritization and how to get QR into projects when FR are priori-
tized emerged.

RQ2 aims at discovering and understanding how QR are prioritized in industry,
and to what extent state-of-the-art in research has penetrated industrial practice.
The difficulties of prioritization of QR were identified, where lack of well speci-
fied and quantified QR, and when are the QR good enough emerged.

2 Research Focus 37

Table 6: Main research questions

Research questions (RQ)
RQ1: Which challenges related to quality requirements are experienced by
practitioners in the market-driven software development industry?
RQ2: How are quality requirements prioritized in the market-driven software
development industry?
RQ3: How are quality requirements specified in the market-driven software
development industry?
RQ4: How can the specification of quality requirements be improved when
setting future quality targets in a market-driven software development envi-
ronment?
RQ5: To what extent does the use of QUPER as a part of release plan-
ning of quality requirements result in improvements with regards to high-level
decision-making?
RQ6: How can QUPER be tailored to suit industrial environments?

RQ1
(Challenges)

Paper VI

Paper I

RQ2
(Prioritization)

Paper II

RQ3
(Specification)

Paper III

Need for
investigation

Need for
investigation

RQ5
(Release
Planning)

Paper V
RQ4

(Decision-
Making)

Paper IV

RQ6
(Tailoring)

Paper VI

Need for
investigation

Need for
investigation

Paper V

Paper IV

Provides input

Figure 13: The relationships between research questions and papers

RQ3 examined how QR are specified in industry, how they are documented, and if
QR often are stated in a non-quantifiable manner.

RQ4 was posed in order to support primarily decision-makers in taking care of and
working with future QR targets in relation to market needs and competitors.

RQ5 aims at evaluating and improving the release planning process of QR by a

38 INTRODUCTION

method (QUPER) for supporting release planning of QR. The method was evalu-
ated in three studies, at two organizations with different characteristics in order to
investigate its possibilities and limitations.

RQ6 examined how the QUPER model could be tailored to suit organizations in
industry. QUPER was tailored to fit, not only two organizations in industry, but two
different domains, namely, the electronic payment processing and mobile handset
domains.

3 Research Methodology

In the pursuit to answer the research questions posed in Section 2, it is essential
to utilize certain research methodologies as the research methodology provides the
link between research questions and the data used to answer them. Thus, a method-
ology must be chosen that provides the necessary data to answer the stated research
questions. This section gives an overview of the methodological approaches that
are used in this thesis.

The research presented in this thesis employes an empirical research approach
as described by [184], where findings are verified through observation and expe-
rience. The observation of human behavior and their interactions with technology
in the real world (industry) cannot sufficiently be investigated by an analytical
research paradigm [156]. As the research questions in this thesis have applied
and practical objectives, this thesis focuses on empirical research methodologies,
which are described below.

3.1 Research Design

There are two main approaches to empirical research: fixed and flexible research
design [147]. The fixed research design, which is also called quantitative, is a
highly pre-specified research design. In order to know in advance what to do,
and how to do it, quantitative research requires a conceptual framework or theory
to be developed before getting into the main part of the research study. Quantita-
tive research is generally used to answer questions about the relationships between
variables, e.g., quantifying a relationship or comparing two or more groups, for the
purpose of explaining, predicting, or controlling the phenomena. Statistical meth-
ods are commonly used to establish or confirm hypotheses, and produce general-
ized findings, which is the greatest power of quantitative research. In quantitative
research, the researcher needs to collect all data before starting to analyze it.

The flexible research design, which is also called qualitative, allows to change
parameters of the design based on new information during the course of the study,
e.g., change of research questions or data sources. Hence, qualitative research de-
sign may evolve during the research process, and the data collection and analysis

3 Research Methodology 39

are intertwined. Qualitative data are typically non-numerical, instead, the data is
mainly focused on words. However, qualitative data may include numbers. Qual-
itative research seeks to better understand and explain complex situations in their
natural setting, where issues of the real world are described. Where quantitative
research use statistical methods to confirm proposed theories, qualitative research
use observations and inductive reasoning to build theory from the ground up. One
reason for this difference is an assumption that reality cannot be divided into dis-
crete measurable variables.

In this thesis, only qualitative research design is used (see Table 7). The contri-
butions of this thesis are the investigation of quality requirements challenges faced
by practitioners in industry, and the implementation of the quality performance
model in a real-world setting. As the aim of this thesis was to improve and gain an
in-depth understanding, hence qualitative research is more suitable than research
in the breadth (quantitative research design).

3.2 Research Methods

There are a number of research methods for conducting empirical research in the
software engineering discipline. According to Kitchenham et al. [110], the most
common research methods are case studies [156], surveys [67], and experiments
[184]. However, other research methods can be used, for example, simulations
[168], and action research [180]. Wieringa and Heerkens [180] classifies research
methods that can be used in requirements engineering research, where two of the
methods are case studies and action research. The research methods of choice for
this thesis were qualitative surveys, case studies and action research.

Qualitative Surveys

Surveys can be both flexible and fixed, the classification depends on the design of
the questionnaire (which data is collected) [184]. Survey instruments can take four
forms, self-administrated questionnaires, interviews, structured recorded reviews,
and structured observations [67]. Questionnaires can reach a large set of popula-
tion and provide easy to analyze data. One disadvantage with questionnaires is low
response rate. Moreover, questionnaires have a risk of being misunderstood. Inter-
views have a higher response rate, and provides the interviewer with the possibility
to explain and clarify misunderstandings. However, interviews have the disadvan-
tage of being more time consuming and may introduce researcher bias. The pur-
pose of surveys is to understand, describe, and explain the population, from which
a sample is selected [184]. However, in small samples, qualitative surveys are use-
ful. Qualitative surveys concentrates on collecting in-depth information about the
subjects’ opinions and experiences expressed in their own words [67]. In general,
qualitative surveys do not aim for a representative, or to generalize the results for
the entire population.

40 INTRODUCTION

Case Study

A case study is an in-depth investigation of a phenomena in its real-life con-
text [185] focusing on a specific case. The cases are objects of the real world
which are studied in a natural setting, i.e., real software organizations, software
projects, a product, a group of people, or an individual. Case studies are typically
flexible design studies [156]; however, good planning is crucial for its success.
A flexible design allows to change the design based on new information gathered
while executing the case study, e.g., leading to a change of research questions or
data sources. Although the small sample size makes the results from case studies
difficult to interpret and generalize, case studies are useful in exploratory research
where little is known about an area. Data collection methods for case studies can
be divided into three categories [156]: (1) direct methods (e.g., observations and
interviews), (2) indirect methods (e.g., automatically monitoring software tools),
and (3) independent analysis if work artifacts (e.g., requirements specifications).
The analysis of the collected data of case studies ranges from purely qualitative
analysis where raw data from interviewees is categorized and coded to the exclu-
sive use of statistical inference.

The use of the term case study in software engineering research is of varying
quality [156]. The reported studies range from ambitious studies to small toy
examples. There are several definitions of case study research in the literature,
but in this thesis, the following definition is used: ”investigating contemporary
phenomena in their context” [156].

Action Research

Action research, with its purpose to influence or change some aspects of the re-
search focus, is closely related to case study [156]. Moreover, action research aims
to improve practice, the understanding of practitioners, and the situation in which
the practice takes place [147]. In action research, a researcher enters the project
where tasks are performed by using the researchers method. Action research com-
prises of four steps [147]:

1. Plan how current practice can be improved

2. Implement the plan

3. Observe the effects

4. Reflection

After step four (reflection), the researcher evaluates the performance of the
used method and draw conclusions, which may lead to improvements of the tech-
nique or method.

In literature, the degree of the researcher’s active involvement in the team work
in action research differs. While [180] states that it is not a practitioner’s use

3 Research Methodology 41

of the technology that is studied, instead it is the researcher’s, [147] states that
the collaboration between researchers and the practitioners who are the focus of
the research, and their participation in the process are seen as central to action
research. However, according to [156], case study is purely observational while
action research is focused on the change process, which is supported by [147].
Hence, in software process improvement [59] and technology transfer studies [75],
the research method should be categorized as action research [156].

In this thesis, Paper IV, V, and VI are classified as action research; however, if
the degree of involvement from [180] is considered, the research method in Paper
IV, V, and VI may be classified as pilot projects or case studies. On the other
hand, looking at the degree of involvement from [147], and that action research is
distinguishable in terms of its purpose, which is to influence or change an aspect of
the research focus, the method can be characterized as action research. Moreover,
according to the definition in [156], the used methods are action research since
Paper IV, V, and VI focus on improving the process of supporting release planning
of quality requirements, and transferring the technology of the QUPER model to
industry.

3.3 Data Collection Methods

The collected data in empirical studies could be quantitative (e.g., numbers and
classes) or qualitative (e.g., words, descriptions, and pictures). Although only
qualitative research design is used in this thesis, which tend to be based on quali-
tative data, quantitative data has been collected. A combination of qualitative and
quantitative data may provide a better understanding of the studied phenomenon
[166].

Without proper data collection and analysis methods, the essence of the col-
lected data may not be revealed nor possible to communicate. There is a variate of
data collection methods to choose from, and the researcher’s choice is dependent
on the information sought after [147]. The following data collection methods have
been used in this thesis.

Interviews

Data collection through interviews is important in case studies [156]. In interview-
based data collection, the researcher, guided by an interview protocol, asks ques-
tions to a set of subjects about the phenomena of interests in the case study. In-
terviews can be divided into three types, fully structured (interviewee has to stick
with the questions), semi-structured (interviewee has a guide, but can change the
order and the wording of the questions), and unstructured (rough definitions of
topics to be covered) [147]. One advantage with interviews is the flexibility. The
interviewer has the possibility to follow up answers, interpret the tone of the voice,
expressions and intonations of the interviewee, which documents or written an-

42 INTRODUCTION

swers cannot reveal. One disadvantage with interviews is that they are rather time
consuming.

In this thesis, semi-structured interviews were used to allow for flexibility in
the interview sessions. For elaboration of fully structured and unstructured inter-
views, see [147], [156].

Archival Data

Archival data refers to, for example, documents, financial records, previously col-
lected measurements in an organization, and organizational charts [156]. Archival
data collection differs from, e.g., interviews, in that it is an indirect data collec-
tion method. That is, instead of directly observing or interviewing a practitioner,
data is collected from something that is produced for some other purposes [147].
While [185] distinguish between documents and archival records, [156] threat doc-
uments and archival records together and distinguish between qualitative data (e.g.,
documents) and quantitative data (e.g., records).

In this thesis, data was collected from written documents, namely a require-
ments specification.

Self-Administrated Questionnaires

Self-administrated questionnaires, which contains questions that the subjects an-
swer by themselves, can either be mailed or answered on site in, e.g., an of-
fice [67]. Questions in a self-administrated questionnaire can have two primary
forms , closed questions and open questions, where closed questions are usually
preferable to open questions [147]. Closed questions provide the subjects with pre-
defined answers, where the aim is either to test the subjects’ performance (e.g., IQ
tests) or to gain insight into what the subject feel or believe about something [147].
When the aim is to get an insight about what subjects feel or believe, the most com-
mon measurement scale, according to [147], is attitude measurement. In attitude
measurement, several different types of scales, e.g., arbitrary scale, can be used;
however, the summated rating (or Likert) scale is more widely adapted. The most
common response categorization system is a five-level Likert-scale alternatives:
’strongly disagree’, ’disagree’, ’neutral’, ’agree’, ’strongly agree’.

Open questions are useful when issues are still unknown since they let respon-
dents describe the phenomena as it is seen by them, instead of how the researcher
believes it may look like. Moreover, some respondents may prefer to state their
own views in their own words, and this may provide the researcher with quotable
answers [67]. One disadvantage with open questions is that responses may be
difficult to compare and interpret.

3 Research Methodology 43

3.4 Data Analysis Methods

Data analysis for quantitative and qualitative data is conducted in different ways.
Since case study and action research are of qualitative research deign, qualitative
data analysis methods are commonly used [166]. However, as described in Section
3.3, quantitative data has been collected, hence statistical analysis methods have
been used in this thesis. The following data analysis methods have been used in
this thesis.

Content Analysis

Content analysis is a method for analyzing and interpreting data from qualitative
surveys [67], but can also be used in the analysis of qualitative interviews and
questionnaire data (e.g., coding open-ended questions) [147]. The focus of con-
tent analysis is to gather information and generate findings. The gathered informa-
tion (content) can be any written information and different categories containing
content are constructed for analysis. After the content has been gathered and cat-
egories been constructed, it is analyzed and conclusions based on the content is
reported. A content analysis can be based on inductive or deductive analysis [67].
In inductive analysis, dominant themes of the collected data are looked for and
identified. The researcher, by using inductive reasoning and experience, reviews
the data for unifying ideas. In deductive analysis, the researcher preselects the
themes and sub-themes that he/she thinks are the most likely to occur. The re-
searcher walkthrough the collected data and records every support for the prese-
lected themes and sub-themes. In addition, the researcher has the possibility to
add new themes and/or sub-themes as such themes may emerge.

Statistical Analysis

In this thesis, two statistical analysis methods were used, namely, descriptive
statistics and inferential statistics.

Descriptive statistics, such as mean values, standard deviation, and box-plots,
are used to describe and present the data that has been collected in order to aid anal-
ysis [147], [184]. The goal of descriptive statistics is to get a feeling of how the col-
lected data is distributed, and may be used before hypothesis testing is conducted.
For more information about descriptive statistics, see for example [147], [184].

The objective of inferential statistics (hypothesis testing) is to reach a conclu-
sion that extend beyond the immediate data alone (to see if it is possible to reject a
certain null hypothesis), for example, trying to infer from the sample data what the
population may think. Thus, inferential statistics are used to make inferences from
the data to more general conditions. Test can be classified as parametric and non-
parametric tests [184]. Parametric tests are based on a specific distribution of the
data, that the data is normally distributed and that the data can be measured at least
on an interval scale [184]. Non-parametric tests do not make the same assumption

44 INTRODUCTION

as parametric tests, and are more general. In literature, several tests are available
for parametric and non-parametric tests, for example, t-test and Wilcoxon. For
more information about different tests, see [184].

In this thesis (Paper I), a non-parametric Wilcoxon rank sum test [184] with
significance tested at the 0.05 level was used to judge between which sets of data
there is any discernable difference and thus reduce the number of such possible
differences that would otherwise be implied.

3.5 Research Classification

The results in this thesis have been reached through the use of the presented re-
search design and methods. Each paper is linked to research questions, research
design, research methods, data collection methods, and data analysis methods,
which is illustrated in Table 7.

In Paper I and II, qualitative surveys are used as research methods. The reason
for using a qualitative survey is that the aims of Paper I and II are to understand
and describe experienced challenges by practitioners in relation to quality require-
ments, which is aligned with the purpose of qualitative surveys. Interviews were
used as data collection method because it would best meet the objectives of the
studies. Interviews help to ensure common information on pre-determined areas
is collected, but allow the interviewer to probe deeper where required. Moreover,
interviews provide the researcher with the ability to explain questions (if misun-
derstood) and to follow up answers. Considering the collected data and the aims
of Paper I and II, content analysis is the most suitable data analysis method. In ad-
dition to content analysis, statistical analysis was used in Paper I since some of the
collected opinions were quantified with the purpose of judging which sets of data
there is any discernable difference and thus reduce the number of such possible
differences that would otherwise be implied.

The aim of Paper III is to understand how quality requirements are specified,
in particular how QR are quantified, and which types of requirements exist in a re-
quirements specification from industry. An in-depth analysis of a single case helps
to understand the details of a specific context, therefore, case study is chosen as
research strategy. The analyzed data is a real requirements specification with 2,178
requirements from a case company, which was already produced. Considering the
collected data and the aim of Paper III, content analysis is the most suitable data
analysis method as it is an indirect method.

Paper IV presents the first complete version of the QUPER model, including
detailed practical guidelines of how to apply QUPER in practice. The aim of Pa-
per IV is, not only to present a complete version of the model, but also to evaluate
its usefulness and applicability in an industrial environment. Paper IV is based
upon previous work (Paper IX, XI, XV, XVI, and XVIII) where both case study
and action research methods have been used, hence, the version presented in Pa-
per IV uses a mixed case study and action research method. In both Paper IV

3 Research Methodology 45
Ta

bl
e

7:
R

es
ea

rc
h

cl
as

si
fic

at
io

n

R
es

ea
rc

h
R

es
ea

rc
h

R
es

ea
rc

h
D

at
a

co
lle

ct
io

n
D

at
a

an
al

ys
is

Pa
pe

r
qu

es
tio

n
de

si
gn

m
et

ho
d

m
et

ho
d

m
et

ho
d

I
R

Q
1

qu
al

ita
tiv

e
qu

al
ita

tiv
e

su
rv

ey
in

te
rv

ie
w

s
co

nt
en

t
an

al
ys

is
an

d
st

at
is

tic
al

an
al

ys
is

II
R

Q
2

qu
al

ita
tiv

e
qu

al
ita

tiv
e

su
rv

ey
in

te
rv

ie
w

s
co

nt
en

ta
na

ly
si

s
II

I
R

Q
3

qu
al

ita
tiv

e
ca

se
st

ud
y

ar
ch

iv
al

da
ta

co
nt

en
ta

na
ly

si
s

IV
R

Q
4,

R
Q

5
qu

al
ita

tiv
e

ca
se

st
ud

y
an

d
ac

-
tio

n
re

se
ar

ch
in

te
rv

ie
w

s
an

d
se

lf
-a

dm
in

is
tr

at
ed

qu
es

tio
nn

ai
re

co
nt

en
t

an
al

ys
is

an
d

st
at

is
tic

al
an

al
ys

is

V
R

Q
5,

R
Q

6
qu

al
ita

tiv
e

ac
tio

n
re

se
ar

ch
in

te
rv

ie
w

s
co

nt
en

ta
na

ly
si

s
V

I
R

Q
5,

R
Q

6
qu

al
ita

tiv
e

ac
tio

n
re

se
ar

ch
in

te
rv

ie
w

s
an

d
se

lf
-a

dm
in

is
tr

at
ed

qu
es

tio
nn

ai
re

co
nt

en
t

an
al

ys
is

an
d

st
at

is
tic

al
an

al
ys

is

46 INTRODUCTION

and the related papers, the researcher has been involved in several steps towards
the development and implementation of the QUPER model. For data collection,
both interviews and self-administrated questionnaires were used. Considering the
collected data and the aim of Paper IV, content analysis is the most suitable data
analysis method. In addition, since quantitative data was collected, statistical anal-
ysis (descriptive statistics) was used to describe the subjects’ opinions about the
QUPER model in relation to supporting release planning of quality requirements.

Action research was used as research method in both Paper V and VI. The aims
of Paper V and VI were to evaluate the introduction of a new method and to im-
prove the process of supporting release planning of quality requirements. Action
research aims to influence or change some aspects of the research focus, and the
improvement of practice and the situation in which the practice takes place. In Pa-
per V and VI, we were involved in several steps to improve the practice of release
planning of quality requirements by introducing the QUPER model. The tailoring
of the model (Paper V) was carried out by the researchers together with practition-
ers at the case company. We participated in the process to set the QUPER model
into operation, and introduced how to use the model in practice to the practitioners
in several workshops. Moreover, the prototype tool (Paper VI) was developed in
cooperation between academia and industry, and we participated in a live demon-
stration of the tool at the case company. To evaluate the introduction of QUPER,
interviews were used as data collection method approach because of the ability to
interpret the tone of the voice, expressions, and intonations of the interviewee, and
content analysis was used to analyze the collected data. In addition, Paper VI use
statistical analysis (descriptive statistics) to describe the subjects’ opinions of the
collected data from the self-administrated questionnaire.

3.6 Technology Transfer Model

Technology transfer and industry-relevant research involves more than producing
research results, it demands close cooperation and collaboration between industry
and academia throughout the entire research process [75]. Moreover, technology
transfer from research to industry can be, and is a real problem. According to [72],
the problem can be described as, problems are formulated in academia, and solu-
tions are put forward and validated in academia, which results in industrial inap-
plicability. Hence, there may be no real benefit for industry if the research is not
based on problems that are identified in industry, and if solutions are not evaluated
in an industrial environment prior to transferring the solution to industry [72]. Fur-
thermore, technology transfer problems have also been identified in requirements
engineering research [96].

The development of the QUPER model is based on the technology transfer
model [75] in attempts to counter the technology transfer problems from academia
to industry. The overall used research process in the development of QUPER is
illustrated in Figure 14.

3 Research Methodology 47

Candidate
solution

Industry

Academia

Dynamic
validation

Static
validation

Problem/
issue

1

2

3

5

6

Study
state

of the art

Problem
formulation

Validation
in

academia

4

Release
solution

7

Figure 14: Overview of research approach

The QUPER model has been developed and evaluated in several stages, where
several steps in Figure 14 have been repeated. For example, the candidate solu-
tion (step 3 in Figure 14) has been improved several times based on the results
from different validations. Moreover, as the model has been improved, new vali-
dations (steps 5 and 6 in Figure 14) have been conducted to evaluate the new parts
and improvements of the model. Below, the evolvement of the QUPER model is
described.

Step 1, identify problems based on industry needs, implies that the research is
based on problems and demands explicitly identified in industry. Paper IV presents
the identified industry problems targeted by QUPER.

Step 2, formulate a research agenda and study the state-of-the-art. The re-
search agenda was formulated in close cooperation with industry contact persons,
and state-of-the-art was studied in order to see if solutions already existed (e.g.,
Section 2 in Paper IV).

Steps 3 and 5, formulate a candidate solution based on the understanding of
the problem, research agenda, and state-of-the-art. In addition, an initial static
validation (interviews) in industry was conducted. Paper XVIII presents the first
version of the candidate solution and the results from the initial static validation.

Step 3, subsequent to the formulation and initial validation, a modification of
the solution was conducted based on the previous validation and new development
of the solution, see Paper XV.

48 INTRODUCTION

Step 6, the first dynamic validation of one part (the benefit view, see e.g., Paper
IV, Section 4) of the solution in industry was carried out as a small test to validate
the real applicability (see Paper XVI).

Step 5, a second round of static validations was conducted in industry to val-
idate the applicability of QUPER’s cost view in an industrial environment (see
Paper IV).

Step 6, a first dynamic validation of the entire solution in industry was carried
out as a small test (see Paper V, which is an extended version of Paper VIII). The
results of this dynamic validation gave feedback as to the solution’s viability.

Steps 3 and 5, Paper IV presents the first complete version of the solution,
which is based on all previous conducted validations. In addition, modifications
of the solution based on new ideas and refinements were carried out in close col-
laboration with industry professionals. Static (interviews) validations were carried
out in industry to validate the solution’s applicability in an industry environment
using real requirements.

Steps 4 and 6, validation in academia and dynamic validation. To facilitate
technology diffusion from academia to industry, effective tools and tool support
are important [135]. Furthermore, to transfer technology to practice, tool sup-
port and tool adaptation are important for the solution’s scalability [75]. Paper
VI presents a first prototype tool for QUPER. Moreover, an academic validation
was carried out to evaluate the usability and workflow of the QUPER prototype
tool. The academic validation provided valuable feedback, which was an impor-
tant input to the finalization of the first version of the prototype tool. The results
made it possible to catch some issues without using industry resources. Further-
more, a dynamic validation, in terms of a small test, was conducted to evaluate
the tool’s applicability in industry, and to enable easier adoption of the solution by
practitioners and thereby to improve the technology transfer in practice.

Step 7, release the solution. As the solution matures by the previous valida-
tions, the solution is ”released”, i.e., available for implementation into industry
practices. The available solution for implementation is presented in Paper IV.

3.7 Validity Threats

Even though the research in this thesis has been conducted with reliable and well-
known strategies, and methods, the results should nevertheless be questioned and
evaluated. The validity of the research demonstrates the trustworthiness of the
results, i.e., how true the results are and that the results are not biased by the re-
searchers’ subjective opinion [156]. There are different ways of classifying valid-
ity threats in the literature. In general, four types of validity threats are discussed
in empirical studies, for example, experiments [184] and case studies [185], [156].
Although Wohlin et al. [184] discuss threats to experiments, the classification
scheme is similar to the case study threats in [185], [156]. In fact, three of the
four types of threats are called the same, and have the same meaning. Although

3 Research Methodology 49

the fourth type of validity threat is called reliability in [185], [156] and conclusion
validity in [184], both are concerned with the ability of replicating the study and
obtaining the same results. Furthermore, the validity threats discussed in Wohlin
et al. [184] have been considered in several empirical studies which are not con-
trolled experiments, e.g., in case studies [76], [134], and in reported surveys [77].

In this thesis, the four perspectives of validity and threats as presented in
Wohlin et al. [184] are considered. The four perspectives can be summarized
as follows (more detailed presentations of validity threats are available in [184],
[185], [156], [147]):

• Construct validity is concerned with the relation between theories behind
the research and the observations, i.e., choosing and collecting the right mea-
sures for the concepts being studied. The use of multiple sources of evidence
and establish a chain of evidence may increase construct validity [185] and
ensure that the result is an effect of the treatment.

• Internal validity is related to issues that may affect the causal relationship
between treatment and outcome, for example, a change in the subjects en-
vironment may affect the outcome without the researcher knowing about
it [184]. If the researcher incorrectly concludes that the treatment affects the
outcome without knowing that a third factor has caused the outcome, then
the study has a low degree of internal validity [185]. Internal validity is a
large threat to case studies due to that industrial environment changes over
time [185].

• External validity is concerned with the ability to generalize the findings be-
yond the actual study. Results obtained in the context of a unique environ-
ment, or with a specific group of subjects may not be fully generalizable
to other contexts and environments. However, qualitative studies rarely at-
tempt to generalize beyond the actual setting since they are more concerned
with explaining and understanding a phenomena.

• Conclusion validity arise from the ability to draw accurate conclusions, i.e.
the reliability of the results [184]. Conclusion validity is related to the re-
peatability of the study, such as the data collection procedures. That is, if
the same study is repeated, and the results are the same, then the study has a
high degree of reliability [185].

Table 8 provides an overview of validity threats observed throughout this the-
sis, stating and describing the threats with references to the concerned papers.
Further details about the threats in the context of each individual paper is provided
within the papers.

Evaluation apprehension is a threat related to the behavior of the subjects,
more specifically, subjects being afraid of being evaluated. This is a threat in
Paper I, II, IV, V, and VI, and was alleviated by the guarantee of anonymity as to

50 INTRODUCTION

Table 8: An overview of selected validity threats

Threat Description Concerned papers
Evaluation
apprehension

Subjects are afraid of being evalu-
ated

I, II, IV, V, VI

Incorrect data Incomplete and inaccurate data I, II, III, IV, V, VI
Selection bias Researcher biased in selecting sub-

jects
I, II, IV, V, VI

Generalizability Generalize the findings beyond the
included companies

I, II, III, IV, V, VI

Confounding
factors

Other factors affecting the outcome IV, V, VI

all information divulged during the interviews, and the answer was only to be used
by the researcher.

Since all studies (Paper I to Paper VI) are of empirical nature, incorrect data is
a validity threat. In case of the interviews, the correct data was assured by record-
ing the interviews (Paper IV, V, and VI) and taking records in the form of written
extensive notes (Paper I and II). In addition, the researcher had the chance to val-
idate the questions with the subjects lessening the chances of misunderstandings.
The document analysis study (Paper III) is based on a requirements specification
given to a sub-contractor of the case organization, which was fully accessible to
the researcher.

A threat to validity in Paper I, II, IV, V, and VI is the selection process of
subjects for the interviews. Selection bias is always present when subjects are
not fully randomly sampled. A possible bias may be that only subjects that have
a positive attitude towards QR and the QUPER model are selected. However, in
Paper I, II, IV and VI subjects were selected based on their roles by a ”gate-keeper”
at the different companies. In Paper V, the selection of subjects was conducted in
cooperation with a manager at the case company.

The ability to generalize the results, i.e., in this thesis the applicability of the
findings beyond the included companies, is a threat to validity in all papers (Pa-
per I to Paper VI) as they are all qualitative studies. However, qualitative studies
rarely attempt to generalize beyond the actual setting since it is more concerned
with explaining and understanding the phenomena under study. Furthermore, the
nature of qualitative designs makes it impossible to replicate since identical cir-
cumstances cannot be recreated. However, the fact that more than one company
acknowledge most of the identified challenges in Paper I and II increases the pos-
sibility to generalize the results beyond these studies. The study in Paper III only
covers one specific case company; therefore, the generalizability may be ques-

4 Results 51

tioned. However, understanding the phenomena may help in understanding other
cases and situations. For Paper IV, V, and VI, some of the problems introduced
as motivation behind QUPER, could to some extent be general for organizations
faced with developing embedded systems for markets. However, it is not possi-
ble to generalize the results from these evaluations based on two organizations,
although from a perspective of the concepts and practical application of QUPER
may give an overview of faced challenges when QUPER has been implemented.

Confounding factors are important when making inferences about root-cause
relationships, which is the case for Paper IV to Paper VI in which inferences are
made about the improvements of release planning for QR. The confounding factors
cannot be ruled out as the studies were conducted in an uncontrolled industrial
environment. A confounding effect could involve problems with learning how to
use the QUPER model (Paper IV and V) and the QUPER prototype tool (Paper VI)
when assessing its benefits. In addition, the use of very enthusiastic or skeptical
subjects could be a confounding factor, but the selection bias is discussed above.

4 Results

The research in this thesis is presented in two parts (Part I and II), each containing
three papers, which is illustrated in Figure 15. This section presents the main
results of this thesis related to each paper. The discussed results are based on the
conclusions form the results of the included papers. An overview of the results of
the individual papers, linked to research questions and research gaps, is illustrated
in Table 9.

Part I: Quality Requirements Challenges
Paper I - Quality Requirements in Industrial Practice
Paper II - Prioritization of Quality Requirements
Paper III - How are Quality Requirements Specified?

Part II: The Quality Performance Model
Paper IV - The Quality Performance Model
Paper V - Setting Quality Targets for Coming Release with QUPER
Paper VI - A Prototype Tool for QUPER to Support Release Planning of Quality Requirements

Thesis

Figure 15: Overview of thesis

52 INTRODUCTION

Table 9: Overview of results

Paper RG RQ Main results
I RG1 RQ1 The results suggest that QR are not taken into consideration

during product planning and thus not included as hard require-
ments in the projects, making the realization of QR a reactive
rather than proactive effort.

II RG2 RQ2 In the studied cases, QR are by default seen as having a lower
priority than FR, and only get attention in the prioritizing pro-
cess if decision-makers are dedicated to invest specific time
and resources on QR prioritization.

III RG3 RQ3 The findings from this study suggest that methods for QR
need to encompass many aspects to comprehensively support
working with QR. Solely focusing on, e.g., quantification of
QR might overlook important requirements since there are
many QR in the studied specification where quantification is
not appropriate.

IV RG4 RQ4,
RQ5

The results from this evaluation point to a relevant and feasi-
ble model that allows decision-makers to have more substance
to the decisions of what level of quality to aim for in coming
releases.

V RG4 RQ5,
RQ6

The results indicate that the QUPER model demonstrated use-
fulness in supporting early decision-making in, e.g. release
planning of QR and architectural decisions related to QR.

VI RG4 RQ5,
RQ6

The prototype tool may provide a clear overview of the cur-
rent market situation by the generated roadmaps, and to reach
an alignment between practitioners, e.g., product managers
and developers, of what level of quality is actually needed.

4 Results 53

4.1 Paper I - Quality Requirements in Industrial Practice
Paper I aims at discovering challenges experienced by practitioners in market-
driven software development. A qualitative survey was conducted at eleven em-
bedded software developing companies. Paper I reports on findings from inter-
views with 22 practitioners, one product manager and one project manager from
each company, involved in managing and handling QR. A number of challenging
issues, both from a business-to-business and business-to-consumer perspective, as
well as from a product and project perspective related to interdependencies, cost
estimation, and dismissal of QR, were found. Some of the identified challenges,
for example, interdependencies related to QR, are acknowledged by other studies
in the literature.

Hence, some of the challenges discovered in Paper I have also been identified
in related research. However, some challenges have not been discussed in other
studies. For example, that REQUIRES (R1 requires R2 to function, but not vice
versa) and CVALUE (R1 affects the value of R2 for a customer) are considered as
the most common and important interdependency types to identify, which can be
seen as interesting as most software engineering research on QR is performed on
implementation level where AND and OR are the dominant interdependency types
investigated. All practitioners discussed the impact of QR interdependencies on
product development. Delays or exclusions of requirements may be the result of
QR interdependencies; however, the practitioners indicate low extent of interde-
pendency management due to the complexity of the task. Close to 1 out of 5 QR
are dismissed from the project at some stage during development. One of the main
reasons for dismissal of QR is that QR have lower priority than FR.

The sampling of companies was made with respect to differences between the
companies since we wanted to discover an as broad spectrum of challenges as
possible. However, it may be possible that other challenges would appear if other
companies participated. Thus, the industrial QR challenges in Paper I is not a
universal picture, although it has suited its purpose of increasing the understanding
of QR and helping to find research areas in need of further investigation.

4.2 Paper II - Prioritization of Quality Requirements
Following the problem of not including QR as hard requirements in the project
(Paper I), an effort was aimed to discover how QR are prioritized in industry, to
understand the challenging problem of including QR into projects. Paper II reports
the results of state-of-practice in prioritization of QR. A qualitative survey was
conducted at eleven companies where 22 practitioners were interviewed.

The results show that ad-hoc is the dominant requirements prioritization method
for QR, followed by numerical assignment. However, in most cases, QR are by
default put into the not critical category, i.e., QR always have the lowest priority,
and only get attention in the prioritization process if decision-makers are dedi-
cated to invest specific time and resources on QR prioritization. The finding that

54 INTRODUCTION

ad-hoc is the most common prioritization ”method” of QR is not in line with re-
lated research, which suggests that numerical assignment is the most common one.
A likely explanation of why ad-hoc prioritization is used could be that there is a
lack of useable and useful (scalable) prioritization techniques. Moreover, looking
into what criteria are taken into account when prioritizing QR, the two most used
criteria are: (1) no criterion, i.e., prioritize are based on ”gut feeling” and experi-
ence, and (2) customer input. These results contradicts some earlier work of what
criteria to use, e.g., [22]. Furthermore, although the literature suggest that it is
important to consider multiple criteria before deciding if a requirement should be
implemented directly, later, or not at all, the results in Paper II show that only three
(out of 22) practitioners use more than one criterion when prioritizing QR.

The reasons for not prioritizing QR was not related to the prioritization pro-
cess itself, but rather how QR were treated in the overall requirements engineering
process. The main challenges with prioritizing QR are, gathering (elicit) QR, lack
of well specified QR, and lack of quantified QR. The indirect effects such as dif-
ficulties with elicitation of, specification of, and quantification of QR can be an
issue affecting effective and efficient prioritization.

4.3 Paper III - How are Quality Requirements Specified?

Following the discovery that lack of elicitation of, and well specified and quanti-
fied QR were among the main challenges for difficulties of prioritizing QR (Paper
II), a document study at a case company was initiated. In Paper III, an in-depth
investigation of an industrial requirements specification is conducted. The purpose
of Paper III is to investigate how QR are specified, in particular if QR are stated in
a non-quantifiable manner.

The results show that 38% of 2,178 requirements are QR. Even though rela-
tively many QR exist in the requirement specification, there are areas of improve-
ments, e.g., few maintainability requirements exist. It is not possible to claim that
all, or almost all QR are discovered at the case company; however, the fact that
more than 800 QR are specified in the requirements specification suggests that
many QR are discovered and elicited. This result is not in line with, neither the
general opinion nor with related research (e.g., [30]) that QR are difficult to dis-
cover, or to discover them at all. In general, the discipline of specifying (writing)
requirements at the case company is good. A requirement only consists of one re-
quirement, i.e., two requirements are not written as one, with the only exception of
mixing FR and QR. Moreover, 56% of all QR are quantified with a direct metrics.
However, not all QR are suitable to be quantified, e.g., several security require-
ments. In addition, several QR refers to a certain standard where the quantification
may be hidden in the standard.

Quality requirements interdependencies can cause problems if ignored, as fou-
nd in Paper I. This makes it difficult to specify cross-cutting concerns. As a work-
around, the case company has a separate section for performance requirements.

4 Results 55

However, the problem with this solution is that not all requirements on a specific
subject are specified at the same place in the requirement specification, which may
lead to missing QR as the completeness could be more difficult to assess.

4.4 Paper IV - The Quality Performance Model

Paper IV presents the results of supporting release planning of QR through the
presentation and validation of the first complete version of the QUPER (quality
performance) model, including the detailed guidelines of how to apply QUPER in
practice. QUPER was developed to support release planning and roadmapping of
QR, more specifically with the goal to provide concepts for qualitative reasoning
of orders of magnitude rather than precise mathematical formulas. The model
was developed in close collaboration with a case company in the mobile handset
domain. The version of QUPER presented in Paper IV is based on previous work
(Paper IX, XI, XV, XVI, and XVIII) where different aspects of the model were
evaluated.

To apply QUPER in practice, seven steps are envisioned. First, pinpoint any
relevant QR and list them as candidate QR, then define which scale and measure-
ment unit that can be used to express the level of quality of a selected QR. In step 3,
is about identifying competing products’ as well as own products’ quality levels;
while in the forth step, market expectations are defined in terms of breakpoints.
Step 5 is about estimating the cost in terms of the values of cost barriers, and then
candidate requirements (Step 6) are proposed, discussed, and decided. Finally,
dependencies, in terms of how cost estimates are affected by other QR, are iden-
tified. In general, the results show that the QUPER model is easy to understand,
that the detailed guidelines work in an industrial environment and the model does
not take too much time to apply in practice. The detailed guidelines were found to
be helpful due to easy steps to follow, and in particular the provided examples for
each step. QUPER’s last step, how to identify cost dependencies, was viewed as
easy to follow, and at the same time detailed enough to be useful in practice.

The results from the validation indicate that QUPER is useful and applicable
in an industrial setting, and that the model improves the decision-making pro-
cess of release planning for quality requirements. In particular, the visualized
roadmap with relations to the market and competitors provides more substance
to decisions of what level of quality to aim for in the coming releases. In addi-
tion to the decision-making process, the results indicate that the QUPER model
could improve the communication between people through a ”common language”
(QUPER’s concepts) that is understood by everyone (that has used the model).

56 INTRODUCTION

4.5 Paper V - Setting Quality Targets for Coming Releases
with QUPER

Paper V presents one case of QUPER tailoring, implementation, and evaluation
conducted at a case company in the electronic payment-processing domain. The
main purpose of Paper V is to show how QUPER was tailored to fit a different
organization than the case company in the mobile handset domain, and how the
model performed in terms of usefulness and usability in an industrial environment
with professionals using real QR.

The overall result indicates that QUPER is relevant in early decision-making
process, e.g. release planning. The concepts of breakpoints, competitor analysis,
cost barriers, and identification of own products quality level provides a greater
understanding of the needed level of quality for the coming releases. In particular
the visualization of the roadmap view, provides a clear picture of the current mar-
ket situation, and what level of quality to aim for. The evaluation indicates, not
only that QUPER is applicable and relevant in the selected domain of electronic
payment-processing, extending beyond the previously investigated mobile handset
domain, but also that QUPER is applicable to more QR than performance require-
ments,which where applied in previous case studies of the model. Moreover, the
results show that the goal of QUPER to be domain-relevant by tailoring the model
is feasible.

4.6 Paper VI - A Prototype Tool for QUPER to Support
Release Planning of Quality Requirements

Based on the experiences from the two industry evaluations in Paper IV and V,
a tool was developed with the purpose of making the process more efficient, to
improve the possibility of visualization of the roadmap view, and to facilitate tech-
nology diffusion from academia to industry where tool support and tool adaptation
are important for the model’s scalability.

As the tool is a first prototype tool for QUPER, the first six steps of the QUPER
model in Paper IV were implemented. The development of the QUPER prototype
tool was carried out in close cooperation between academia and industry. The
development of the tool was conducted in two steps. First, requirements for the
tool was elicited from eleven practitioners at the case company where important
input to the development of the QUPER prototype tool was discovered. Second,
the first beta version of the QUPER prototype tool was evaluated in academia by
usability tests.

The QUPER prototype tool has eight main features, (1) the tool provides a
detailed step-by-step guide of how to use QUPER concepts, (2) a form for experi-
enced users to add and edit QR, (3) a generation of the roadmap view, (4) the tool
offers a set of options for managing features and QR, which are accessed through
a hierarchical tree, (5) basic information about all existing versions of a particular

5 Synthesis 57

QR is displayed in an activity window together with the roadmap view, (6) save
and load the information in the internal database to a text file using an XML-like
format, (7) import features and QR from spreadsheet files to provide the practi-
tioners with flexibility, and (8) a manual that is divided into two parts, one about
the QUPER model and one part specifically about the tool.

The tool was used and evaluated at a case company. The evaluation shows
that the QUPER prototype tool’s generated roadmap provides a clear overview of
a product’s and competing products’ level of quality, and what level of quality
to aim for in the coming releases. In addition, the tool helps practitioners to use
the QUPER model in a standardized way to avoid inconsistent usage of QUPER’s
concepts.

5 Synthesis

This section draws together the obtained results in order to provide answers to the
research questions asked in this thesis.

• RQ1: Which challenges related to quality requirements are experienced by
practitioners in the market-driven software development industry? In the
study investigating quality requirements in industrial practice (Paper I) it
was shown that many challenges were identified among the case companies.
One challenge that emerged was interdependency management of quality re-
quirements. In general, the results indicate a low extent of interdependency
management. The identification of dependencies is a complex task and the
potential number of dependencies may be very large. Therefore, the un-
derstanding of which interdependency types are considered most important
(REQUIRES and CVALUE) may give an indication of which interdepen-
dencies to start to identify. This can be seen as rather interesting as most
SE research on QR is performed on realization/implementation level where
AND and OR are the dominant perspectives investigated. Another challenge
is cost estimation of QR. The results revealed that one predominant problem
in estimating QR was their propensity to impact larger parts of a system,
and span over several (or almost all) FR. This is strongly related to the level
of dismissal of QR late in projects. A third challenge is related to the late
dismissal of QR. The reasons for late dismissal of QR are: (1) poor cost
estimations, (2) lack of resources, and (3) that QR have lower priority than
FR. However, the main challenge is that QR are not taken into consideration
during project planning.

• RQ2: How are quality requirements prioritized in the market-driven soft-
ware development industry? In Paper II, prioritization of QR were investi-
gated. The findings show that ad-hoc is the dominant prioritization method

58 INTRODUCTION

for quality requirements, followed by numerical assignment. Although nu-
merical assignment is used to prioritize QR, in most cases, QR are by default
out into the not critical category, i.e., QR always have lower priority than FR.
This result supports the challenge that QR have lower priority than FR in
RQ1. Reasons for not prioritizing QR were not related to the prioritization
process itself, but rather how QR were treated in the overall requirements
engineering process. The fact that companies use ad-hoc prioritization may
be explained by several reasons. One reason could be that there is inade-
quate technology and knowledge transfer from research to industry. Also, a
likely explanation could be that there is a lack of usable and useful (scalable)
prioritization techniques.

• RQ3: How are quality requirements specified in the market-driven software
development industry? Looking into how QR are specified in an industrial
requirements specification (Paper III), the results reveal that all requirements
in the specification were written in structured natural language without ex-
plicit specification of interdependencies across requirements. As QR typi-
cally crosscut a functional decomposition, the lack of referencing structure
creates obstacles. For example, FR are sometimes repeated several times
for each associated QR. Another example is having a separate section for
crosscutting concerns, apart from the functional structure of the specifica-
tion. This causes problems with getting an overview of QR, which may lead
to deficiencies in completeness and even contradicting requirements discov-
ered late in the process. The findings from this study suggest that methods
for QR need to encompass many aspects to comprehensively support work-
ing with QR. Solely focusing on, for example, quantification of QR might
overlook important requirements since there are many quality requirements
in the studied specification where quantification is not appropriate.

• RQ4: How can the specification of quality requirements be improved when
setting future quality targets in a market-driven software development envi-
ronment? The improvement of the specification of QR future quality targets
was investigated in Paper IV. In general, the results show that the QUPER
model is easy to understand, that the detailed guidelines work in an industrial
environment and the model does not take too much time to apply in practice.
The detailed guidelines were found to be helpful due to easy steps to follow,
and in particular the provided examples for each step. The results from the
validation indicate that QUPER is useful and applicable in an industrial set-
ting, and that the model improves the decision-making process. Hence, the
complete version of the QUPER model improves the specification of quality
requirements when setting future quality targets. Although all three views in
the QUPER model help professionals when specifying future quality targets
for QR, the results show that the roadmap view is the most important view
of the QUPER model. The roadmap view provides a great visualization of

6 Research Agenda 59

the market situation and an easy to understand overview, which improves
the specification of quality requirements future quality targets.

• RQ5: To what extent does the use of QUPER as a part of release planning
of quality requirements result in improvements with regards to high-level
decision-making? In all three studies (Paper IV, V, and VI), the results sug-
gest that the QUPER model could improve the release planning process and
understanding of QR, in particular with the visualization of the roadmap
view. The central part of the improvement in the decision-making process is
the roadmap view with the importance of relating the needed level of qual-
ity to the market and the competitors. The decisions about the needed level
of quality will have a better substance compared to just presenting a met-
ric of the quality level. Furthermore, in Paper VI, the findings suggest that
the QUPER prototype tool could help in setting the right targets due to the
visualization of the generated roadmap view.

• RQ6: How can QUPER be tailored to suit industrial environments? One
goal of the QUPER model is for the model to be domain-relevant, i.e., it
should be possible to combine the concepts of QUPER with an organiza-
tion’s existing practices by tailoring the model. Two studies (Paper V and
VI) examined how the QUPER model could be tailored to suit organizations
existing practices. In Paper V, the results show that it is possible, with a few
modifications where the main addition to QUPER’s steps was a competitor
analysis, to adopt and tailor QUPER’s generic concepts and guidelines (as
described in Paper IV) to the case company. In Paper VI, a prototype tool
was developed where one major objective is to evaluate how tool support of
the QUPER model may improve the practical application of the model in an
industrial context. The results indicate that the flexible workflow of the tool,
i.e., not being forced to use all of QUPER’s steps, makes it easier to adopt
the QUEPR model to existing practices, even within the same organization
where different projects work in different ways.

6 Research Agenda

This section describes how the research can be continued in the future. All six
included papers have possibilities of further research, which are presented and
discussed in relation to each paper.

6.1 FR1: Increasing Survey Sample with Focus on Diver-
sity

Paper I and II take a first step towards a deeper understanding of QR challenges in
industry. However, it would be valuable to add further interviews with people in

60 INTRODUCTION

other organizations to provide a more comprehensive view of QR challenges. Al-
though the sample in the conducted qualitative surveys is broad, organizations that
use market-driven development and open source software would further increase
the range of the sample. Moreover, agile development approaches are becoming
more common in the software industry, and further experiences from agile devel-
opment would be valuable.

The performed studies in Paper I and II focused on the product and project
manager roles. It would be valuable to include, for example, developers to be able
to understand QR challenges during the entire lifecycle. This could be conducted
in relation to the three views of quality in the ISO/IEC 2502 standard, internal,
external, and quality in use. The internal view of quality relates to the product
view and reflects the perspectives of developers and designers, the external view of
quality relates to the project view and reflects to the perspective of the project and
product manager, while quality in use aligns to the business perspective meaning
the customers and the users of the system.

6.2 FR2: Deeper Analysis of QR Metrics in Industry

Paper III takes a first step towards a deeper understanding of how QR are specified,
and particular how QR are quantified in an industrial requirements specification.
However, the investigation only use archival data, hence, to complement this study,
an interview study with sub-domain experts would improve the understanding of
the rationale behind the specifications of requirements. The impact of standards
on the requirements practice is only briefly analyzed in Paper III, therefore, to
further understand the impact of standards, interviews with practitioners are rec-
ommended.

6.3 FR3: Further Improvements of the QUPER Model

The QUPER model could be applied in additional organizations to examine its
usefulness and limitations, in particular, in a dynamic validation of the version
described in Paper IV. The use of the QUPER model’s concepts shows promise,
but the current state of QUPER has barely begun to investigate the area of release
planning of QR. Although the QUPER model has been applied in two compa-
nies, organizations and projects with different characteristics need to be involved.
Furthermore, it could be possible to investigate if software architecture evaluation
methods, such as ATAM, may be used together with QUPER as input to the second
cost barrier. The evaluations in this thesis indicate that the second cost barrier is
related to new software architecture. Therefore, if methods such as ATAM could
evaluate the current architecture, identify the current level of quality for a certain
quality indicator the software architecture could generate, may make it easier to
estimate QUPER’s second cost barrier.

7 Conclusion 61

The QUPER prototype tool needs further improvements and evaluations. Im-
provements are needed, e.g., to include all steps of QUPER as presented in Paper
IV, in particular the cost dependency step. Dependencies may have a major im-
pact on the estimated cost for other features. The cost to improve the quality level
for one feature may imply an improved level of quality for other features. This
may lead to a change of other features cost barriers and which feature to select for
the coming release. Therefore, it is important to implement the cost dependency
step into the QUPER prototype tool. Moreover, to include a generated roadmap
at each step in the detailed step-by-step guide is important. Further evaluations in
industry in different domains where the long-term effect, in terms of benefits and
challenges, of using the QUPER prototype tool needs to be investigated to validate
its feasibility and scalability.

7 Conclusion

In order to help software product developing organizations to improve, and to solve
real problems faced by professionals in an industrial environment, research should
be based on industry needs and challenges. The solutions and results should be
validated and evaluated in a non-simulated environment for their usefulness and
scalability. The research presented in this thesis stemmed from a concrete need for
supporting QR to enhance high-level decision-making related to release planning
and roadmapping. The identification of QR challenges faced by professionals (Part
I) was needed to figure out what, and how to improve the ability to make early
estimates with adequate accuracy of QR. The QUPER model (Part II) describes
how to support QR in the release planning process, and the validation and transfer
to industry was a way of refining and evaluating the model and contributing to
industry practice.

The overall contribution of this thesis is improving practice of supporting QR
in release planning and roadmapping, and adding to a field of research with knowl-
edge of state-of-practice to provide a focus of further research based on real indus-
try needs.

The importance of QR needs to be acknowledged by practitioners, not only in
theory, but also in practice. There seems to be a bespoke development mindset
in the market-driven developing companies, where the immediate project gets a
higher priority than the long-term evolution of the product. Having an extra func-
tion is often considered more valuable than higher quality. This may be due to
lack of knowledge and difficulties in committing to QR, especially when there is
pressure to deliver the product. However, the main problem is that QR are not
taken into consideration during product planning and thus not included as hard
requirements in the projects since QR are often by default seen as having a lower
priority than FR, and only prioritized if time and resources are available once all
FR have been implemented in the coming release, making the realization of QR a

62 INTRODUCTION

reactive rather than proactive effort. Product management may thus not be able to
plan and rely on QR to achieve competitive advantages.

The evaluation of the QUPER model indicates that QUPER is relevant in early
decision-making process in relation to release planning and roadmapping. The
concepts of breakpoints, competitor analysis, cost barriers, and identification of
own products quality level provides a greater understanding of the needed level of
quality for the coming releases. In particular the visualization of the roadmap view,
provides a clear picture of the current market situation, and what level of quality to
aim for. Moreover, the QUPER model can be used to support early discovery and
quantified quality targets in relation to the market and users’ expectations, which
minimizes the risks of architectural failure and falling short of meeting users’ real
needs when design the software architecture. The results show that the goal of
QUPER to be domain-relevant by tailoring the model is feasible, as the model has
been tailored to suit organizations in both the mobile handset, and the electronic
payment processing domains.

The addition of the QUPER prototype tool shows that the tool’s generated
roadmap provides a clear overview of a product’s and competing products’ level
of quality, and what level of quality to aim for in the coming releases. The vi-
sualization of the roadmap may be good when arguing the importance of a QR’s
needed level of quality for coming releases. The QUPER prototype tool can help
practitioners to use the QUPER model in a standardized way to avoid inconsistent
usage of QUPER’s concepts, which may be the case in a manual usage of QUPER.

Although several QR challenges faced by 22 professionals from 11 companies
have been identified, it is not possible to claim that these challenges are completely
representative of the population. Therefore, further interviews from other organi-
zations may be needed to provide a more comprehensive view. In addition, QR
challenges faced by other roles than product managers and project leaders would
provide an understanding of QR challenges during the entire lifecycle. The ini-
tial results of the QUPER model and the prototype tool show great promise, but
also give information about limitations on which future research can be based on.
To fully understand and evaluate the potential benefits of the QUPER model, the
model should be used in a project from its start until a product is launched to the
market. Moreover, the cost dependency step needs further evaluations, in particu-
lar dynamic validations, and to be implemented in the QUPER prototype tool.

The overall goal of this thesis is to increase the awareness and understanding
of quality requirements, and to find means for improving the ability to make early
estimates of quality requirements, e.g., performance requirements, in order to en-
hance high-level decision-making related to release planning and roadmapping.
The conception and gradual refinement of the QUPER model grew out of the col-
laboration between academia and industry. QUPER is aimed at addressing some of
the challenges identified in cooperation with our industry partner, and challenges
identified in the research. Initial results of QUPER show great promise, but also
give us information about limitations on which future research can be based on.

BIBLIOGRAPHY

[1] A. Abran, J.W. Moore, P. Bourque, R. Dupuis, and L.L. Tripp. SWEBOK:
Guide to the Software Engineering Body of Knowledge. IEEE Computer
Society, 2004.

[2] M. van den Akker, S. Brinkkemper, G. Diepen, and J. Versendaal. Determi-
nation of the next release of a software product: an approach using integer
linear programming. In Proceedings of the 11th International Workshop Re-
quirements Engineering: Foundation for Software Quality, pages 119–124,
2005.

[3] M. van den Akker, S. Brinkkemper, G. Diepen, and J. Versendaal. Software
product release planning through optimization of what-if analysis. Informa-
tion and Software Technology, 50(1–2):101–111, 2008.

[4] A. Al-Emran and D. Pfahl. Operational planning, re-planning and risk anal-
ysis for software releases. In Lecture Notes in Computer Science, volume
4589, pages 315–329, 2007.

[5] A. Al-Emran, D. Pfahl, and G. Ruhe. A method for re-planning of soft-
ware release planning using discrete-event simulation. Software Process
Improvement and Practice, 13(1):19–33, 2008.

[6] A. Al-Emran, D. Pfahl, and G. Ruhe. Decision support for product release
planning based on robustness analysis. In Proceedings of the 18th IEEE
International Requirements Engineering Conference, pages 157–166, 2010.

[7] H. Al-Kilidar, K. Cox, and B. Kitchenham. The use and usefulness of the
ISO/IEC 9126 quality standard. In Proceedings of the International Sym-
posium on Empirical Software Engineering, pages 122–128, 2005.

[8] T. AlBourae, G. Ruhe, and M. Moussavi. Lightweight replanning of soft-
ware product releases. In Proceedings of the First International Workshop
on Software Product Management, pages 27–34, 2006.

64 INTRODUCTION

[9] D. Alwis, V. Hlupic, and R. Fitzgerald. Intellectual capital factors that im-
pact of value creation. In Proceedings of the 25th International Conference
on Information Technology Interfaces, pages 411–416, 2003.

[10] ANSI/IEEE Std. 830. Guide to software requirements specification, 1998.

[11] J. Asundi, R. Kazman, and M. Klein. Using economic considerations to
choose among architecture design alternatives. Technical report, Carnigie
Mellon - Software Engineering Institute, 2001.

[12] A. Aurum and C. Wohlin. Engineering and Managing Software Require-
ments. Springer, 2005.

[13] A.J. Bagnall, V.J. Rayward-Smith, and I.M. Whittley. The next release prob-
lem. Information and Software Technology, 43(14):883–890, 2001.

[14] M.R. Barbacci, R. Ellison, A.J. Lattanze, J.A. Stafford, C.B. Weinstock,
and W.G. Wood. Quality Attribute Workshops (QAWs). Technical report,
Carnigie Mellon - Software Engineering Institute, 2003.

[15] S. Barney, A. Aurum, and C. Wohlin. A product management challenge:
Creating software product value through requirements selection. Journal of
Systems Architecture, 54(6):576–593, 2008.

[16] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley, 2003.

[17] K. Beck. Extreme Programming Explained. Addison-Wesley, 2005.

[18] W. Bekkers, M. Spruit, I. van de weerd, and S. Brinkkemper. A situational
assessment method for software product management. In Proceedings of
the 18th European Conference on Information Systems, pages 22–34, 2010.

[19] W. Bekkers, I. van de weerd, S. Brinkkemper, and A. Mahieu. The influence
of situational factors in software product management: An empirical study.
In Proceedings of the Second International Workshop on Software Product
Management, pages 41–48, 2008.

[20] W. Bekkers, I. van de weerd, M. Spruit, and S. Brinkkemper. A framework
for process improvement in software product management. In Proceedings
of the 17th European Conference on Systems, Software and Services Pro-
cess Improvement, pages 1–12, 2010.

[21] P. Berander. Using students as subjects in requirements prioritization. In
Proceedings of the International Symposium on Empirical Software Engi-
neering, pages 167–176, 2004.

BIBLIOGRAPHY 65

[22] P. Berander and A. Andrews. Engineering and Managing Software Require-
ments, chapter Requirements Prioritization, pages 69–94. Springer, 2005.

[23] B. Berenbach, D.J. Paulish, J. Kazmeier, and A. Rudorfer. Software &
Systems Requirements Engineering: In Practice. Pearson Education Inc.,
2009.

[24] B. Bergman and B. Klefsjö. Quality from Customer Needs to Customer
Satisfaction. Studentlitteratur, 2003.

[25] R. Berntsson Svensson, T. Gorschek, and B. Regnell. Quality requirements
in practice: An interview study in requirements engineering for embedded
systems. In Proceedings of the 15th International Working Conference on
Requirements Engineering: Foundation for Software Quality, pages 218–
232, 2009.

[26] R. Berntsson Svensson, M. Höst, and B. Regnell. Managing quality require-
ments: A systematic review. In Proceedings of the 36th EUROMICRO Con-
ference on Software Engineering and Advanced Applications, pages 261–
268, 2010.

[27] E. Bjarnason, K. Wnuk, and B. Regnell. Overscoping: Reasons and conse-
quences - a case study on decision making in software product management.
In Proceedings of the Fourth International Workshop on Software Product
Management, pages 30–39, 2010.

[28] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and R. Selby.
Cost models for future software life cycle processes: Cocomo 2.0. Annals
of Software Engineering, 1(1):57–94, 1995.

[29] B.W. Boehm, J.R. Brown, and M. Lipow. Quantitative evaluation of soft-
ware quality. In Proceedings of the Second International Conference on
Software Engineering, pages 592–605, 1976.

[30] A. Borg, A. Yong, P. Carlshamre, and K. Sandahl. The bad conscience
of requirements engineering: An investigation in real-world treatment of
non-functional requirements. In Proceedings of the Third Conference on
Software Engineering and Practice in Sweden, pages 1–8, 2003.

[31] J. Bosch. Designing and Use of Software Architecture Adopting and Evolv-
ing a Product Line Approach. Pearson Education, 2000.

[32] K.K. Breitman, J.C.S.P. Leite, and A. Finkelstein. The world’s stage: A
survey on requirements engineering using a real-life case study. Journal of
the Brazilian Computer Scociety, 6(1):13–38, 1999.

[33] F.P. Brooks Jr. No silver bullet: Essences and accidents of software engi-
neering. Computer, 4(4):10–19, 1987.

66 INTRODUCTION

[34] P. Carlshamre. Release planning in market-driven software product de-
velopment: Provoking an understanding. Requirements Engineering,
7(3):139–151, 2002.

[35] P. Carlshamre and B. Regnell. Requirements lifecycle management and
release planning in market-driven requirements engineering processes. In
Proceedings of the 11th International Workshop on Database and Expert
Systems Applications, pages 961–965, 2000.

[36] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och Dag.
An industrial survey of requirements interdependencies in software product
release planning. In Proceedings of the Fifth IEEE International Symposium
on Requirements Engineering, pages 84–91, 2001.

[37] E. Carmel and S. Becker. A process model for packaged software devel-
opment. IEEE Transaction on Engineering and Management, 42(1):50–61,
1995.

[38] J. Carriere, R. Kazman, and I. Ozkaya. A cost-benefit framework for mak-
ing architectural decisions in a business context. In Proceedings of the 32nd
international conference on software engineering, pages 149–157, 2010.

[39] M.B. Chrissis, M. Konrad, and S. Shrum. CMMI: Guidelines for Process
Integration and Product Improvement. Addison-Wesley, 2003.

[40] L. Chung and J.C.S do Prado Leite. On non-functional requirements in
software engineering. In Lecture Notes in Computer Science, volume 5600,
pages 363–379, 2009.

[41] L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. NFR in Software Engi-
neering. Kluwer Academic Publishers, 2000.

[42] J. Cleland-Huang. Toward improved traceability of non-functional require-
ments. In Proceedings of the Third International Workshop on Traceability
in Emerging Forms of Software Engineering, pages 14–19, 2005.

[43] J. Cleland-Huang, C.K. Chang, and M. Christensen. Event-based trace-
ability for managing evolutionary change. IEEE Transactions on Software
Engineering, 29(9):796–810, 2003.

[44] J. Cleland-Huang, C.K.Chang, G. Sethi, K. Javvaji, H. Hu, and J. Xia. Au-
tomating speculative queries through event-based requirements traceability.
In Proceedings of the 10th Anniversary IEEE Joint International Confer-
ence on Requirements Engineering, pages 289–298, 2002.

BIBLIOGRAPHY 67

[45] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, and
S. Christina. Goal-centric traceability for managing non-functional require-
ments. In Proceedings of the 27th International Conference on Software
Engineering, pages 362–371, 2005.

[46] J. Cleland-Huang, R. Settimi, X. Zou, and P. Sole. Automated classification
of non-functional requirements. Requirements Engineering, 12(2):103–
120, 2007.

[47] CMMI Product Team. Capability Maturity Model Integration (CMMI): Ver-
sion 1.1, 2002.

[48] J.M. Coakes and E.W. Coakes. Specification in context: Stakeholders, sys-
tems and modeling of conflict. Requirements Engineering, 5(2):103–113,
2000.

[49] A. Cockburn. Agile Software Development. Addison-Wesley, 2002.

[50] D. Condon. Software Product Management - Managing Software Develop-
ment from Idea to Product to Marketing to Sales. Aspatore Books, 2002.

[51] R.G. Cooper. Winning at New Products. Basic Books, 2001.

[52] M.A. Cusomano and R.W. Selby. Microsoft Secrets. Simon and Schuster,
1995.

[53] L.M. Cysneiros and J.C.S.P. Leite. Integrating non-functional requirements
into data model. In Proceedings of the Fourth IEEE International Sympo-
sium on Requirements Engineering, pages 162–171, 1999.

[54] L.M. Cysneiros and J.C.S.P. Leite. Nonfunctional requirements: From elic-
itation to conceptual models. IEEE Transactions on Software Engineering,
30(5):328–349, 2004.

[55] A. Davis, O. Dieste, A. Hickey, N. Juristo, and A.M. Moreno. Effective-
ness of requirements elicitation techniques: Empirical results derived from
a systematic review. In Proceedings of the 14th IEEE International Re-
quirements Engineering Conference, pages 176–185, 2006.

[56] A.M. Davis. Software Requirements: Objects, Functions and States. Pren-
tice Hall, 1993.

[57] B. Deifel. A process model for requirements engineering of ccots. In Pro-
ceedings of the 10th International Workshop on Database and Expert Sys-
tems Applications, pages 316–320, 1999.

[58] M. Denne and J. Cleland-Huang. The incremental funding method: data-
driven software development. IEEE Software, 21(3):39–47, 2004.

68 INTRODUCTION

[59] Y. Dittrich, K. Rönkkö, J. Eriksson, C. Hansson, and O. Lindeberg. Co-
operative method development, combining qualitative empirical research
with technique, and process improvement. Empirical Software Engineer-
ing, 13(3):231–260, 2008.

[60] L. Dobrica and E. Niemela. A survey on software architecture analysis
methods. IEEE Transactions on Software Engineering, 28(7):638–653,
2002.

[61] J. Doerr, D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki. Non-functional
requirements in industry - three case studies adopting an experience-based
nfr method. In Proceedings of the 13th IEEE International Conference on
Requirements Engineering, pages 373–382, 2005.

[62] C. Ebert. Putting requirement management into praxis: dealing with non-
functional requirements. Information and Software Technology, 40(3):175–
185, 1998.

[63] C. Ebert. Requirements before the requirements: understanding the up-
stream impacts. In Proceedings of the 13th IEEE International Conference
on Requirements Engineering, pages 117–124, 2005.

[64] C. Ebert. The impacts of software product management. The Journal of
Systems and Software, 80(6):850–861, 2007.

[65] C. Ebert and M. Smouts. Tricks and traps of initiating a product line concept
in existing products. In Proceedings of the 25th International Conference
on Software Engineering, pages 520–525, 2003.

[66] N.A. Ernst and J. Mylopoulos. On the perception of software quality re-
quirements during the project lifecycle. In Lecture Notes in Computer Sci-
ence, volume 6182, pages 143–157, 2010.

[67] A. Fink. The survey handbook. Sage Publications, 2003.

[68] A. Finkelstein and J. Dowell. A comedy of errors: The london ambulance
service case study. In Proceedings of the Eight International Workshop on
Software Specification and Design, pages 2–4, 1996.

[69] G. Fitzgerald and N. Russo. The turnaround of the london ambulance ser-
vice computer-aided despatch system. European Journal of Information
Systems, 14(3):244–257, 2005.

[70] E. Folmer and J. Bosch. Architecting for usability: a survey. The journal of
systems and software, 70(1–2):61–78, 2002.

[71] T. Gilb. Competitive Engineering. Elsevier Butterworth-Heinemann, 2005.

BIBLIOGRAPHY 69

[72] R.L. Glass. The software-research crisis. IEEE Software, 11(6):42–47,
1994.

[73] M. Glinz. On non-functional requirements. In Proceedings of the 15th IEEE
International Requirements Engineering Conference, pages 21–26, 2007.

[74] L. Gorchels. The Product Manager’s Handbook: The Complete Product
Management Resource. McGraw-Hill, 2006.

[75] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. A model for technology
transfer in practice. IEEE Software, 23(6):88–95, 2006.

[76] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. Industry evaluation of
the requirements abstraction model. Requirements Engineering, 12(3):163–
190, 2007.

[77] T. Gorschek, E. Tempero, and L. Angelis. A large-scale empirical study of
practitioners’ use of object-oriented concepts. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, pages 115–
124, 2010.

[78] T. Gorschek and C. Wohlin. Requirements abstraction model. Requirements
Engineering, 11(1):79–101, 2006.

[79] D. Greer and G. Ruhe. Software release planning: An evolutionary and
iterative approach. Information and Software Technology, 46(4):243–253,
2004.

[80] D. Gross and E. Yu. From non-functional requirements to design through
patterns. Requirements Engineering, 6(1):18–36, 2001.

[81] M. Hassenzahl, R. Wessler, and K.C. Hamborg. Exploring and understand-
ing product qualities that users desire. In Proceedings of the 15th Annual
Conference of the Human-Computer Interaction Group of the British Com-
puter Society, pages 95–96, 2001.

[82] M. Höst, B. Regnell, J. Natt och Dag, J. Nedstam, and C. Nyberg. Explor-
ing bottlenecks in market-driven requirements management process with
discrete event simulation. The Journal of Systems and Software, 59(3):323–
332, 2001.

[83] IEEE Std 1061-1998. IEEE Standard for a software quality metrics method-
ology, 1998.

[84] IEEE Std 1220-2005. IEEE Standard for Application and Management of
the Systems Engineering Process, 2005.

70 INTRODUCTION

[85] International Software Product Management Association. SPM framework,
July 2011.

[86] ISO/IEC 12207:1997. Software life cycle process, 1997.

[87] ISO/IEC 15288:2002. Systems engineering - system life cycle processes,
2002.

[88] ISO/IEC 9126-2001(E). Software engineering - product quality - part 1:
Quality model, 2001.

[89] S. Jacobs. Introducing measurable quality requirements: a case study. In
Proceedings of the Fourth IEEE International Symposium on Requirements
Engineering, pages 172–179, 1999.

[90] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Develop-
ment Process. Addison Wesley, 1999.

[91] S. Jantunen, L. Lehtola, C. Gause, R. Dumdum, and R.J. Barnes. The chal-
lenge of release planning: Visible but not seen? In The Fifth International
Workshop on Software Product Management, 2011.

[92] S. Jantunen, K. Smolander, and D.C. Gause. How internationalization of a
product changes requirements engineering activities: An exploratory study.
In Proceedings of the 15th IEEE International Requirements Engineering
Conference, pages 163–172, 2007.

[93] M. Jørgensen and M. Shepperd. A systematic review of software develop-
ment cost estimation studies. IEEE Transactions on Software Engineering,
31(1):33–53, 2007.

[94] H-W. Jung. Optimizing value and cost in requirements analysis. IEEE
Software, 15(4):74–78, 1998.

[95] H-W. Jung, S-G. Kim, and C-S. Chung. Measuring Software Product Qual-
ity: A Survey of ISO/IEC 9126. IEEE Software, 21(5):88–92, 2004.

[96] H. Kaindl, S. Brinkkemper, J.R. Jr Bubenko, B. Farbey, S.J. Greenspan,
J.C. Sampaio do Prado Leite, N.R. Mead, J. Mylopoulos, and J. Siddiqi.
Requirements engineering and technology transfer: Obstacles, incentives
and improvement agenda. Requirements Engineering, 7(3):113–123, 2002.

[97] H. Kaiya, A. Osada, and K. Kaijiri. Identifying stakeholders and their pref-
erences about nfr by comparing use case diagrams of several existing sys-
tems. In Proceedings of the 12th IEEE International Conference on Re-
quirements Engineering, pages 112–121, 2004.

BIBLIOGRAPHY 71

[98] E. Kamsties, K. Hörnmann, and M. Schlich. Requirements engineering in
small and medium enterprises. In Proceedings of the International Con-
ference on European Industrial Requirements Engineering, pages 84–90,
1998.

[99] J. Karlsson. Software requirements prioritizing. In Proceedings of the Sec-
ond IEEE International Conference on Requirements Engineering, pages
110–116, 1996.

[100] J. Karlsson. Managing software requirements using quality function de-
ployment. Software Quality Journal, 6(4):311–325, 1997.

[101] J. Karlsson, S. Olsson, and K. Ryan. Improved practical support for large-
scale requirements prioritising. Requirements Engineering, 2(1):51–60,
1997.

[102] J. Karlsson and K. Ryan. A cost-value approach for prioritizing require-
ments. IEEE Software, 14(5):67–74, 1997.

[103] J. Karlsson, C. Wohlin, and B. Regnell. An evaluation of methods for priori-
tising software requirements. Information and Software Technology, 39(14–
15):939–947, 1998.

[104] L. Karlsson, P. Berander, B. Regnell, and C. Wohlin. Requirements priori-
tization: An experiment on exhaustive pair-wise comparisons versus plan-
ning game partitioning. In Proceedings of the Eight International Confer-
ence on Empirical Assessment in Software Engineering, pages 145–154,
2004.

[105] L. Karlsson, Ȧ.G. Dahlstedt, B. Regnell, J. Natt och Dag, and A. Persson.
Requirements engineering challenges in market-driven software develop-
ment - an interview study with practitioners. Information and Software
Technology, 49(6):588–604, 2007.

[106] R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenario-based analysis
of software architecture. IEEE Software, 13(6):47–55, 1996.

[107] R. Kazman, J. Asundi, and M. Klein. Making architecture design decisions:
An economic approach. Technical report, Carnigie Mellon - Software En-
gineering Institute, 2002.

[108] R. Kazman, M. Barbacci, M. Klein, and S.J. Carriere. Experience with
performing architecture tradeoff analysis. In Proceedings of the 21st Inter-
national Conference on Software Engineering, pages 54–63, 1999.

[109] T. Kilpi. Product management challenge to software change process: Pre-
liminary results from three smes experiments. Software Process Improve-
ment and Practice, 3(3):165–175, 1997.

72 INTRODUCTION

[110] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C. Hoaglin,
K. El Emam, and J. Rosenberg. Preliminary guidelines for empirical re-
search in software engineering. IEEE Transaction on Software Engineering,
28(8):721–734, 2002.

[111] R.N. Kostoff and R.R. Schaller. Science and technology roadmaps. IEEE
Transaction on Engineering Management, 48(2):132–143, 2001.

[112] G. Kotonya and I. Sommerville. Requirements Engineering - Processes and
Techniques. John Wiley & Sons, 1998.

[113] A. van Lamsweerde. Goal-oriented requirements engineering: A guided
tour. In Proceedings of the Fifth International Symposium on Requirements
Engineering, pages 249–261, 2001.

[114] A. van Lamsweerde. Goal-oriented requirements enginering: A roundtrip
from research to practice. In Proceedings of the 12th IEEE International
Requirements Engineering Conference, pages 4–7, 2004.

[115] S. Lauesen. Software Requirements - Styles and Techniques. Addison-
Wesley, 2002.

[116] D. Leffingwell and D. Widrig. Managing Software Requirements - A Unified
Approach. Addison-Wesley, 2000.

[117] L. Lehtola and M. Kauppinen. Suitability of requirements prioritization
methods for market-driven software product development. Software Pro-
cess Improvement and Practice, 11(1):7–19, 2006.

[118] L. Lehtola, M. Kauppinen, and S. Kujala. Requirements prioritization chal-
lenges in practice. In Proceedings of the Fifth International Conference on
Product Focused Software Process Improvement, pages 497–508, 2004.

[119] L. Lehtola, M. Kauppinen, and S. Kujala. Linking business view to re-
quirements engineering: Long-term product planning by roadmapping. In
Proceedings of the 13th IEEE International Conference on Requirements
Engineering, pages 439–443, 2005.

[120] P. Loucopoulos and V. Karakostas. System Requirements Engineering.
McGraw-Hill Book Company Europe, 1995.

[121] M. Lubars, C. Potts, and C. Richter. A review of the state of the practice
in requirements modelling. In Proceedings of the First IEEE International
Symposium on Requirements Engineering, pages 2–14, 1993.

[122] L.A. Macaulay. Requirements Engineering. Springer-Verlag, 1996.

BIBLIOGRAPHY 73

[123] N. Maiden. What has requirements research ever done for us. IEEE Soft-
ware, 22(4):104–105, 2005.

[124] S. Maurice, G. Ruhe, O. Saliu, and A. Ngo-The. Value-Based Software
Engineering, chapter Decision Support for Value-Based Software Release
Planning, pages 247–261. Springer, 2006.

[125] J.A. McCall and M. Matsumoto. Software quality metrics enhancements,
vol. i-ii. Technical report, Rome Air Development Center, 1980.

[126] J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunc-
tional requirements: A process-oriented approach. IEEE Transactions on
Software Engineering, 18(6):483–497, 1992.

[127] C.J. Neill and P.A. Laplante. Requirements engineering: the state of the
practice. IEEE Software, 20(6):40–45, 2003.

[128] A. Ngo-The and G. Ruhe. A systematic approach for solving the wicked
problem of software release planning. Soft Computing - A Fusion of Foun-
dations, Methodologies and Applications, 12(1):95–108, 2008.

[129] L. Nguyen and P.A. Swatman. Managing the requirements engineering pro-
cess. Requirements Engineering, 8(1):55–68, 2003.

[130] T. Olsson, R. Berntsson Svensson, and B. Regnell. Non-functional require-
ments metrics in practice - an empirical document analysis. In Workshop
on Measuring Requirements for Project and Product Success, 2007.

[131] B. Paech and T. Wetter. Rational quality requirements for medical software.
In Proceedings of the 30th International Conference on Software Engineer-
ing, pages 633–638, 2008.

[132] M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber. Capability maturity
model integration for software: Version 1.1, 1993.

[133] D.A. Penny. An estimation-based management framework for enhancive
maintenance in commercial software products. In Proceedings of the Inter-
national Conference on Software Maintenance, pages 122–130, 2002.

[134] F. Pettersson, M. Ivarsson, and T. Gorschek. A practitioner’s guide to light
weight software process assessment and improvement planning. Journal of
Systems and Software, 81(6):972–995, 2008.

[135] S.L. Pfleeger. Understanding and improving technology transfer in software
engineering. Journal of Systems and Software, 47(2):111–124, 1999.

[136] S.L. Pfleeger. Software Engineering - Theory and practice. Prentice-Hall,
2001.

74 INTRODUCTION

[137] B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Specification
and Z. Prentice Hall, 1996.

[138] C. Potts. Invented requirements and imagined customers: requirements en-
gineering for off-the-shelf software. In Proceedings of the Second IEEE
International Symposium on Requirements Engineering, pages 128–130,
1995.

[139] Project Management Institute. A guide to the project management body of
knowledge (PMBOKGuide). PA: Project Management Institute, 2000.

[140] B. Regnell, P. Beremark, and O. Eklundh. A market-driven requirements
engineering process - results from an industrial process improvement pro-
gramme. Requirements Engineering, 3(2):121–129, 1998.

[141] B. Regnell, R. Berntsson Svensson, and K. Wnuk. Can we beat the com-
plexity of very large-scale requirements engineering? In Lecture Notes in
Computer Science, volume 5025, pages 123–128, 2008.

[142] B. Regnell and S. Brinkkemper. Engineering and Managing Software Re-
quirements, chapter Market-Driven Requirements Engineering for Software
Products, pages 287–308. Springer, 2005.

[143] B. Regnell, M. Höst, and R. Berntsson Svensson. A quality performance
model for cost-benefit analysis of non-functional requirement applied to the
mobile handset domain. In Lecture Notes in Computer Science, volume
4542, pages 277–291, 2007.

[144] B. Regnell, M. Höst, J. Natt och Dag, P. Beremark, and T. Hjelm. An indus-
trial case study on distributed prioritization in market-driven requirements
engineering for packaged software. Requirements Engineering, 6(1):51–62,
2001.

[145] B. Regnell, B. Paech, A. Aurum, C. Wohlin, A. Dutoit, and J. Natt och Dag.
Requirements mean decisions! - research issues for understanding and sup-
porting decision-making in requirements engineering. In Proceedings of the
First Swedish Conference on Software Engineering Research and Practice,
pages 49–52, 2001.

[146] S. Robertson and J. Robertson. Mastering the Requirements Process. ACM
Press, 1999.

[147] C. Robson. Real World Research. Blackwell, 2002.

[148] S. Rochimah, W.M.N. Kadir, and A.H. Abdullah. An evaluation of trace-
ability approaches to support software evolution. In Proceedings of the 2007
International Conference on Software Engineering Advances, 2007.

BIBLIOGRAPHY 75

[149] G-C. Roman. A taxonomy of current issues in requirements engineering.
IEEE Computer, 18(4):14–23, 1985.

[150] W.W. Royce. Managing the development of large software systems: Con-
cepts and techniques. In Proceedings of the IEEE WESTCON, pages 1–9,
1970.

[151] G. Ruhe. Product release Planning - Methods, Tools and Applications. CRC
Press, 2010.

[152] G. Ruhe and D. Greer. Quantitative studies in software release planning un-
der risk and resource constraints. In Proceedings of the 2003 International
Symposium on Empirical Software Engineering, pages 262–270, 2003.

[153] G. Ruhe and J. Momoh. Strategic release planning and evaluation of oper-
ational feasibility. In Proceedings of the 38th Annual Hawaii International
Conference on System Sciences, page 313b, 2005.

[154] G. Ruhe and A. Ngo-The. Hybrid intelligence in software release planning.
International Journal of Hybrid Intelligent Systems, 1(2):99–110, 2004.

[155] G. Ruhe and M.O. Saliu. The art and science of software release planning.
IEEE Software, 22(6):47–53, 2005.

[156] P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, 2009.

[157] T. Saaty. The Analytical Hierarchy Process. McGraw-Hill, 1980.

[158] O. Saliu and G. Ruhe. Supporting software release planning decisions for
evolving systems. In Proceedings of the 29th Annual IEEE/NASA Software
Engineering Workshop, pages 14–26, 2005.

[159] P. Sawyer. Packaged software: Challenges for re. In Proceedings of the
Sixth International Workshop on Requirements Engineering: Foundations
of Software Quality, pages 137–142, 2000.

[160] P. Sawyer. Packaged software: implications of the differences from cus-
tom approaches to software development. European Journal of Information
Systems, 9(1):47–58, 2000.

[161] P. Sawyer, I. Sommerville, and G. Kotonya. Improving market-driven re
processes. In Proceedings of the International Conference on Product Fo-
cused Software Process Improvement, pages 222–236, 1999.

76 INTRODUCTION

[162] J. Schalken and S. Brinkkemper. Assessing the effects of facilitated work-
shops in requirements engineering. In Proceedings of Eight IEEE Interna-
tional Conference on Empirical Assessment in Software Engineering, pages
135–144, 2004.

[163] K. Schmid. Scoping software product lines - an analysis of an emerging
technology. In Proceedings of the First conference on Software product
lines : experience and research directions, pages 513–532, 2000.

[164] K. Schmid. A comprehensive product line scoping approach and its vali-
dation. In Proceedings of the 24th International Conference on Software
Engineering, pages 593–603, 2002.

[165] G.G. Schulmeyer and J.I. McManus. Handbook of Software Quality Assur-
ance. Prentice Hall, 1999.

[166] C. Seaman. Qualitative methods in empirical studies of software engineer-
ing. IEEE Transaction on Software Engineeirng, 25(4):557–572, 1999.

[167] M. Shepperd and C. Schofield. Estimating software project effort using
analogies. IEEE Transaction on Software Engineering, 32(11):736–743,
1997.

[168] F. Shull, J. Singer, and D.I.K. Sjøberg. Guide to advanced empirical soft-
ware engineering. Springer-Verlag, 2008.

[169] C.A. Singer. A requirements tutorial. quality systems and software require-
ments. Technical report, Special Report SR-NWT-002159, 1992.

[170] I. Sommerville. Software Engineering. Addison-Wesley, 2007.

[171] I. Sommerville and P. Sawyer. Requirements Engineering: A Good Practice
Guide. John Wiley & Sons, 1999.

[172] G. Stark, P. Oman, A. Skillicorn, and R. Ameele. An examination of the
effects of requirements changes on software maintenance releases. Journal
of Software Maintenance: Research and Practice, 11(5):293–309, 1999.

[173] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, and S.B. Saleem. A sys-
tematic review on strategic release planning models. Information and Soft-
ware Technology, 52(3):237–248, 2010.

[174] H. Thayer. Software engineering: a tutorial. Computer, 35(4):68–73, 2002.

[175] R. Thayer and M. Dorfman. Systems and Software Requirements Engineer-
ing. IEEE Computer Society Press, 1990.

BIBLIOGRAPHY 77

[176] M.I. Ullah and G. Ruhe. Towards comprehensive release planning for soft-
ware product lines. In Proceedings of the First International Workshop on
Software Product Management, pages 51–55, 2006.

[177] I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis, J. Versendaal, and L. Bi-
jlsma. On the creation of a reference framework for software product man-
agement: Validation and tool support. In Proceedings of the First Interna-
tional Workshop on Software Product Management, pages 3–11, 2006.

[178] I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis, J. Versendaal, and L. Bi-
jlsma. Towards a reference framework for software product management.
In Proceedings of the 14th IEEE International Requirements Engineering
Conference, pages 312–315, 2006.

[179] K.E. Wiegers. Software Requirements. Microsoft Press, 1999.

[180] R. Wieringa and H. Heerkens. Designing requirements engineering re-
search. In Proceedings of the Fifth International Workshop on Comparative
Evaluation in Requirements Engineering, pages 36–48, 2007.

[181] K. Wnuk, R. Berntsson Svensson, and B. Regnell. Investigating upstream
versus downstream decision-making in software product management. In
Proceedings of the Third International Workshop on Software Product Man-
agement, pages 23–26, 2009.

[182] K. Wnuk, B. Regnell, and L. Karlsson. What happened to our features?
visualization and understanding of scope change dynamics in a large-scale
industrial setting. In Proceedings of the 17th IEEE International Conference
on Requirements Engineering, pages 89–98, 2009.

[183] C. Wohlin and A. Aurum. What is important when deciding to include a
software requirement in a project or release? In Proceedings of the Fourth
International Symposium on Empirical Software Engineering, pages 237–
246, 2005.

[184] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlson, B. Regnell, and A. Wess-
lén. Experimentation in Software Engineering: An introduction. Kluwer
Academic, 2000.

[185] R.K. Yin. Case study research: design and methods. Sage Publications,
2003.

[186] E.S.K. Yu and J. Mylopoulos. Understanding ”why” in software process
modelling, analysis, and design. In Proceedings of 16th international con-
ference on software engineering, pages 159–168, 1994.

QUALITY REQUIREMENTS
CHALLENGES

PAPER I

QUALITY REQUIREMENTS IN
INDUSTRIAL PRACTICE - AN

EXTENDED INTERVIEW STUDY
AT ELEVEN COMPANIES

Abstract

In order to create a successful software product and assure its quality, it is not
enough to fulfill the functional requirements, it is also crucial to find the right
balance among competing quality requirements (QR). An extended, previously
piloted, interview study was performed to identify specific challenges associated
with the selection, trade-off, and management of QR in industrial practice. Data
was collected through semi-structured interviews with eleven product managers
and eleven project leaders from eleven software companies. The contribution of
this study is fourfold: First, it compares how QR are handled in two cases, compa-
nies working in business-to-business markets, and companies that are working in
business-to-consumer markets. These two are also compared in terms of impact on
the handling of QR. Second, it compares the perceptions and priorities of QR by
product and project management respectively. Third, it includes an examination
of the interdependencies among quality requirements perceived as most important
by the practitioners. Fourth, it characterizes the selection and management of QR
in down-stream development activities.

Richard Berntsson Svensson, Tony Gorschek, Björn Regnell, Richard Torkar, Ali
Shahrokni, and Robert Feldt
IEEE Transaction on Software Engineering, 2011, in print

82 Quality Requirements in Industrial Practice - an extended interview . . .

1 Introduction

As the role of software increases and becomes a substantial part of industrial and
consumer products, the complexity also escalates, making the process area of re-
quirements engineering (RE) central for success [28]. The characteristics of a
product are determined by functionality, but also by the non-functional or quality
aspects, a.k.a. quality requirements (QR), such as performance and usability [9].

To create a successful product and assure quality, it is not enough to fulfill
the functional requirements. For example, even if the product works, it may be
difficult to use, or too costly to maintain [12]. The importance of having a handle
on QR can be seen as obvious; however, when it comes to customer satisfaction,
end-users are often dissatisfied with software quality [24]. Therefore, QR play a
critical role in software product development, and not dealing with QR may lead to
more expensive software products and increased time-to-market [11]. The ability
to develop a software product that meets customers’ requirements, and offers high
value to both the development company and the customer, increases the likelihood
of market success substantially, thus QR play a central role and can be seen as a
key competitive advantage [2], [4].

However, despite their importance, QR are often poorly understood, generally
stated informally in a non-quantifiable manner, often contradicting, and difficult to
validate [9], [22]. This is further aggravated in market-driven development, where
the situation is even more complex [3], due to the large number of requirements
stemming from multiple internal and external sources, and the continuous flow into
the development organization [16], [18]. The challenges associated with QR have
been addressed in part by other studies, see e.g. [25], [26], and [32]. However,
none of these have primarily focused on QR.

This paper presents the results of an empirical study that includes data col-
lected through in-depth interviews with twenty-two practitioners from eleven dif-
ferent companies in Sweden of which six are multinational. After ten interviews
from five companies, a short paper [6] was presented at an international work-
shop. The study focuses on the elicitation, analysis and negotiation, management,
and general handling of QR in industry. This exploratory study can be seen as a
study of state-of-practice in industry, but also an investigation as to what extent
state-of-the-art in research, in terms of methods and tools, has penetrated industry
practice.

The study incorporates two main perspectives with regards to QR [15], through
the study of companies with two distinctly different types of customers. Six of the
companies mainly develop and sell products to other companies. For example,
a company developing industry robots does not sell to traditional consumers, but
rather to other companies that use the robots in their product development. These
companies are denoted business-to-business (B2B) [39]. The second type of com-
panies in the study develops products for the consumer market, for example mobile
phones or laptops. These companies are denoted business-to-consumer (B2C) [39]

2 Background and Related Work 83

in the paper. The comparison between the two company categories B2B and B2C
is the main focus of the paper; however, in each company we elicited information
about QR handling from two roles central to decision making in relation to QR.
The overall product responsibility is held by product managers (PM), responsible
for the overall product and the selection and long-term planning of the product
evolution and offering. The second role studied was that of the project perspec-
tive. Project leaders (PL) are responsible for managing and prioritizing within the
realization phases. The choice to study both perspectives within each company
was motivated by the intention of improving coverage and the further possibility
to compare the views to identify possible conflicts [17], [36].

The remainder of this paper is organized as follows. In Section 2, the back-
ground and related work are presented. The research methodology is described in
Section 3, and Section 4 presents the results and relates the findings to previous
studies. Section 5 gives a summary of the main conclusions.

2 Background and Related Work

There are several surveys in literature that include QR related challenges.
Laubars et al. published their field study on requirements modeling [32]. Their

study included both customer-specific and market-driven projects. The challenges
found by Laubars et al. include e.g. vaguely stated requirements, requirements
misunderstandings, changing requirements, and difficulties with prioritization of
requirements [32]. Moreover, two challenges related to performance requirements
were identified, specification (rational not always obvious) and associating perfor-
mance requirements with dataflow specifications. Later, a study on requirements
engineering challenges in small and medium sized enterprises was presented by
Kamsties et al. [25]. Similar to Laubars et al. [32], customer-specific and market-
driven projects were represented. Kamsties et al. [25] agree to some extent with
Laubars et al. [32] and identified unclear and incomplete requirements as chal-
lenges. Other identified challenges are: specification of graphical users interfaces
and lack of traceability among requirements. Moreover, Kamsties et al. [25] found
that requirements are too vague to test. A study that solely focuses on market-
driven software development challenges was published by Karlsson et al. [26].
Challenges related to quality requirements were identified by Karlsson et al. [26],
where the main problem was interdependencies related to QR. This problem is not
only related to identifying existing interdependencies, but also to what extent QR
affect each other and how to deal with it. Moreover, supporting release planning
of QR caused problems for the companies. Berntsson Svensson et al. conducted a
field study to discover and describe how QR are handled in industry [6]. The find-
ings highlight three important challenges, how to get QR into the projects when
functional requirements are prioritized, how to know when the quality level is good
enough, and how to achieve testable QR.

84 Quality Requirements in Industrial Practice - an extended interview . . .

Finally, there are a number of studies that are not focusing on challenges, but
focus on requirements interdependencies [7], [9], [10], and classification and mea-
surement of QR [22], [34]. For example, Carlshamre et al. identified a set of in-
terdependency types that are present in industry [7], while Olsson et al. concluded
that methods need to handle the diversity of QR [34].

The focus of the above mentioned studies, with the exception of Berntsson
Svensson et al. [6], has not been primarily on QR, but QR-related findings emerged
as parts of the results. This paper presents a study with the primary focus on QR
and how they are managed in the RE process. Even though Berntsson Svensson
et al. [6] solely focused on QR, only five companies were included in the study
with a primary focus on PM and PL perspectives. In this study we have extended
the data to eleven companies, and, in addition, included challenges related to cost
estimation of QR as well as the perspective of comparing B2B and B2C in the
analysis, which presents new data from all eleven cases.

3 Research Methodology

The investigation presented in this paper was carried out using a qualitative re-
search approach, namely in-depth semi-structured interviews [37]. Qualitative
research aims to investigate and understand phenomena within its real life con-
text [37]. A qualitative research approach is useful when the purpose is to explore
an area of interest, and when the aim is to improve the understanding of phenom-
ena [37], [38]. The purpose of this study is to gain in-depth understanding of QR
within market-driven embedded systems companies. Due to the potential richness
and diversity of data that could be collected, semi-structured interviews would best
meet the objectives of this study. Semi-structured interviews help to ensure com-
mon information on pre-determined areas is collected, but allow the interviewer to
probe deeper where required.

We choose interviews over doing a large survey as the concept of QR are
named and treated very differently in industry, what might be called a quality re-
quirement in one place is simply adherence to product limitations in another [1].
For this reason it was important to have a presence when eliciting the data making
it possible to elaborate on what we were looking for and compensate for these dif-
ferences in culture and naming. Several times we had to put five to ten minutes of
explanation1 into what we were investigating before the interview subject under-
stood and we could proceed. In addition, the interviewer had the chance to validate
the questions with the interviewee lessening changes of misunderstandings. That
is, the interviewer went back to the interviewee to validate the interviewers inter-
pretation of the results to minimize misinterpretations and validate the results. The
research questions in Table 1 provided a focus for the empirical investigation.

1http://serg.cs.lth.se/research/experiment_packages/quality_requirements

3 Research Methodology 85

Table 1: Research Questions

Research Questions (QR = Quality Re-
quirements)

Example of answers for each RQ

RQ1: What QR are considered most im-
portant, and are there any distinguish-
ably characteristics in relation to cus-
tomer type (B2B vs. B2C)?

The most important QR for the subject’s
product in their domain is performance
requirement.

RQ2: What interdependencies between
QR are present in the companies?

The existing interdependency types in
the subject’s product are ICOST and RE-
QUIRES.

RQ2.1: What interdependencies are
deemed most important, and how does
this compare to previous studies?

The most important interdependency
type for the subject to identify is RE-
QUIRES.

RQ2.2: To what extent are interde-
pendencies elicited, analyzed and docu-
mented?

According to the subject, no elicitation,
analysis or documentation of interdepen-
dencies are performed in his/her project.

RQ3: How are cost estimations of QR
performed, and what is the accuracy of
these cost estimates?

In the subject’s project, expert judgment
is used to estimate the cost of QR.

RQ4: To what extent are QR dismissed
from projects after project initiation?

In the subject’s project, 20% of all QR
are dismissed after project initiation.

RQ4.1: If QR are dismissed, is any con-
sequence analysis performed pre- or post
dismissal?

According to the subject, no new analysis
is performed when QR are dismissed.

RQ4.2: Are QR specified in a measur-
able (quantifiable) manner?

According to the subject, QR are some-
times (some QR are, while others not)
quantified in their project.

86 Quality Requirements in Industrial Practice - an extended interview . . .

Berntsson Svensson and Aurum [5] discovered that there are differences in
which factors are important for project/product success across industries. There-
fore, it is important to investigate what quality aspects are considered most im-
portant across industries developing products for different customers (RQ1). In
addition, Karlsson et al. discovered that it is possible to manage functional depen-
dencies; however, a major problem is to deal with dynamic interdependencies,
i.e. quality requirements, which influence a larger part of the functionality or
other quality requirements of the system [26]. Therefore, it is important to un-
derstand interdependencies related to quality requirements (RQ2). Software cost
estimates are the basis for project planning, bidding, and budgeting and are critical
for project success [19]. In addition, Berntsson Svensson et al. [6] found that poor
cost estimation is one main reason for QR being dismissed after project initiation,
therefore, it is important to understand how cost estimations of QR are performed
in industry (RQ3). Kamsties et al. found that requirements are often too vague to
test [25], therefore, it is important to investigate if QR are quantified in industry
(RQ4). Also, dismissal of QR from projects may have an impact on the predicted
return of investment, as well as the cost for the customers (RQ4).

3.1 Research Design and Data Collection

The investigation can be divided into three phases:
Planning/Selection: The sampling strategy used was a combination of maxi-

mum variation sampling [35] and convenience sampling [35] within our industrial
collaboration network. The researchers contacted a ”gate-keeper” at each com-
pany who identified two subjects (one PM and one PL) that he/she thought were
the most suitable and representative of the company to participate in this study.
That is, the researchers did not influence the selection of subjects, nor did the re-
searchers have any personal relationship to the subjects. Twenty-two participants
at eleven software development companies participated. From each company, one
product manager (PM) and one project leader (PL) from the same project were
interviewed, resulting in twenty-two data points. The research instrument2 used in
this study, and in [6], was designed with respect to the different areas of interest
and inspiration from [26].

All eleven companies develop embedded systems using a market-driven soft-
ware development approach. The companies themselves vary in respect to size,
type of products, type of customers, and application domain, a characterization
(following the guidelines of [21]) can be see in Table 2 (more details are not re-
vealed for confidentiality reasons) following the recommendations of [20]. The
companies are divided into two main categories based on type of customers: (1)
business-to-business [39] companies (B2B), for example, Company E develops
control systems for other industry partners, and (2) business-to-consumer [39]

2http://serg.cs.lth.se/research/experiment_packages/quality_requirements

3 Research Methodology 87

companies (B2C) for example, Company C develops products within the telecom
domain for end-users.

Data collection: The study used a semi-structured interview strategy [37].
One interviewee and one interviewer attended all interviews. During the inter-
views, the purpose of the study and a general explanation of QR (see footnote
two) were presented to the interviewee. Then, questions about the different areas
of interests in relation to QR were discussed in detail. For all interviews, varying
in length from 40 to 90 minutes, we took records in the form of written extensive
notes in order to facilitate and improve the analysis process.

Analysis: The content analysis [37] involved marking and discussing interest-
ing sections in the recorded notes. The first two authors examined the categories,
first individually, and then together in a workshop setting. The category analysis
included examination of the content from different perspectives and a search for
explicitly stated or concealed pros and cons in relation to how QR are handled in
industry. For all statistical tests on the quantitative data given by respondents, a
non-parametric Wilcoxon rank sum test [40] with significance tested at the 0.05
level (unless otherwise stated) was performed. This was used as a method to judge
between which sets of data there is any discernable difference and thus reduce the
number of such possible differences that would otherwise be implied. The raw
anonymized data (individual match encoding and ordering) used for the Wilcoxon
rank sum tests are available upon request. The results from the analysis and sig-
nificance levels are found in Section 4.

3.2 Validity

In this section, threats to validity in relation to the research design and data col-
lection are discussed. We consider the four perspectives of validity and threats as
presented in Wohlin et al. [40].

Construct validity: The construct validity is concerned with the relation be-
tween theories behind the research and the observations. The variables in our
research are measured through interviews, including open-ended questions where
the participants are asked to express their own opinions.

By collecting data from a wide range of sources on the topic, mono-operation
bias [40] was avoided. The potential problem of evaluation apprehension [40] was
alleviated by the guarantee of anonymity as to all information divulged during
the interviews, and the answers was only to be used by the researcher, i.e. not
be showed or used by any other participants, companies, or researcher. Another
validity threat lies in the question that asked interviewees to rank and include ad-
ditional factors if the list provided to them was inadequate. Interviewees may have
thought that it was easier to rank the provided factors than propose new factors,
i.e. some interdependency types may be missing. The quantitative data given
by respondents is subjective since it is not based on any objective measurements;

88 Quality Requirements in Industrial Practice - an extended interview . . .

Table
2:

C
om

pany
C

haracteristics

Type
of

custom
er

#
E

m
ployees

D
om

ain
D

evelopm
entprocess

#
ofR

eqs
in

a
typical

project
%

ofQ
R

in
a

typical
project

A
B

2B
∼

100
C

ontrolsystem
s

Increm
entaldevelopm

ent
>1000

∼
10%

B
B

2B
∼

3000
Telecom

Plan-driven
∼

7000
∼

10%
C

B
2C

>5000
Telecom

Plan-driven
>20000

U
nknow

n
D

B
2C

325
Telecom

A
gile-Scrum

∼
100

features
∼

10%
E

B
2B

65
C

ontrolsystem
s

W
aterfall-Iterative

D
iffers

D
iffers

F
B

2C
∼

700
Surveillance

Iterative
∼

250
∼

15%
G

B
2C

∼
100

C
onsum

erelectronics
Plan-driven

∼
300

∼
5%

H
B

2B
∼

700
Telecom

A
gile-Scrum

variant
∼

200
20%

I
B

2B
∼

50
Security

W
aterfalland

A
gile-Scrum

∼
100

∼
15%

J
B

2B
∼

90
C

ontrolsystem
s

Plan-driven
∼

100
∼

10%
K

B
2C

280
Telecom

W
aterfall-Iterative

∼
1000

∼
5%

4 Results and Analysis 89

there might be differences in how the questions were interpreted that renders the
comparisons between QR invalid regardless of the statistical tests employed.

Conclusion validity: Threats to conclusion validity arise from the ability to
draw accurate conclusions. The interviews were conducted at different companies
and each interview was done in one work session. Thus, answers were not influ-
enced by internal discussions. To ensure that the interview instrument, including
the posed questions, are of high quality to obtain highly reliable measures, sev-
eral pilot studies were conducted, to avoid poor question and poor layout, prior to
conducting the interviews.

Internal validity: These threats are related to issues that may affect the causal
relationship between treatment and outcome. Threats to internal validity include
instrumentation, maturation and selection threats. The potential problem of instru-
mentation threats was alleviated by developing the research instrument with close
reference to literature relating to quality requirements, influenced by previously
validated interview instrument [26], and a previously piloted interview study [6].
Moreover, keeping the interview session to 90 minutes, which was possible by
collecting background information before the interview session started, alleviates
maturation threats. Threat to selection bias is always present when study subjects
are not fully randomly sampled. However, given that 11 different companies from
different industrial networks and geographical locations are included, and inter-
viewees were selected based on their roles by a ”gate-keeper” at the companies,
this threat has limited effect.

External validity: The external validity is concerned with the ability to gen-
eralize the results, i.e. in this case the applicability of the findings beyond the
included companies. Qualitative studies rarely attempt to generalize beyond the
actual setting since it is more concerned with characterizing, explaining and un-
derstanding the phenomena under study. The nature of qualitative designs also
makes it impossible to replicate since identical circumstances cannot be recreated.
However, the development of a theory can help in understanding other cases and
situations. The fact that more than one participant and company acknowledge
several of the discovered challenges increases the possibility of transferring the
results to other situations. The large number of companies and contexts also con-
tributes to generalizability. To avoid the interaction of selection and treatment,
interviewees were selected according to their roles within the company by a ”gate-
keeper”, hence the researchers did not select the subjects themselves. Moreover,
companies were selected from different geographical locations.

4 Results and Analysis

The following four sub-sections present and discuss one research question each,
corresponding to the research questions in Table 1.

90 Quality Requirements in Industrial Practice - an extended interview . . .

4.1 Important Quality Aspects (RQ1)

In analyzing Research Question 1 (RQ1), this section examines the most important
quality aspects, as illustrated in Figure 1 (note that Figure 1 only visualizes the
ranking of QR and is not intended to visually compare B2B and B2C). In Figure 1
we can see the top ranked quality aspects that received at least 10 ranking points
by the practitioners, i.e. any quality aspect that received less than 10 points is not
displayed in Figure 1.

Figure 1: Importance of quality aspects

Based on Lauesen’s comparison of ISO9126 and McCall quality factors [29],
we identified 23 different types of QR. We asked the interviewees to rank the top
five most important aspects for their products based on their expertise and their
own definition of the quality aspect (our approach was not to impose preconceived
definitions but to try to understand existing industrial practice and practitioners’
own interpretations of QR). The interviewees gave five points to the most impor-
tant, four points to the second most important and so on.

Looking at Figure 1, we see that usability (with 50 ranking points) is the high-
est prioritized quality aspect among our case organizations. In terms of impor-
tance, usability is followed by performance requirements (45 points), reliability
(32 points), and stability (30 points). Performing the Wilcoxon rank sum test on
the vectors of ranks gives statistically significant p-values of 0.05 for usability
from stability and for performance from flexibility and down. However, there is
no significant difference between the top ranked aspects of reliability, performance
and usability.

Several interviewees explained that an unusable product will never sell. The
importance of usability was further explained by one interviewee, ”usability is the
main competitive advantage, and usability aspects influence the architecture as
early decisions”. One reason for the prioritization of performance, as explained

4 Results and Analysis 91

by several interviewees, is that ”performance requirements are always important
since the software developed always act as one sub-system in a larger system”.

The importance of usability and performance are inline with the findings in
Berntsson Svensson et al. [6]. The reason why reliability was ranked as the third
most important quality aspects was explained by one interviewee: ”the ability
to function in extreme environment and to provide long term value is of major
importance for our customer”. The importance of reliability is confirmed in the
study by Johansson et al. [23].

Stability was viewed as important because the customers never accept an unsta-
ble product according to one interviewee. Another interviewee explained the im-
portance of having a product that does not have any defects visible to the customer.
However, Leung found that the two most important types of QR are availability
and accuracy [31], which is not inline with the result in this study. In addition,
Leung found that performance requirements (time behavior) are only considered
the fifth most important quality aspect. The difference between the studies may
be explained by the focus, i.e. we focused on B2B and B2C in a market-driven
developing context, while Leung focused on intranet applications [31].

Apart from prioritizing performance requirements as the second most impor-
tant QR, B2B and B2C prioritized different quality aspects. B2B companies ranked
safety (25 points), performance (24 points), and reliability (22 points) as the three
most important quality aspects, while B2C ranked usability (39 points), perfor-
mance (21 points), and stability (11 points) as the most important ones.

A Wilcoxon rank sum test showed a p-value of 0.01, showing that safety is
more important to B2B than B2C. The importance of safety was explained by
several interviewees, ”because we do not sell our products to consumers, instead
we sell to other industry partners”. One interviewee expanded the view by stating
that it is important to make sure that no humans, material, or the environment are
harmed.

One reason for the prioritization of usability for consumer products is, ”if the
product is not usable we will not sell any products”.

B2B companies uniquely identified safety and accuracy as important quality
aspects. On the other hand, B2C uniquely identified portability. The difference in
priority between B2B and B2C may not be a surprise as different customers are
targeted. However the insight of B2B and B2C having different priorities is an
important insight for e.g. researchers, as it enables focus on certain quality aspects
in research depending on company type.

4.2 Interdependencies (RQ2)

Based on interviews with requirements engineers at two companies and a proposal,
Carlshamre et al. identified a set of six different interdependency types that are
present in industry [7]: (1) R1 AND R2: R1 requires R2 to function, and R2

requires R1 to function, (2) R1 REQUIRES R2: R1 requires R2 to function, but

92 Quality Requirements in Industrial Practice - an extended interview . . .

not vice versa, (3) R1 TEMPORAL R2: Either R1 has to be implemented before
R2 or vice versa, (4) R1 CVALUE R2: R1 affects the value of R2 for a customer,
(5) R1 ICOST R2: R1 affects the cost of implementing R2, and (6) R1 OR R2:
Only one of R1, R2 needs to be implemented.

The interviewees had the option of adding additional types of interdependen-
cies, which resulted in one new type discovered during the interviews. The new
interdependency type, as explained by the interviewee, is that only one of the re-
quirements can be implemented in this project due to time restrictions (mainly
including functional requirements (FR) instead of QR). We call this new interde-
pendency type R1 TXOR R2, meaning R1 for time-related exclusive or R2.

All of the other six predefined interdependency types were used by the inter-
viewees to characterize perceived interdependencies, both among different QR,
and interdependencies between QR and FR, as illustrated in Table 3. However,
Company I did not recognize/identify any of the interdependency types neither
among QR, nor between QR and FR, while Company J did not recognize any of
the types among QR.

In general, the most common interdependency types identified among QR were
REQUIRES, CVALUE and ICOST (13 of 22, as illustrated in Table 4, which shows
a summary view of the frequency of occurrence of the various interdependency
types), while the least frequently used one was TEMPORAL (6 of 22). When the
preferences were analyzed based on company type the findings show a difference
of opinion.

B2B viewed REQUIRES (6 of 12) as the most common type, while B2C
viewed CVALUE (9 of 10) as the most common one. When examining the most
frequent identified interdependency types between QR and FR, TEMPORAL (15
of 22) was considered most common, while OR (7 of 22) was considered the least
frequent one.

However, comparing company types, the findings show a difference. For B2B
TEMPORAL (8 of 12) was viewed as the most common type, while AND and OR
(4 of 12) were considered least frequent. On the other hand, for B2C REQUIRES
(9 of 10) was considered most common, and OR (3 of 10) was viewed as least
frequent by B2C.

In the study by Carlshamre et al., three of five case companies viewed value
related (ICOST or CVALUE) interdependency types as the most common [7]. In
the remaining two cases, functionality related (i.e., AND or REQUIRES) types
were most common. Our results show a mix of value and functionality types as
the most common ones (with the exceptions of Company E, I, and J).

The difference between the studies may be explained by the focus, i.e. we fo-
cused solely on interdependencies related to QR, while in Carlshamre et al. the
focus was on requirements in general [7]. Moreover, we looked into interdepen-
dencies for the entire product, while Carlshamre et al. focused on dependencies
among 20 selected requirements [7]. In addition, we have 11 case companies,
compared to five in Carlshamre et al [7]. However, our results of a mix of value

4 Results and Analysis 93

Ta
bl

e
3:

E
xi

st
in

g
In

te
rd

ep
en

de
nc

y
Ty

pe
s

E
xi

st
in

g
in

te
rd

ep
en

de
nc

y
ty

pe
s

M
os

ti
m

po
rt

an
tt

yp
es

to
id

en
tif

y
Q

R
to

Q
R

Q
R

to
FR

Q
R

to
Q

R
Q

R
to

FR
P

M
P

L
P

M
P

L
P

M
P

L
P

M
P

L
B

us
in

es
s-

to
-b

us
in

es
sc

om
pa

ni
es

(B
2B

)
A

N
D

B
,H

H
A

,B
,H

H
H

O
R

B
,E

,H
B

,H
B

,E
B

,H
E

E
T

E
M

PO
R

A
L

B
,H

B
,H

A
,B

,H
,J

B
,E

,H
,J

H
H

,J
E

,H
,J

R
E

Q
U

IR
E

S
A

,B
,H

B
,E

,H
A

,B
,H

B
,H

B
,E

B
C

VA
L

U
E

A
,B

B
,H

A
,B

,H
B

,H
IC

O
ST

A
,B

,H
B

,H
A

,B
,H

B
,H

A
,B

A
,B

B
us

in
es

s-
to

-c
on

su
m

er
co

m
pa

ni
es

(B
2C

)
A

N
D

C
,F

,G
C

,F
,K

C
,G

,K
C

,D
,F

,G
O

R
C

,D
C

,D
,F

,K
D

D
,F

F
F

T
E

M
PO

R
A

L
F,

K
C

,D
,K

D
,F

,G
,K

R
E

Q
U

IR
E

S
C

,K
C

,D
,F

,G
,K

C
,D

,F
,G

C
,D

,F
,G

,K
C

D
,G

,K
C

,D
D

,G
,K

C
VA

L
U

E
C

,F
,G

,K
C

,D
,F

,G
,K

C
,D

,F
,G

C
,D

,F
,G

F,
G

,K
C

F,
G

,K
C

IC
O

ST
C

,D
,K

C
,D

,F
,G

,K
C

,D
C

,D
,F

,G
D

94 Quality Requirements in Industrial Practice - an extended interview . . .

Table 4: Frequency of Occurrence of Interdependency Types

AND OR TEMPORAL REQUIRES CVALUE ICOST
Existing interdependency types
QR to QR
Total 9 11 6 13 13 13
B2B 3 5 4 6 4 5
B2C 6 6 2 7 9 8
QR to FR
Total 11 7 15 14 13 11
B2B 4 4 8 5 5 5
B2C 7 3 7 9 8 6
Most important types to identify
QR to QR
Total 1 2 1 6 4 3
B2B 1 1 1 2 0 2
B2C 0 1 0 4 4 1
QR to FR
Total 0 2 5 6 4 2
B2B 0 1 5 1 0 2
B2C 0 1 0 5 4 0

4 Results and Analysis 95

and functionality related types as the most common ones are inline with a study
by Berntsson Svensson et al. [6].

The softgoal interdependency graph (SIG) [9], [10] is used to show interde-
pendencies among QR. The interdependency types used in the SIG are limited to
AND, and OR, which is not inline with the findings in our study, as we found that
seven different interdependency types were present in the companies. Further-
more, the types AND, and OR, where viewed among the least common interdepen-
dency types among QR as well as between QR and FR.

RQ2.1: What interdependencies are deemed most important, and how
does this compare to previous studies? According to the interviewees, the most
important interdependency type to identify among QR was REQUIRES; however,
B2B and B2C were not in agreement.

B2B companies considered REQUIRES and ICOST as the most important,
while REQUIRES and CVALUE were prioritized by B2C. One interviewee ex-
plained that ICOST is important for B2B because ”the cost is lower for R2 if R1
is implemented, then we get a higher return of investment for that requirement”.
Only two interviewees identified OR, and only one identified AND as the most
important interdependency types.

Interestingly, in identifying the most important interdependency type between
QR and FR, the total result was identical to interdependency types among QR. On
closer examination the result between B2B and B2C varies.

B2B prioritized TEMPORAL, but also uniquely identified TEMPORAL and
ICOST. According to one interviewee, TEMPORAL is the most important type
”due to high cost and delay in the schedule if this does not work”. One expla-
nation of why ICOST was identified by industry products is, according to one
interviewee, ”due to getting a lower cost when designing software from ”cheap”
hardware components”.

B2C prioritized REQUIRES, but also uniquely identified CVALUE. One inter-
viewee explained that REQUIRES is the most important interdependency type be-
cause ”functionality first, then the quality aspect of the functionality is relevant”.

Surprisingly, AND was not viewed as the most important interdependency type
between QR and FR by any of the interviewees. The low result for AND, and OR
interdependency types as the most common and important ones raises the question
how useful the SIG [9], [10] is in an industrial context.

It is not surprising that B2B and B2C have different views on interdependency
priority. According to Carlshamre et al., value-related interdependencies are sub-
jective; it may be difficult to state whether the cost exceeds the value for the cus-
tomer [7].

Surprisingly, both among QR, and between QR and FR, REQUIRES is con-
sidered the most important to identify looking at the summation of all intervie-
wees. This result is not inline with Carlshamre et al., which found that ICOST and
CVALUE were the most important types of interdependencies in market-driven
developing companies, while REQUIRES was considered the most important in

96 Quality Requirements in Industrial Practice - an extended interview . . .

 Elicited Analyzed Documented Impact on product
development

 PM PL PM PL PM PL
Business-to-business companies (B2B)

A Only during
change request

No In impact
analysis

No In the impact
analysis

No Add features and FR affects
the performance

B During
implementation
proposal

During the
design phase

No During the
design phase

In the
implementation
proposal

Written down as
bundled

requirements in
the design

Delayed or removed
requirements

E No No No No No No An incomplete product
H Brainstorming,

and in
workshops and
meetings

During
workshops

and meetings

Both external
(customer)
and internal
(workshops)

Continuously
during

workshops and
meetings

In different
documents

In Excel,
PowerPoint,

sketches, and by
using UML

Order of implementation

I No No No No No No The design of the system
J By each

engineer and
during

workshops

No, due to
cost

First
individually,

then in a
workshop

Using historical
data and
workshops

In the
requirements
specification,

for traceability

In the
requirements
specification, for
traceability

Order of implementation of
other QR

Business-to-consumer companies (B2C)
C No No No No No No Order of implementation,

planning and the quality level
D No No No No No No The maintainability of the

system and the planning
F No During

workshops
No During

workshops by
grouping

requirements

No Sometimes, it is
optional.

Documented in a
large html
document

Order of implementation

G During
requirements
breakdown

No When
breaking

down
requirements

Not for QR In the
requirements
specification

No Limits possible options

K No By the
architect

As a
consequence

of
prioritization

Of the
architecture

By the design
team

In the architecture Order of implementation and
the quality level

Table 5: Interdependency Management

bespoke (also known as contract development [29]) developing companies [7].
One interviewee explained that REQUIRES is considered the most important in-
terdependency to identify because ”this is the easiest type to miss, and therefore
the most important to identify”.

RQ2.2: To what extent are interdependencies elicited, analyzed, and docu-
mented? The interviews indicated a rather good agreement between the PM views
and the views of the PL regarding whether or not interdependencies are elicited,
analyzed and documented in the case organizations, as can be seen in Table 5.

In two (E, I) of the six B2B companies the PM and PL agree that the case
organization does not carry out elicitation, analysis or documentation of interde-
pendencies among QR, while the other four B2B companies (A, B, H, J) indicate
activities where interdependencies are managed, some at late stages of design (A,
B) and some during workshops and customer meetings (H, J).

For B2C companies it is only one out of five companies for which PM and
PL agree that the case organization manage interdependencies to any large extent

4 Results and Analysis 97

(K), while a few indications of limited activities can be found at two other B2C
organizations (F, G).

In total for as many as seven out of 11 case organizations, either both or one of
PM and PL indicate low extent of interdependency management (A, E, J, C, D, F,
G). One reason for this may be that dealing with interdependencies is a complex
task and the number of potential dependencies may be very large, resulting in
an ad-hoc approach to interdependency management where only a limited set of
critical interdependencies are dealt with. This hypothesis is in line with the results
from the study by Karlsson et al. [26]. Other explanations were discovered during
the interviews. Several interviewees stated that QR are assumed and, therefore,
not actively looked for. One interviewee explained that dependencies related to
QR are not handled ”because we have a focus on functionality. We fulfill what our
customers’ want and do not reflect over QR”.

Concerning the impact of interdependencies on product development, the in-
terviewees stress several examples, as reported in Table 5. As many as five of the
case organizations (H, J, C, F, K) report that the order of implementation is af-
fected by interdependencies, and company B indicates that delays or exclusions of
requirements may be the result of QR interdependencies, which also affects what
is implemented. Furthermore, four of the companies (A, E, C, D) stated that the
quality of the product is affected, e.g. performance and maintainability. Also the
design of the system may be affected (I, G) in terms of limiting possible options.

4.3 Cost Estimations (RQ3)

Looking at how cost estimations are performed for QR the immediate response
from all companies, and roles, was that no distinction was made between quality
and functional requirements. Looking at Table 6, all of the companies stated that
expert opinion was the predominant method used for estimation, which is inline
with the results from Molokken and Jorgensen [33]. Some companies stated that
historical data and previous experience of similar projects was used in an ad-hoc
manner (E, J, F), mainly as an effect of the fact that the experts had done esti-
mations before. Table 6 summarizes the perceived accuracy of estimations at the
companies, for example, Company A the PM answered that in the worst case the
estimates were off by 100%, but the normal case was about 25% off, and at best
it was accurate. In general, PM estimates the cost to be slightly higher than PL in
the normal case (p-value 0.040).

The spread between the companies regarding accuracy is quite large, from e.g.
Company C where worst case is 80% off and best is 0% off, to Company B, which
ranges from 300% to 50% at best.

Comparing B2B with B2C we can see the average and median for each group
in Table 7. The values are calculated by splitting the difference between the roles
in each company and excluding company G (in the cases where data is NA the
available data is used). From the results we can see that the worst-case alternative

98 Quality Requirements in Industrial Practice - an extended interview . . .

Table 6: Cost Estimation Accuracy and Method

Role Accuracy (percentage
of wrong estimates)

Type of estimation

Worst Normal Best
Business-to-business companies (B2B)

A PM 100% 25% 0% Experts using
implementation proposalPL NA NA NA

B PM 300% 80% 50% Expert estimationsPL 200% 25% 10%

E PM 75% 50% 25% Expert estimations and
previous projectsPL 70% 30% 0%

H PM 100% 40% 0% Previous experience and
gut feelingPL 80% 50% 20%

I PM 200% 50% 25% Expert estimations using
related informationPL 75% 0% 0%

J PM 40% 20% 20% Historical dataPL 40% 20% 20%
Business-to-consumer companies (B2C)

C PM NA NA NA Expert estimationsPL 80% 25% 0%

D PM 200% 40% 10% Expert estimationsPL 300% 50% 25%

F PM NA NA NA Expert estimations, gut
feeling, historical dataPL 50% 0% 0%

G PM NA NA NA NAPL NA NA NA

H PM 80% 70% 60% Expert estimationsPL 50% 35% 15%

Table 7: Cost Estimation Accuracy Averages per Group

Type Worst Normal Best
B2B AVG 115 35 14

MED 95 33 13
B2C AVG 55 31 14

MED 58 35 9

4 Results and Analysis 99

is the largest divider between the groups (B2B: AVG 115, MED 95 and B2C: AVG
55, MED 58). That is, the B2B group in the worst case has much more inaccurate
estimates than the B2C group. The difference between the groups is almost non-
existent in relation to the normal or best scenario.

From the interviews one reason for this was that the B2B companies had much
larger single development instances (projects), and a worst-case scenario in a large
project would give a larger estimation inaccuracy than the worst case of a smaller
(shorter) B2C project (no statistical significance is claimed).

The interviews revealed that one predominant problem in estimating QR was
their propensity to impact larger parts of a system, and span over several (or al-
most all) FR. For example, realizing most features is influenced by (or influences)
the QR of performance. This result is not inline with Molokken and Jorgensen
who found the major reasons for inaccurate estimates of requirements are over-
optimistic estimates and user changes or misunderstandings [33].

The complexity of QR demands deeper analysis and using the same amount
of resources and methods to estimate QR can have detrimental effects. This is
strongly related to the level of dismissal of QR late in projects, covered in the next
section.

4.4 Dismissal of Quality Requirements (RQ4)

We asked the interviewees how often QR, specified and selected for inclusion in a
project, were subsequently dismissed from projects during development (see Table
8). In average, 19% of all QR are dismissed; meaning almost every fifth QR
planned and included in a project is dismissed at some stage prior to release. This
result is inline with Berntsson Svensson et al., which found that 22.5% of all QR
are dismissed at some stage [6]. When comparing B2B and B2C, the least amount
of dismissed QR is slightly higher for B2B (4.5%) than for B2C (3%). In worst-
case (Most in Table 8); in average, 41% of all QR are dismissed for B2B, while
31% in B2C.

According to the interviewees, there are three main trends of which types of
QR that are more representative of the ones being dismissed.

First, there is no difference between types of QR; instead, other factors decide
which ones are dismissed. One factor is the FR, one interviewee explained that
the FR decides which QR that are dismissed because all QR that are related to the
dismissed FR are also removed. A second factor according to one interviewee is
that ”usually the QR that are most important for the customer are the hardest to
understand, and QR we do not understand are dismissed”.

Second, for B2C, performance requirements are more often dismissed due to
the difficulties in proper estimation. Third, for B2B, QR that are not visible to the
customer, such as maintainability and testability, are more often dismissed than
other QR.

100 Quality Requirements in Industrial Practice - an extended interview . . .

Table 8: Estimated Dismissal Rates of Quality Requirements

Role Dismissal rate Reason for dismiss rate
Least Avg. Most

Business-to-business companies (B2B)

A PM 10% 15% 20% Poor cost estimation, testing QR
very latePL 0% 50% 90%

B PM 10% 20% 90% Poor cost estimation, lack of
resourcesPL 1% 5% 20%

E PM 0% 50% 100% Poor cost estimation, lower
priority than FRPL 10% 25% 50%

H PM 0% 2% 10% Lower priority than FRPL NA NA NA

I PM 0% 2% 10% Lack of resources, QR not
quantifiedPL 10% 15% 20%

J PM <10% 0% 10% Poor cost estimationPL <10% <10% 10%
Business-to-consumer companies (B2C)

C PM NA NA NA Poor cost estimation, lack of
resources, lower priority than FRPL NA NA NA

D PM 0% 5% 10% Issues we cannot affect, e.g.
network capacityPL 0% 10% 20%

F PM NA NA NA Hardware constraintsPL 0% 10% 20%

G PM 0% 10% 20% Lack of resources, new product
developmentPL 0% 30% 50%

H PM 20% 60% 90% Poor cost estimation, lower
priority than FRPL 2% 3% 5%

4 Results and Analysis 101

Moreover, QR that are not considered important for B2B are more often dis-
missed, for example, usability is more removed than the prioritized performance,
which is inline with the result in RQ1 (see Section 4.1). One interviewee ex-
plained, ”usability is more often dismissed because the damage for our customers
is not that great. It is easier to sell a product with bad usability than with bad
performance”.

The result reveals three main reasons for dismissal of QR:

1. Poor cost estimations

2. Lack of resources

3. QR have lower priority than FR.

There was no major difference between B2B and B2C with regards to why QR
are dismissed from projects.

Poor cost estimations is related to the difficulties to estimate the cost of QR that
have a global impact on the system, which is inline with the result in RQ3 (Section
4.3). The difficulties of estimating the cost of QR are related to the complexity of
QR, lack of knowledge, and understanding of how to manage QR in practice.

Lack of resources is related to prioritization of what is important to implement.
One interviewee explained that their resources had more important tasks to do, and
there is a lack of resources to optimize QR, therefore it is easier to dismiss them.

Several interviewees frequently described that QR have lower priority, and that
they do not spend much time on managing QR. Some of the interviewees explained
that QR are seen as base requirements and therefore not considered. One intervie-
wee explained, ”in general it is easier to dismiss QR than FR”. However, this
focus has implications on the system, as explained by one interviewee, ”in most
situations, QR are down prioritized by FR due to lack of knowledge of how impor-
tant a system’s quality is. By lowering the quality level, the value of the system
decreases”.

RQ4.1: If QR are dismissed, is any consequence analysis performed pre-
or post dismissal? In 82% of the companies it was revealed that there is a lack
of communication between PM and PL. PM stated that there is a consequence
analysis, while the PL stated that no consequence analysis is preformed.

In 55% of those companies (a mix of B2B and B2C), PM stated that a con-
sequence analysis is only conducted if the customers are directly affected. The
consequence analysis may include new prioritization of all requirements and new
cost estimations, as explained by one interviewee, ”if we have promised a certain
quality, then we have to increase the cost for this project and accept a lower return
of investment”.

Another consequence, as explained by one PM, is to ”first ask the customer if
this is OK. If not, we talk to the developers to find out the reason why this cannot
be done. Finally, we decide if we have to add or remove other requirements”.

102 Quality Requirements in Industrial Practice - an extended interview . . .

Surprisingly, none of the PL shared the view of the PM. All PL claimed that
nothing happens when QR were dismissed from the projects. One explanation,
which was qualified by one PL, is that ”we do not have time to re-analyze the
consequence of QR, other things are more important”.

Another explanation according to another PL, ”if we remove QR we can deliver
on time”. Only in two companies (Company J and K) was there an agreement
between PM and PL. In Company J, a consequence analysis is performed in terms
of new cost estimations, while in Company K no analysis is conducted.

A central issue here seems to be the difficulty to properly quantify as well
as estimate the cost of implementing a QR, but more importantly the value of
a QR. This is inline with a study by Lehtola and Kauppinen, which found that
communication problems were a difficulty for understanding the importance of a
requirement [30]. This might indicate a lack of estimation models/techniques for
QR.

The result from RQ3 (Section 4.3) shows that the same cost estimation strat-
egy is used for QR as for FR. Maybe QR needs to be estimated with a different
strategy. The complexity is of course that a QR often implies a quality aspect of a
system/product. Such a quality aspect is often not realized as a feature, but rather
implies that all development be in line and adhering to the quality aspect. For ex-
ample, performance is not dictated by one thing, but often by how the system is
realized overall, including architectural considerations impacting the whole.

RQ4.2: Are QR specified in a measurable (quantifiable) manner? Looking
at Table 9, in 64% of all companies the view of how often QR are quantified dif-
fered between PM and PL. Interestingly, in 82% of all companies, the PL claimed
that QR were quantified sometimes, while in 67% of these cases the PM views
differed, stating always or never.

For B2B, PM and PL had different views in 83% of the companies, while only
40% of B2C had different views. In total, 36% of all interviewees claimed that
QR are always quantified. However, when examining the result for B2B and B2C
separately, there is a small difference.

For B2B, 33% of the interviewees stated that QR are always quantified, while
40% in B2C. Only in 36% of the companies (Company C, D, G, and H) an agree-
ment between PM and PL could be observed. Interestingly, three of these compa-
nies (C, D, and G) are B2C.

The disagreement may be an indication of communication problems between
the PM and PL. Communication problems were also identified as a challenge in
market-driven RE by several studies [6], [13], [14], and [26].

It is surprising to note that both interviewees stating that QR are never quanti-
fied represent B2B. This is related to identified challenges with regards to QR and
the perceived difficulties in achieving testable QR [6], which may explain why QR
are not always quantified. Another possible explanation may be that some QR are
more difficult to quantify than others, e.g. usability requirements are more dif-
ficult to quantify than performance requirements. Kamsties et al. found that the

4 Results and Analysis 103

Table 9: Quantification of Quality Requirements

Company Role Answer
Business-to-business companies (B2B)

A PM Always
PL Sometimes

B PM Never
PL Sometimes

E PM Always
PL Sometimes

H PM Sometimes
PL Sometimes

I PM Always
PL Sometimes

J PM Never
PL Always

Business-to-consumer companies (B2C)
C PM Always

PL Always
D PM Sometimes

PL Sometimes
F PM Always

PL Sometimes
G PM Sometimes

PL Sometimes
K PM Always

PL Sometimes

104 Quality Requirements in Industrial Practice - an extended interview . . .

specification of usability requirements is a challenge [25]. Furthermore, another
explanation may be that not all QR are suitable to be quantified, e.g. due to the
nature of security requirements, many of them may not be suitable for quantifica-
tion. In addition, as found in [34], many QR refers to different standards where
the quantification part may be hidden.

In a study by Olsson et al., about half of the QR were found to be quantified
which seems to confirm the findings [34]. However, one interesting observation
that cannot be directly confirmed is the level of disagreement between PM and PL.
It should be noted that each PM and PL pair worked for the same company, and
moreover with the same project.

5 Conclusions

In conclusion, this paper presents the results of an empirical study that examines
QR in practice in eleven software companies. Data is collected from eleven PMs
and eleven PLs at the companies, thus constituting 22 in-depth interviews in total.

In relation to RQ1, which QR are considered most important, the findings re-
veal that: (1) in general and especially for B2C, usability is deemed the most im-
portant QR, and (2) for B2B, safety is considered the most important aspect. The
importance of identifying the needs of a particular company type before dealing
with improvements of how to handle QR can of course be discussed.

One solution could be to develop ways (models, tools, techniques) to handle
all types of QR for all types of industry. However, the rather immature level of
QR handling in industry, in spite of research efforts, may indicate that a blanket
solution might not be the best way to go. Rather aimed approaches to e.g. figur-
ing out how companies can handle the most important (to them) QR could be an
alternative.

What we can say is that not all QR are equally important for all company
types. This insight of difference in priorities is important for e.g. researchers, as it
enables focus on certain quality aspects in research depending on company type.
These findings complement the findings of [5], [6], [23], which, in part, confirm
this; however, it contradicts [31].

The findings for RQ2, interdependencies, show that: (1) REQUIRES and CVA-
LUE are considered as the most common and important interdependency types to
identify, (2) while B2B viewed REQUIRES as the most common and important
one, B2C considered CAVLUE, and (3) AND, and OR were considered the least
common and least important interdependency types. This can be seen as rather
interesting as most software engineering research on QR is performed on real-
ization/implementation level where AND and OR are the dominant perspectives
investigated (e.g. architectures, implementation order etc.) [8], [10], [27]. Fewer
studies are devoted to for example the value aspects which are conveniently pushed
out of the scope of engineering [7].

5 Conclusions 105

Interdependencies can have a critical impact on product development in terms
of e.g. planning, design and quality. Despite the importance to identify interde-
pendencies, few of the companies actually manage to a large extent to effectively
elicit, analyze and document interdependencies. The identification of dependen-
cies is a complex task and the potential number of dependencies may be very large.
Therefore, the understanding of which interdependency types are considered most
important may give an indication to practitioners of which to start to identify.

For researchers, the knowledge of which interdependency types that exists,
are the most common and important ones, provides a focus of what to include in
potential new models/techniques for identifying, specifying and managing depen-
dencies. These findings complement the findings of [6], [26], who to part confirms
this; however, it contradicts [7], [9], [10]. The impact interdependencies of QR
have on product development are uniquely reported by this paper.

In relation to RQ3, cost estimation of QR, the findings show that:

1. There is no distinction between FR and QR during cost estimation

2. Expert opinion is the predominant method for estimation

3. In worst case, B2B has much more inaccurate estimates than B2C.

Difficulties of estimating QR may be related to their large impact on the en-
tire system and span over all most all FR, which makes it hard to estimate the
cost. However, inaccurate estimates of QR have major effects on the entire sys-
tem. Therefore, it is important for practitioners to understand that estimates of QR
demand a deeper analysis, and using the same resources and methods for QR and
FR may not provide accurate estimates.

For researchers, the inaccurate estimates of QR enable a focus on models/tech-
niques with focus on QR for cost estimation. These findings complement the find-
ings of [25] and [33], who to part confirms this; however, it contradicts [33] with
regards to reasons for inaccurate estimates. Furthermore, this paper uniquely re-
ports the perceived inaccuracy of QR estimates, and reasons for inaccurate esti-
mates of QR.

The findings for RQ4, dismissal of QR, reveal that:

1. Close to 1 out of 5 of all QR are dismissed from the projects at some stage
during development, with little or no consequence analysis performed

2. For B2C, performance requirements are more often dismissed due to the
difficulties in proper estimation, while for B2B, QR that are not considered
important, for example, usability is more often dismissed than performance
requirements

3. Poor cost estimation and the fact that QR have lower priority than FR are
the main reason for dismissal.

106 Quality Requirements in Industrial Practice - an extended interview . . .

The importance of QR needs to be acknowledged by practitioners, not only
in theory, but also in practice. Dismissal of QR may solve a short-term problem;
however, in the long-term, which the results reveal, the value of the system and
the competitive advantage may decrease. These findings complement the findings
of [6], [13], [26]. Some QR are easier to specify and test than others, for example,
performance requirements are easy to specify and test; however, they affect a large
part of FR that may make them difficult to keep in the project. Other QR, for
example, usability requirements are more difficult to specify and test. To lower the
dismiss rate of QR, by improving the specification and quantification of the more
difficult ones, it may be easier to keep them in the project instead of dismissing
when running out of time.

In general, the results indicate that there might be a difference in relation to
type of company (B2B or B2C). Furthermore, there seems to be a bespoke de-
velopment mindset where the immediate project gets a higher priority than the
long-term evolution of the product. Having an extra function is considered more
valuable than higher quality. This contradicts the initial view (RQ1) where QR
were labeled as critical. In addition, there seem to be difficulties in committing to
QR, especially when there is pressure to deliver the product. However, the main
problem is that QR are not taken into consideration during product planning and
thus not included as hard requirements in the projects, making the realization of
QR a reactive rather than proactive effort. Product management may thus not be
able to plan and rely on QR to achieve competitive advantages.

Acknowledgment
This work was partly funded by VINNOVA (the Swedish Agency for Innovation
Systems) within the MARS project and by the Industrial Excellence Center EASE
- Embedded Applications Software Engineering, (http://ease.cs.lth.se). Further-
more, we would like to thank all of the participants and their companies who have
helped in making the data collection possible for this research.

Bibliography 107

Bibliography
[1] H. Al-Kilidar, K. Cox, and B. Kitchenham. The use and usefulness of the

iso/iec 9126 quality standard. In Proceedings of the International Symposium
on Empirical Software Engineering, pages 122–128, 2005.

[2] D. Alwis, V. Hlupic, and R. Fitzgerald. Intellectual capital factors that impact
of value creation. In Proceedings of the 25th International Conference on
Information Technology Interfaces, pages 411–416, 2003.

[3] A. Aurum and C. Wohlin. Engineering and Managing Software Require-
ments. Springer, 2005.

[4] S. Barney, A. Aurum, and C. Wohlin. A product management challenge:
Creating software product value through requirements selection. Journal of
Systems Architecture, 54(6):576–593, 2008.

[5] R. Berntsson Svensson and A. Aurum. Successful software projects and
products. In Proceedings of the Fifth International Symposium on Empirical
Software Engineering, pages 144–153, 2006.

[6] R. Berntsson Svensson, T. Gorschek, and B. Regnell. Quality requirements
in practice: An interview study in requirements engineering for embedded
systems. In Proceedings of the 15th International Working Conference on
Requirements Engineering: Foundation for Software Quality, pages 218–
232, 2009.

[7] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och Dag.
An industrial survey of requirements interdependencies in software product
release planning. In Proceedings of the Fifth IEEE International Symposium
on Requirements Engineering, pages 84–91, 2001.

[8] L. Chung, B.A. Nixon, and E. Yu. Using non-functional requirements to
systematically support change. In Proceedings of the Second International
Conference on Requirements Engineering, pages 132–139, 1995.

[9] L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Require-
ments in Software Engineering. Kluwer Academic Publishers, 2000.

[10] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, and
S. Christina. Goal-centric traceability for managing non-functional require-
ments. In Proceedings of the 27th International Conference on Software
Engineering, pages 362–371, 2005.

[11] L.M. Cysneiros and J.C.S.P. Leite. Nonfunctional requirements: From elic-
itation to conceptual models. IEEE Transactions on Software Engineering,
30(5):328–349, 2004.

108 Quality Requirements in Industrial Practice - an extended interview . . .

[12] C. Ebert. Putting requirement management into praxis: dealing with non-
functional requirements. Information and Software Technology, 40(3):175–
185, 1998.

[13] S. Fricker, T. Gorschek, and M. Glintz. Goal-oriented requirements commu-
nication in new product development. In Second International Workshop on
Software Product Management, 2008.

[14] S. Fricker, T. Gorschek, and P. Myllyperkö. Handshaking between software
projects and stakeholders using implementation proposals. In Lecture Notes
in Computer Science, volume 4542, pages 144–159, 2007.

[15] T. Gorschek and A. Davis. Requirements engineering: In search of the de-
pendent variables. Information and Software Technology, 50(1–2):67–75,
2008.

[16] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. Industry evaluation of
the requirements abstraction model. Requirements Engineering Journal,
12(3):163–190, 2007.

[17] T. Gorschek and C. Wohlin. Identification of improvement issues using a
lightweight triangulation approach. In Proceedings of the European Software
Process Improvement Conference, pages VI.1–VI.14, 2003.

[18] T. Gorschek and C. Wohlin. Requirements abstraction model. Requirements
Engineering Journal, 11(1):79–101, 2006.

[19] S. Grimstad, M. Jørgensen, and K. Molokken-Ostvold. Software effort esti-
mation terminology: the tower of babel. Information and Software Technol-
ogy, 48(4):302–310, 2006.

[20] M. Ivarsson and T. Gorschek. Technology transfer decision support in re-
quirements engineering research: A systematic review of rej. Requirements
Engineering Journal, 14(3):155–175, 2009.

[21] M. Ivarsson and T. Gorschek. A method for evaluating rigor and indus-
trial relevance of technology evaluations. Empirical Software Engineering,
16(3):365–395, 2011.

[22] S. Jacobs. Introducing measurable quality requirements: a case study. In
Proceedings of the Fourth IEEE International Symposium on Requirements
Engineering, pages 172–179, 1999.

[23] E. Johansson, A. Wesslen, L. Bratthall, and M. Höst. The importance of
quality requirements in software platform development - a survey. In Pro-
ceedings of the 34th Annual Hawaii International Conference on System Sci-
ences, 2001.

Bibliography 109

[24] H-W. Jung, S-G. Kim, and C-S. Chung. Measuring software product quality:
A survey of iso/iec 9126. IEEE Software, 21(5):88–92, 2004.

[25] E. Kamsties, K. Hörnmann, and M. Schlich. Requirements engineering in
small and medium enterprises. In Proceedings of the International Confer-
ence on European Industrial Requirements Engineering, pages 84–90, 1998.

[26] L. Karlsson, Ȧ.G. Dahlstedt, B. Regnell, J. Natt och Dag, and A. Persson. Re-
quirements engineering challenges in market-driven software development -
an interview study with practitioners. Information and Software Technology,
49(6):588–604, 2007.

[27] R. Kazman, M. Barbacci, M. Klein, S.J. Carriere, and S.G. Woods. Expe-
rience with performing architecture tradeoff analysis. In Proceedings of the
19th International Conference on Software Engineering, pages 54–63, 1999.

[28] S. Konrad and M. Gall. Requirements engineering in the development of
large-scale systems. In Proceedings of the 16th IEEE International Require-
ments Engineering Conference, pages 217–222, 2008.

[29] S. Lauesen. Software Requirements - Styles and Techniques. Addison-
Wesley, 2002.

[30] L. Lehtola and M. Kauppinen. Suitability of requirements prioritization
methods for market-driven software product development. Software Process
Improvement and Practice, 11(1):7–19, 2006.

[31] H.K.N. Leung. Quality metrics for intranet applications. Information and
Management, 38(3):137–152, 2001.

[32] M. Lubars, C. Potts, and C. Richter. A review of the state of the practice
in requirements modeling. In Proceedings of the First IEEE International
Symposium on Requirements Engineering, pages 2–14, 1993.

[33] K. Molokken and M. Jørgensen. A review of software surveys on software
effort estimation. In Proceedings of the International Symposium on Empir-
ical Software Engineering, pages 223–230, 2003.

[34] T. Olsson, R. Berntsson Svensson, and B. Regnell. Non-functional require-
ments metrics in practice - an empirical document analysis. In Workshop on
Measuring Requirements for Project and Product Success, 2007.

[35] M.Q. Patton. Qualitative Research and Evaluation Methods. Sage Publica-
tions, 2002.

[36] F. Pettersson, M. Ivarsson, and T. Gorschek. A practitioner’s guide to light
weight software process assessment and improvement planning. Journal of
Systems and Software, 8(16):972–995, 2008.

110 Quality Requirements in Industrial Practice - an extended interview . . .

[37] C. Robson. Real World Research. Blackwell, 2002.

[38] P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, 2009.

[39] E. Turban, D. King, J.K. Lee, and D. Viehland. Electronic Commerce: A
Managerial Approach. Prentice Hall, 2006.

[40] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlson, B. Regnell, and A. Wess-
lén. Experimentation in Software Engineering: An introduction. Kluwer
Academic, 2000.

PAPER II

PRIORITIZATION OF QUALITY
REQUIREMENTS: STATE OF

PRACTICE IN ELEVEN
COMPANIES

Abstract

Requirements prioritization is recognized as an important but challenging activity
in software product development. For a product to be successful, it is crucial to
find the right balance among competing quality requirements. Although literature
offers many methods for requirements prioritization, the research on prioritization
of quality requirements is limited. This study identifies how quality requirements
are prioritized in practice at 11 successful companies developing software inten-
sive systems. We found that ad-hoc prioritization and priority grouping of require-
ments are the dominant methods for prioritizing quality requirements. The results
also show that it is common to use customer input as criteria for prioritization
but absence of any criteria was also common. The results suggests that quality
requirements by default have a lower priority than functional requirements, and
that they only get attention in the prioritizing process if decision-makers are dedi-
cated to invest specific time and resources on QR prioritization. The results of this
study may help future research on quality requirements to focus investigations on
industry-relevant issues.

Richard Berntsson Svensson, Tony Gorschek, Björn Regnell, Richard Torkar, Ali
Shahrokni, Robert Feldt, and Aybüke Aurum
19th IEEE International Requirements Engineering Conference (RE), Trento, Italy,
29 August – 2 September 2011

112 Prioritization of Quality Requirements: State of Practice in Eleven . . .

1 Introduction

Requirements engineering is a decision-centric process [1], and decision support
plays an important role in enabling the delivery of value to stakeholders [22].
Hence, decision support is crucial in achieving value to stakeholders. This is fur-
ther aggravated in market-driven incremental development, where the situation is
even more complex [2], due to that the flow of requirements is not limited to one
project, and the requirements are generated from internal (e.g., engineers) and ex-
ternal (e.g., customers) sources [10].

To deliver business value, a key issue is to decide what to develop; therefore,
it is important to make trade-offs between different requirements and stakeholders
[27]. Requirements prioritization is an important part in requirements negotiation
and release planning [22], [27].

For a product to be successful, it is not enough to fulfill the functional require-
ments (FR), it is crucial, and challenging, to find the right balance among com-
peting quality requirements (QR). Although literature offers many methods for re-
quirements prioritization, the research on prioritization of QR is limited [5], [12].

This paper presents the results of an empirical study that includes data col-
lected through in-depth interviews with 22 practitioners from 11 different com-
panies. The study focuses on prioritization of QR in industry. This exploratory
study can be seen as a study of state-of-practice in industry, but also an investiga-
tion of how state-of-the-art in research, in terms of methods and techniques, has
penetrated industrial practice.

The study incorporates two main perspectives with regards to prioritization of
QR [8], through the study of two roles central to decision making in relation to QR.
First, the product perspective is studied through the role of the Product Manager
(PM), responsible for the overall product perspective and the selection of the over-
all planning of the product evolution and proposition offering. Second, the project
perspective is studied through the role of the Project Leader (PL), responsible for
managing and prioritizing requirements within the realization phases.

The reminder of this paper is organized as follows. In Section 2, related work
is presented. The research methodology is described in Section 3, and Section 4
presents the results and relates the findings to previous studies. Section 5 gives a
summary of the main conclusions.

2 Related work

The quality of a software product is often considered as the ability of the prod-
uct to satisfy customer and user needs. To increase the chance of a successful
product, it is important to find, select, and plan the right releases with suitable
requirements [3]. If the ”wrong” requirements are selected and implemented in
the product, users may resist buying the product [3]. Decision-makers often face

2 Related work 113

the challenge of having more requirements than are possible to implement given
different constraints, such as time, cost, and other scarce resources. Therefore, it
is crucial to distinguish the important requirements from the less important ones to
maximize the overall business value [28]. To find the most important requirements
that add most value to business, several requirements prioritization approaches are
introduced in the literature. A selection of prioritization techniques from literature
is summarized in the following subsection.

2.1 Requirements Prioritization Techniques

Numerical Assignment (Grouping) is, according to [3], [21], the most traditional
and common prioritization technique. Numerical assignment is based on grouping
requirements into different categories, where three groups are common in practice
[30]. According to [31], using categories like high, medium, and low may confuse
the stakeholders since different stakeholders may have different views of what, e.g.
high and medium means.

The pair-wise comparison technique suggested by Karlsson [15] is based on
the Analytical Hierarchy Process (AHP) [29]. In this technique, pairs of require-
ments are compared according to their importance. The comparisons provide an
understanding of each requirements share of the total value.

Cost-value approach [16] is a prioritization technique based on AHP. The
cost-value approach uses a two-dimension graph that displays the requirements
value against its cost. AHP is used from a customer and user perspective to assess
the value of each requirement, followed by an assessment of the requirements cost
from an implementation perspective. The next step is to plot these into a cost-value
diagram, which is used to analyze and discuss the requirements.

Cumulative voting ($100-Dollar Test) is a straightforward prioritization tech-
nique where stakeholders are given a fictitious $100 to distribute on requirements.
When the money has been distributed, the requirements are ranked so that the high-
est total reflects the most important requirement, the next highest is the next-most
important, etc. on a ration scale.

Ranking is a technique based on an ordinal scale where requirements cannot
be tied in ranking, which means the most important requirement is ranked first,
and the least important ranked last, on an ordinal scale. It is not possible to see the
relative priority difference among the requirements. There are a variety of ways to
rank the requirements, e.g. using bubble sort or binary search tree [17].

2.2 Empirical Studies of Requirements Prioritization

So far, to the best of our knowledge, we know of no empirical studies of with
specific focus on how QR prioritization is conducted in practice [5]. In this section,
we therefore describe a selection of empirical studies based on prioritization of
requirements in general.

114 Prioritization of Quality Requirements: State of Practice in Eleven . . .

Karlsson conducted an empirical comparison of the pair-wise comparison tech-
nique and numeral assignment technique [15]. Five participants applied the tech-
niques on 14 requirements. Karlsson found that the relative prioritization by pair-
wise comparison and that the judging of a requirements relative importance to the
other tends to be more accurate than assigning absolute numbers.

Karlsson et al. conducted a self-experiment to compare six prioritization tech-
niques [17]. All three authors prioritized 13 QR using each technique. Karlsson
et al. concluded that the AHP was the most promising technique due to providing
the most trust worthy results, and it includes a consistency check [17]. However,
scalability was identified as a main problem with AHP.

In 2007, Karlsson et al. conducted an experiment of comparing tool-supported
pair-wise comparison with planning game (PG) [19]. The results show that tool
supported pair-wise comparison was less time consuming than PG. While PG
seemed to be more difficult to use, its results were found to be slightly more accu-
rate; however, the differences were not statistically significant.

Lethola and Kauppinen conducted an experiment with industry practitioners
to evaluate two requirements prioritization methods, pair-wise comparisons and
Wiegers’ method [21]. The results indicate that prioritization methods may have
limited ability to support decision-making in market-driven product development.
Moreover, Lethola and Kauppinen identified which prioritization methods are pres-
ent in the studied companies [21]. The existing methods are: mutual cost-value
analysis, modified Kano model, and evaluating aspects affecting to priorities. In
addition, product and project level prioritization practices were identified. At
project level, grouping requirements, negotiation, and impact validation were used,
while at product level, priority lists and open-ended multirelease planning were
used.

Herrmann and Paech conducted two quantitative experiments with students to
evaluate two requirements prioritization techniques, risk estimation and ranking
[13]. The results highlight challenges of risk estimation and what is important
during practical requirements prioritization based on risk estimation.

The focus of the above mentioned studies, with the exception of Lethola and
Kaupinnen [21], has not been primarily on how QR are prioritized in industry, but
focus on the evaluation and comparison of different requirements prioritization
techniques. This paper presents a study with the primary focus on how QR are
prioritized in industry. Even though Lethola and Kaupinnen [21] identified which
requirements prioritization techniques are used in industry, their focus was not on
QR.

3 Research Methodology

The study was carried out using a qualitative research approach [26]. A qualitative
research approach is useful when the purpose is to explore an area of interest, and

3 Research Methodology 115

Table 1: Research Questions

Research Questions
RQ1: How is QR prioritization performed?
RQ2: What criteria are used when QR are prioritized?
RQ3: How does QR prioritization at product and project levels differ?

when the aim is to improve the understanding of phenomena. In addition, qualita-
tive research is directed primarily at collecting and analyzing data with the aim of
achieving information depth rather than breadth [6] in an inductive way [7]. The
purpose of this study is to gain in-depth understanding of the nature of QR prioriti-
zation within market-driven embedded systems companies. The aim is also to pro-
vide a basis for future research. Due to the explorative nature of the study, a qual-
itative approach has been considered suitable. Furthermore, due to the potential
richness and diversity of data that could be collected, semi-structured interviews
would best meet the objectives of this study. Semi-structured interviews help to en-
sure that common information on pre-determined areas is collected, but allow the
interviewer to probe deeper where required. In addition, by using semi-structured
interviews instead of using a large survey, the interviewer had the chance to val-
idate the questions with the interviewee lessening changes of misunderstandings.
The research questions in Table 1 provided a focus for the empirical investigation.

3.1 Research Design and Data Collection

The study was conducted in two stages: first the data from each company was
collected and analyzed. Secondly, the combined data from all participating com-
panies was analyzed. The investigation can be divided into three phases:

Planning/Selection: The first phase of the study involved brainstorming and
planning meetings to design the study and to identify different areas of interests.
The sampling strategy used was a combination of maximum variation sampling
and convenience sampling within our industrial collaboration network [23]. A
”gate-keeper” at each company identified two subjects that he/she thought were
the most suitable and representative of the company to participate in this study.
Eleven software development companies participated in the study, and from each
company, one product manager (PM) and one project leader (PL) from the same
project were interviewed, resulting in 22 data points. The interview instrument was
designed with respect to the different areas of interest and inspiration from [18].
To test the interview instrument1, two pilot interviews were conducted prior to the
industry study.

1http://serg.cs.lth.se/research/experiment_packages/quality_requirements

116 Prioritization of Quality Requirements: State of Practice in Eleven . . .

All eleven companies develop embedded systems using a market-driven soft-
ware development approach. The included companies vary in respect to size, type
of product, and application domain, a rudimentary characterization (following the
guidelines of [14]) can be see in Table 2 (more details are not revealed for confi-
dentiality reasons).

Data Collection: The study used a semi-structured interview strategy [26].
One interviewee and one interviewer attended all interviews. First, the purpose
of the study and a general explanation of QR were presented and then questions
about the different areas of interests in relation to QR were discussed in detail. All
interviews varied between 40 and 90 minutes.

Analysis: The content analysis [26] involved creating categories where inter-
esting parts from the interviews were marked and discussed. The first two authors
examined the categories, first individually and then together in a workshop setting.
The category analysis included examination of the content from different perspec-
tives and a search for explicitly stated or concealed pros and cons in relation to
prioritization of QR in industry. The results from the analysis are found in Section
4.

3.2 Validity

In this section, threats to validity in relation to the research design and data col-
lection are discussed. We consider the four perspectives of validity and threats as
presented in Wohlin et al. [32].

Construct validity: The construct validity is concerned with the relation be-
tween theories behind the research and the observations. The variables in our
research are measured through interviews, including open-ended aspects where
the participants are asked to express their own opinions. Mono-operation bias [32]
was avoided by collecting data from a wide range of sources on the topic of the
study. The potential problem of evaluation apprehension [32] was alleviated by
the guarantee of anonymity as to all information divulged during the interviews,
and the answers was only to be used by the researcher, i.e. not be showed or used
by any other participants, companies, or researcher.

Conclusion validity: Threats to conclusion validity arise from the ability to
draw accurate conclusions. The interviews were conducted at different companies
and each interview was done in one work session. Thus, answers were not in-
fluenced by internal discussions. In order to obtain highly reliable measures, the
interview instrument, including posed questions, two pilot studies were conducted
prior to conducting the interviews.

Internal validity: This threat is related to issues that may affect the causal re-
lationship between treatment and outcome. Threats to internal validity include in-
strumentation, maturation and selection threats. In our study, the potential problem
of instrumentation threats was alleviated by developing the research instrument
with close reference to literature relating to QR, influenced by previously vali-

3 Research Methodology 117
Ta

bl
e

2:
C

om
pa

ny
C

ha
ra

ct
er

is
tic

s

#
E

m
pl

oy
ee

s
D

om
ai

n
D

ev
el

op
m

en
tp

ro
ce

ss
#

of
R

eq
s

in
a

ty
pi

ca
l

pr
oj

ec
t

%
of

Q
R

in
a

ty
pi

ca
l

pr
oj

ec
t

A
∼

10
0

C
on

tr
ol

sy
st

em
s

In
cr

em
en

ta
ld

ev
el

op
m

en
t

>1
00

0
∼

10
%

B
∼

30
00

Te
le

co
m

Pl
an

-d
riv

en
∼

70
00

∼
10

%
C

>5
00

0
Te

le
co

m
Pl

an
-d

riv
en

>2
00

00
U

nk
no

w
n

D
32

5
Te

le
co

m
A

gi
le

-S
cr

um
∼

10
0

fe
at

ur
es

∼
10

%
E

65
C

on
tr

ol
sy

st
em

s
W

at
er

fa
ll-

It
er

at
iv

e
D

iff
er

s
D

iff
er

s
F

∼
70

0
Su

rv
ei

lla
nc

e
It

er
at

iv
e

∼
25

0
∼

15
%

G
∼

10
0

C
on

su
m

er
el

ec
tr

on
ic

s
Pl

an
-d

riv
en

∼
30

0
∼

5%
H

∼
70

0
Te

le
co

m
A

gi
le

-S
cr

um
va

ri
an

t
∼

20
0

20
%

I
∼

50
Se

cu
ri

ty
W

at
er

fa
ll

an
d

A
gi

le
-S

cr
um

∼
10

0
∼

15
%

J
∼

90
C

on
tr

ol
sy

st
em

s
Pl

an
-d

riv
en

∼
10

0
∼

10
%

K
28

0
Te

le
co

m
W

at
er

fa
ll

-I
te

ra
tiv

e
∼

10
00

∼
5%

118 Prioritization of Quality Requirements: State of Practice in Eleven . . .

dated interview instrument [18]. In addition, maturation threats were alleviated by
reducing the duration of interview sessions by collecting background information
before the interview, and by keeping the interview session to 90 minutes. Selection
bias is always present when subjects are not fully randomly sampled. However,
interviewees were selected based on their roles by a ”gate-keeper” at 11 different
companies from different geographical locations, which limited the effect of this
threat.

External validity: The external validity is concerned with the ability to gen-
eralize the results, i.e. in this case the applicability of the findings beyond the
included companies. Qualitative studies rarely attempt to generalize beyond the
actual setting since it is more concerned with explaining and understanding the
phenomena under study. The nature of qualitative designs also makes it impossi-
ble to replicate since identical circumstances cannot be recreated.

However, understanding the phenomena may help in understanding other cases
and situations. The fact that more than one company acknowledges most of the
identified challenges increases the possibility to generalize the results beyond this
study. The large number of companies and contexts also contributes to general-
izability. To avoid the interaction of selection and treatment, interviewees were
selected according to their roles within the company by a ”gate-keeper”, and com-
panies were selected from different geographical locations.

4 Results and Analysis
The following three sub-sections present and discuss one research question each,
corresponding to the research questions in Table 1.

4.1 Prioritization of Quality Requirements (RQ1)
In analyzing Research Question 1 (RQ1), this section examines how QR are pri-
oritized in industry. Table 3 shows what prioritization method was used at the 11
companies (note that Table 3 displays the answer for both PM and PL, i.e. if only
one method is shown for one company, both PM and PL gave the same answer).

Looking at Table 3, we see that ad-hoc (14 out of 22) is the dominant re-
quirements prioritization method for QR among our case organizations. Ad-hoc
is followed by numerical assignment (6 out of 22), pair-wise comparisons (1 out
of 22), and key performance indicators (1 out of 22). When we asked the inter-
viewees how QR were prioritized, six answered that ranking (see Section 2.1) was
used (illustrated as numerical assignment in Table 3). However, when the intervie-
wees described how they prioritize QR, the description of the method was similar
to numerical assignment (see Section 2.1). This interpretation of ranking differs
from the one formulated in literature. This leads to a possible mismatch between
the established academic interpretation of ranking and the industrial interpretation
of it.

4 Results and Analysis 119

Table 3: Prioritization Methods

Company Prioritization method(s)
A Numerical assignment
B Ad-hoc, Numerical assignment
C Ad-hoc, Pair-wise comparisons
D Ad-hoc
E Ad-hoc
F Numerical assignment
G Ad-hoc, Numerical assignment
H Ad-hoc
I Ad-hoc
J Ad-hoc
K Key performance indicators, Ad-hoc

The finding that ad-hoc is the most common prioritization ”method” of QR is
not in line with [3], which stated that numerical assignment is the most common
prioritization technique. The unstructured prioritization of QR warrants the ques-
tion if there is any difference of prioritization of QR between mature as opposed
to new products, e.g., unstructured prioritization of QR for new products may be
expected as the quality may not be well understood for that product, while mature
products may involve a more structured prioritization technique. This is however
not the most likely case since the focus of this study is how prioritization of QR is
performed. If different techniques and methods had been used for mature and new
products, the practitioners would probably have mentioned this. Another question
lies in prioritization over time, i.e., prioritization of improved quality over the en-
tire lifecycle for the product as opposed to prioritization in the beginning of the
project. There may be such differences, but these were not discovered by this in-
vestigation as it only reflects on the method used up-front, not specifically how the
QR changes over time. Life-cycle priority change analysis is an interesting matter
for further research.

Interestingly, while [13], [15], [17], [19], [21] have conducted experiments to
evaluate which prioritization technique is more promising than others. Out of all
the methods tested, only pair-wise comparisons (1 out of 22 in Table 3) is used at
our studied companies.

One possible explanation for this discrepancy may be explained by the focus,
i.e. we focused solely on prioritization of QR, while [13], [15], [17], [19], [21]
evaluated prioritization techniques for prioritization of requirements in general.
However, as many as 14 out of 22 interviewees indicate that FR are prioritized
using the same method as for QR. One explanation may be that time to market is
important, and to use a more complex prioritization method takes too long, which

120 Prioritization of Quality Requirements: State of Practice in Eleven . . .

was explained by several interviewees. Another possible explanation may be re-
lated to customer input. Several interviewees stated that a few important customers
are selected to prioritize all requirements for the supplier, despite using a market-
driven development approach. No further elaborations were given. Scalability
of methods can also be a factor of not using the techniques, which is especially
evident with pair-wise comparisons [20].

Ad-hoc prioritization: In total for as many as nine out of eleven case orga-
nizations, either both or one of PM and PL indicate that QR are prioritized in an
ad-hoc fashion. There are different ”approaches” at the studied companies of how
QR are prioritized in an ad-hoc fashion: (1) customer input, (2) marketing depart-
ment, and (3) ”gut feeling” (based on the practitioners experience). In three case
organizations it is the customer who prioritizes all QR, either direct (provides a
list of prioritized requirements to the developing company) or indirect (the PM or
PL makes a decision, based on his/her gut feeling/experience, if a particular re-
quirement may be important to their customers). One interviewee explained, ”if a
quality requirement is important to the customer, it is a high priority. If it is not im-
portant to the customer, it has a low priority, meaning it will not be implemented”.
Another interviewee explained, ”In Scrum, we have a direct prioritization by the
customers. If quality requirements are not added and prioritized by the customers,
we will not improve the quality of the products”.

In some case companies, the marketing department handles the prioritization
of all requirements, including QR. However, the software department has the
”right” to change the list of priorities based on their experience and believes of
what level of quality may be expected by the market and potential customers.

In as many as four companies, the PM or PL’s gut feeling is the prioritization
method. One interviewee explained, ”some people [PM and PL] think quality
requirements are important, while others think release time is more important”.
That is, it is up to the PM or PL in charge of a certain product/project to prioritize
what is important. Another interviewee further explained, ”some quality require-
ments (security) are always important for everyone, while others (e.g. usability)
are down prioritized by some managers, but some managers consider them impor-
tant”. Another factor that affects the decision maker’s gut feeling is internal and
external stakeholders. The stakeholder who ”screams” the loudest is heard, i.e.
their preferences are given the highest priority.

Numerical assignment: In literature, numerical assignment is described as
putting requirements into different categories based on their importance, e.g. us-
ing categories like high, medium and low (see Section 2.1). All interviewees, using
numerical assignment to prioritize QR, stated that three categories are used when
they prioritize QR, which is in line with [30]. Two different sets of categories are
used at our studied companies, 1, 2, or 3 (where 1 is the highest priority), or crit-
ical, medium, and not critical, which is in line with the results in [15]. However,
in three out of four case companies that use numerical assignment, all QR are by
default put into the not critical category, i.e. QR always have lower priority than

4 Results and Analysis 121

all FR. One interviewee explained, ”once we have implemented all functional re-
quirements, then we look into quality requirements. If, and only if there is time and
resources available, then we will prioritize our quality requirements and improve
the quality of the product”. In a study by Berntsson Svensson et al, one challenge
in managing QR was to get QR into projects when FR are prioritized [4], which is
in line with the results in this study.

In the fourth company, QR are by default added to the critical category of
requirements. The reason is due to the company’s competitors. According to
one interviewee, the only way to differentiate from their competitors is to have a
product with the highest level of quality, having a competitive advantage.

Prioritization in agile development: Racheva et al. conducted a literature
review on agile requirements prioritization methods that can be found in the liter-
ature [24]. The result is a list of 15 different requirements prioritization methods;
however, none of the found methods in Racheva et al. [24] are used by any of the
case organizations (D, H, I) that use Scrum in our study. According to all six in-
terviewees, QR are prioritized in an ad-hoc fashion. One possible explanation to
the differences may be explained by the focus, i.e. we focused solely on prioriti-
zation of QR. However, the main reason for not using any prioritization method is,
according to several interviewees, that ”agile makes projects the focus and not the
system, or long term view. This is very detrimental for quality requirements as you
do not see the big picture or look beyond your own release”.

General discussion on prioritization challenges: Looking at how QR are
prioritized, most of the studied companies do not use a specific method, while
four companies use numerical assignment. However, the ones using numerical
assignment do not prioritize QR, instead, all QR are either put into the critical
or not critical category by default. We asked the interviewees why prioritization
of QR is challenging, or why QR are by default put into a preselected category.
Surprisingly, not a single challenge or reason was related to the prioritization itself.
However, this result is in line with the results in Lethola and Kauppinen [21]. Their
results indicate that the challenges in requirements prioritization are other than to
order a list with a set of requirements. In our study, the reasons for difficulties in
prioritizing QR are:

• Elicitation of QR

• Lack of well specified QR

• Quantify QR

• What is good enough?

• Knowledge about QR

Elicitation of QR is related to difficulties in identifying the important QR.
However, even if the important QR have been elicited, another challenge lies

122 Prioritization of Quality Requirements: State of Practice in Eleven . . .

in specifying QR, which affects the prioritization process. One interviewee ex-
plained, ”if the quality requirements are well described, they are as easy as func-
tional requirements to prioritize”. The importance of writing understandable re-
quirements is confirmed in a study by Karlsson et al. [18]. To be able to prioritize
QR, quantified (measurable) QR seem to be of major importance. If the managers
do not know which level of quality is expected, they cannot prioritize them. Even
if QR are quantified, what is good enough asked one interviewee. The interviewee
further explained, ”we must be able to understand what the market needs, and to
be able to understand the value and the affects level of quality has on the products,
but we do not have that experience”. There seems to be a lack of understanding
and knowledge about managing and handling QR, not only in prioritization, but
also from elicitation to understanding market needs. All of these challenges affect
the prioritization process of QR, which was confirmed by several interviewees.

Several companies have stated that the main challenge with QR is in the elic-
itation, specification, quantification, and knowledge about QR, and not primarily
in the prioritization of them. This is however relevant as the handling of QR is
a chain of events, from elicitation down thorough specification and prioritization.
This paper focuses on the latter. Even though many companies have inadequately
specified (and elicited) QR all companies have QR in one shape or another. Thus,
the prioritization of them, in relation to each other and in relation to FR, is im-
portant. The fact that companies use ad-hoc prioritization may be explained by
several reasons. For example, ad-hoc prioritization may be adequate for the task
in most cases in our studied companies. This is however probably not the case as
the dismissal rate of QR during project development is 22.5% [4]. Another reason
could be that there is inadequate technology and knowledge transfer [9] from re-
search to industry. Also, a likely explanation could be that there is a lack of usable
and useful (scalable) prioritization techniques.

General discussion on comparison between functional and quality require-
ments prioritization: We believe that the main difference in prioritization of QR
and FR is that QR have the potential of being measured with a sliding value on a
continuous scale rather than being either included or excluded. The quality level
is thus typically not viewed as either good or bad, but rather as something with
different shades of goodness on a sliding scale, thus adding another dimension
to consider in the prioritization process. However, although many prioritization
techniques, e.g., the cost-value approach [16], are mainly used for FR, specific
quality targets can of course be included as discrete objects of prioritization in
these techniques. This may be one reason to why several subjects stated that the
same prioritization methods are used for both FR and QR. The prioritization of
what level of quality is needed may be viewed by the subjects as specification
and quantification, which may explain why these issues were considered the main
challenges of prioritization of QR.

4 Results and Analysis 123

Table 4: Criteria used in QR prioritization

Company Role Criteria
A PM Cost, Return of investment

PL No criterion
B PM Customer input

PL Value
C PM Value

PL Value
D PM Cost

PL Cost
E PM No criterion

PL No criterion
F PM No criterion

PL Value,Customer input
G PM No criterion

PL Importance of quality requirement
H PM Customer input

PL No criterion
I PM Customer input

PL Customer input
J PM No criterion

PL Customer input
K PM No criterion

PL Cost/benefit

4.2 Used Criteria when QR are prioritized (RQ2)

We asked the interviewees what criteria are taken into account when prioritizing
quality requirements. Looking at Table 4, the only criteria mentioned by more
than one practitioner were: no criterion (7 out of 22), customer input (6 out of 22),
value (4 out of 22), and cost (3 out of 22).

Looking at Figure 1 and 2, almost the same criteria are used when prioritizing
QR by numerical assignment or in an ad-hoc fashion. In both prioritization meth-
ods, value estimates, cost estimates, and customer input are taken into account.
However, when examining how many interviewees stated they used a certain cri-
terion, there was a difference between the two prioritization methods. Only one
(the number within parenthesis in Figure 2) interviewee uses customer input when
putting QR into different priority groups, while as many as five (see Figure 1) inter-
viewees prioritizing QR in an ad-hoc way took the customer’s input into account.
One explanation may be, if the customer provides input to, or actually prioritizes

124 Prioritization of Quality Requirements: State of Practice in Eleven . . .

the requirements, there is no need for the company to prioritize the QR themselves,
which is strongly related to the description of how QR are prioritized in Section
4.1.

Quality
requirements

specified

Quality
requirements

prioritized

Value
estimates

(1)

Customer
input
(5)

Cost
estimates

(2)

Cost/benefit
(1)

Ad-hoc
prioritization

Figure 1: Criteria in ad-hoc prioritization

Quality
requirements

specified

Quality
requirements

prioritized

Value
estimates

(2)

Customer
input
(1)

Cost
estimates

(1)

ROI
(1)

Importance
(1)

Numerical
assignment
prioritization

Figure 2: Criteria when prioritizing by numerical assignment

4 Results and Analysis 125

Table 5: Frequency of occurrence of criteria

Criteria Total Ad-hoc Numerical Assignment
No criterion 8 5 2
Customer input 6 5 1
Value 4 1 2
Cost 3 2 1
ROI 1 0 1
Cost/benefit 1 1 0
Importance 1 0 1

In the study by Berander and Andrews [3], six aspects (criteria) of prioritiza-
tion are presented: importance, penalty, cost, time, risk, and volatility. Our results
show that only two (importance and cost) of these six criteria are taken into account
when prioritizing QR at our studied companies. According to [3], in practice, it
is important to consider multiple criteria, like cost and value, before deciding if a
requirement should be implemented directly, later, or not at all. This is not in line
with the results in our study, which show only three practitioners use more than
one criterion when prioritizing QR.

Although criteria like customer input, cost and value estimations are taken into
account when prioritizing QR, in general, the most common criterion is actually
having none.

This is illustrated in Table 5 (note that the total column in Table 5 includes cri-
teria used in other prioritization methods than ad-hoc and numerical assignment).

Instead of calculating different estimates where the input value is based on
”gut feeling”, most managers at our studied companies prioritize QR based on a
”gut feeling” combined with their own experience. In the study by Lethola and
Kauppinen, the results indicate difficulties for practitioners to estimate cost and
value for requirements [21], which is in line with the findings of our study.

The top two criteria in ad-hoc prioritization are, to have no specific or explicit
criterion defined, and customer input, while when numerical assignment is used,
the top two are, no specific or explicit criterion defined, and value estimates. Nu-
merical assignment uniquely uses importance and ROI when prioritizing QR. On
the other hand, ad-hoc prioritization uniquely takes cost/benefit analysis into ac-
count.

Interestingly, only one interviewee of 22 uses cost/benefit criteria when prior-
itizing QR. The low result for cost/benefit raises the question how useful priori-
tization techniques for QR like the cost-value approach [16] are in an industrial
context. Furthermore, Herrmann and Daneva found 240 papers on requirements
prioritization based on cost and benefit estimation [12]. One may ask if researchers
are focusing on the correct set of prioritization criteria given the results.

126 Prioritization of Quality Requirements: State of Practice in Eleven . . .

Surprisingly, not a single one (out of six interviewees) of the practitioner from
any of the three case organizations in our study estimates value of each require-
ment and take this into account when prioritizing QR. No further elaboration was
given. This result is not in line with [24], [25], who state that the estimation of
business value of each requirement is deemed important. The three criteria taken
into account in the prioritization process among our case organizations are: (1)
customer input (3 out of 6), cost estimation (2 out of 6), and no specific or explicit
criterion defined (1 out of 6). In [25], the practitioners agreed that the developers
are active in the requirements prioritization process, which is not in line with our
findings. Our results show, in two of three companies, the customers prioritize the
requirements at product management level, while only one PL indicated that the
customers prioritize their requirements on project level.

4.3 Difference between Product and Project Level (RQ3)

In analyzing Research Question 3 (RQ3), this section examines the difference of
prioritization of QR at product and project level respectively, as illustrated in Table
6.

In general, ad-hoc and numerical assignment are the two most common prior-
itization techniques when prioritizing QR at both product and project level. How-
ever, 73% of all PM prioritize in an ad-hoc fashion, while only 55% of the PL.
Moreover, 18% of the PM put requirements in to priority groups (numerical as-
signment), while 36% of the PL used numerical assignment to prioritize QR. This
result is partly in line with [21], who found that, at project level prioritization prac-
tices, the practitioners put requirement into groups according to their importance.
However, in [21], grouping requirements was not present at product management
level prioritization practices, which is not in line with our results. The difference
between the studies may be explained by the focus, i.e. we focused solely on QR,
while in Lethola and Kauppinen the focus was on requirements in general [21].
Moreover, we only focused on companies working with embedded systems, while
Lethola and Kauppinen have a mix of companies working with embedded, interac-
tive, and software systems [21]. In addition, we have 11 case companies compared
to seven in Lethola and Kauppinen [21].

Looking at Table 6, the most common criterion for requirements prioritization
at product level is no criterion, while at project level, no criterion, customer input,
and value are equally common among our case organizations. When comparing
product and project level, no criterion is used when prioritizing QR in 45% of the
companies at product level, while only 27% at project level. This is a substantial
difference and seems to indicate a much larger criterion focus in projects compared
to pre-project.

Product level prioritization: In general, at product management level, the
PM prioritizes, mainly based on his/her gut feeling and experience (no criterion in
Table 6), QR at a high abstraction level. In general, QR are prioritized early on

4 Results and Analysis 127

Table 6: Frequency of occurrence at product and project level

Product level Project level
Prioritization Method
Ad-hoc 8 6
Numerical assignment 2 4
Pair-wise comparisons 0 1
Key performance indicators 1 0
Criteria
No criterion 5 3
Customer input 3 3
Cost 2 1
Value 1 3
ROI 1 0
Cost/benefit 0 1
Importance 0 1

in the development process where important information, such as used criteria for
prioritization, are specified in a document, which in most of the case organizations
is an Excel sheet. Interestingly, although the PM is responsible for all projects
related to his/her product, the PM do not have an overall picture of how QR affects
different projects and other parts of the system. However, QR are prioritized for
several projects by the PM.

Project level prioritization: In general, at project level prioritization, a ”list
from above” (from PM) of prioritized QR is given to the PL. Each area (project)
should prioritize QR at a lower level of abstraction (the QR are broken down from
high to low abstraction level); however, QR may affect the entire system and most,
if not all FR. Despite the knowledge of the affect QR may have, none of the PL had
an understanding of the affects. In most of the case organizations, QR were not
broken down to a lower abstraction level, hence not prioritized, apart from being
assigned to the lowest priority group. The main reason for not breaking down
QR is because ”it requires the most skilled managers and developers at project
level, which we do not have access to”, according to one interviewee. Lethola
and Kauppinen found that negotiation took place in project meetings (at project
level), especially when the project group could not implement all the prioritized
requirements [21], which is not in line with our findings. If QR cannot be fulfilled,
there is no negotiation process. Instead, the PL use a tool supported system to
change the priority of the QR, and add a short explanation, which in most cases is
related to time restrictions and available recourses.

128 Prioritization of Quality Requirements: State of Practice in Eleven . . .

5 Conclusions
This paper presents the result of an empirical study that examines how QR are pri-
oritized in practice at eleven software companies. Data was collected from 11 PMs
and 11 PLs, constituting 22 in-depth interviews in total. We do not claim, in any
way, that this paper represents an empirical study that is completely representative
of the population. There may of course be companies not part of this study that
have different ways of working with prioritization of quality requirements. How-
ever, it is relevant to observe that among our 11 case companies, many are market
leaders in their respective domain.

In relation to RQ1 that asks how QR are prioritized in industry, the findings
reveal that: (1) ad-hoc and grouping (numerical assignment) requirements are the
dominant methods for prioritizing QR, (2) although numerical assignment is used
frequently in QR prioritization at our studied companies, QR are by default often
considered to have the lowest priority, and (3) the reasons for not prioritizing QR
was not related to the prioritization process itself, but rather how QR were treated
in the overall requirements engineering process.

For researchers, a deeper understanding of QR prioritization in industrial prac-
tice provides a focus of what to improve/include in supporting techniques for pri-
oritizing QR. Further, a question that is seldom addressed is how sophisticated the
methods actually need to be, and what is desirable according to the practitioners?
Many techniques and methods that are developed for requirements prioritization
are complex, e.g. techniques based on AHP, but as the results show, complex tech-
niques are seldom used in industrial practice. Instead, simple techniques, such
as numerical assignment and ad-hoc prioritization, are used in practice. These
findings complement the findings of [3], [21].

The findings for RQ2, regarding criteria used for prioritization, we see:

• It is most common to have no specific or explicit criterion defined when
prioritizing QR

• Input from customer is more dominant in ad-hoc prioritization than when
using numerical assignment

• Only one interviewee mentioned the use of cost/benefit analysis when pri-
oritizing QR

The result that cost and value estimates are not used as input to the prioritiza-
tion process of QR may be related to their large impact on the entire system, which
make the estimates more difficult to take into account. This result is in line with
the findings of [21].

For researchers, the understanding of what criteria are used when prioritizing
QR enable a focus on what is needed by practitioners. These findings contradict
the findings of [24], [25] with regards to the importance of value estimates when
QR are prioritized.

5 Conclusions 129

The findings for RQ3, regarding the difference of prioritizing QR at product
and project level, reveal that:

• Ad-hoc prioritization is more common at product level compared to project
level

• 45% of product managers use no specific criterion when prioritizing QR

• At project level, it is difficult to break down QR to a low enough abstraction
level

Difficulties in prioritizing QR at project level may be related to the difficulties
of breaking down QR to a lower abstraction level. Therefore, it is important for
practitioners to understand, and requires knowledge of how to transform QR to the
right abstraction level. The importance of having requirements at the right level of
abstraction is in line with [10], [11].

The findings of this paper suggest that there seems to be a lack of knowledge
about managing QR. However, the main problem seems to be that QR are by de-
fault seen as having a lower priority than FR, and only prioritized if time and
resources are available once all FR have been implemented in the coming release.
Hence, product management may not be utilizing QR to achieve a competitive ad-
vantage, but focusing on FR. Moreover, several of the organizations in this study
use the same prioritization method for prioritizing both QR and FR, even though
they are very different in nature.

For researchers, the knowledge of the challenges associated with QR prioriti-
zation in industry is central. Further, the realization that indirect effects such as
difficulties with abstraction level, elicitation of, and specification of, QR can be an
issue affecting effective and efficient prioritization, but can also give new avenues
of research. Instead of focusing on weather one prioritization technique or method
is better than another, the focus could be on improving the practitioners’ knowl-
edge and understanding of managing QR as such. It would also be interesting to
study how priorities of QR change over the whole product evolution life-cycle.

Acknowledgment
This work was partly funded by VINNOVA (the Swedish Agency for Innovation
Systems) within the MARS project and by the Industrial Excellence Center EASE
- Embedded Applications Software Engineering, (http://ease.cs.lth.se). Further-
more, we would like to thank all of the participants and their companies who have
helped in making the data collection possible for this research.

130 Prioritization of Quality Requirements: State of Practice in Eleven . . .

Bibliography
[1] A. Aurum and C. Wohlin. The fundamental nature of requirements engi-

neering activities as a decision-making process. Information and Software
Technology, 45(14):945–954, 2003.

[2] A. Aurum and C. Wohlin. Engineering and Managing Software Require-
ments. Springer, 2005.

[3] P. Berander and A. Andrews. Engineering and Managing Software Require-
ments, chapter Requirements Prioritization, pages 69–94. Springer, 2005.

[4] R. Berntsson Svensson, T. Gorschek, and B. Regnell. Quality requirements
in practice: An interview study in requirements engineering for embedded
systems. In Proceedings of the 15th International Working Conference on
Requirements Engineering: Foundation for Software Quality, pages 218–
232, 2009.

[5] R. Berntsson Svensson, M. Höst, and B. Regnell. Managing quality require-
ments: A systematic review. In Proceedings of the 36th EUROMICRO Con-
ference on Software Engineering and Advanced Applications, pages 261–
268, 2010.

[6] L. Blaxter, C. Hughes, and M. Tight. How to Research. Open University
Press, 2001.

[7] B. Fitzgerald. An empirical investigation into the adoption of systems de-
velopment methodologies. Information and Management, 34(6):317–328,
1998.

[8] T. Gorschek and A. Davis. Requirements engineering: In search of the de-
pendent variables. Information and Software Technology, 50(1–2):67–75,
2008.

[9] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. A model for technology
transfer in practice. IEEE Software, 23(6):88–95, 2006.

[10] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. Industry evaluation of
the requirements abstraction model. Requirements Engineering Journal,
12(3):163–190, 2007.

[11] T. Gorschek and C. Wohlin. Requirements abstraction model. Requirements
Engineering Journal, 11(1):79–101, 2006.

[12] A. Herrmann and M. Daneva. Requirements prioritization based on benefit
and cost prediction: An agenda for future research. In Proceedings of the
16th IEEE International Requirements Engineering Conference, pages 125–
134, 2008.

Bibliography 131

[13] A. Herrmann and B. Paech. Practical challenges of requirements prioritiza-
tion based on risk estimation. Empirical Software Engineering, 14(6):644–
684, 2009.

[14] M. Ivarsson and T. Gorschek. A method for evaluating rigor and indus-
trial relevance of technology evaluations. Empirical Software Engineering,
16(3):365–395, 2011.

[15] J. Karlsson. Software requirements prioritizing. In Proceedings of the Second
IEEE International Conference on Requirements Engineering, pages 110–
116, 1996.

[16] J. Karlsson and K. Ryan. A cost-value approach for prioritizing requirements.
IEEE Software, 14(5):67–74, 1997.

[17] J. Karlsson, C. Wohlin, and B. Regnell. An evaluation of methods for priori-
tising software requirements. Information and Software Technology, 39(14–
15):939–947, 1998.

[18] L. Karlsson, Ȧ.G. Dahlstedt, B. Regnell, J. Natt och Dag, and A. Persson. Re-
quirements engineering challenges in market-driven software development -
an interview study with practitioners. Information and Software Technology,
49(6):588–604, 2007.

[19] L. Karlsson, T. Thelin, B. Regnell, P. Berander, and C. Wohlin. Pair-wise
comparisons versus planning game partitioning - experiments on require-
ments prioritization techniques. Empirical Software Engineering, 12(1):3–
33, 2007.

[20] L. Lehtola and M. Kauppinen. Empirical evaluation of two requirements
prioritization methods in product development projects. In Proceedings of
the European Software Process Improvement Conference, pages 161–170,
2004.

[21] L. Lehtola and M. Kauppinen. Suitability of requirements prioritization
methods for market-driven software product development. Software Process
Improvement and Practice, 11(1):7–19, 2006.

[22] A. Ngo-The and G. Ruhe. Engineering and Managing Software Require-
ments, chapter Decision support in requirements engineering, pages 267–
286. Springer, 2005.

[23] M.Q. Patton. Qualitative Research and Evaluation Methods. Sage Publica-
tions, 2002.

132 Prioritization of Quality Requirements: State of Practice in Eleven . . .

[24] Z. Racheva, M. Daneva, and L. Buglione. Supporting the dynamic repriori-
tization of requirements in agile development of software products. In Pro-
ceedings of the Second International Workshop on Software Product Man-
agement, 2008.

[25] Z. Racheva, M. Daneva, K. Sikkel, R. Wieringa, and A. Herrmann. Do we
know enough about requirements prioritization in agile projects: Insight from
a case study. In Proceedings of the 18th IEEE International Requirements
Engineering Conference, pages 147–1156, 2010.

[26] C. Robson. Real World Research. Blackwell, 2002.

[27] G. Ruhe. Software engineering decision support - a new paradigm for learn-
ing software organizations. In Proceedings of the Fourth International Work-
shop on Advances in Learning Software Organization, pages 104–113, 2002.

[28] G. Ruhe, A. Eberlein, and D. Pfahl. Quantitative winwin - a new method for
decision support in requirements negotiation. In Proceedings of the 14th In-
ternational Conference on Software Engineering and Knowledge Engineer-
ing, pages 159–166, 2002.

[29] T.L. Saaty. The Analytical Hierarchy Process. McGraw-Hill, 1980.

[30] I. Sommerville and P. Sawyer. Requirements engineering - A good practice
guide. John Wiley and Sons, 1997.

[31] R. Wiegers. Software Requirements. Microsoft Press, 1999.

[32] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlson, B. Regnell, and A. Wess-
lén. Experimentation in Software Engineering: An introduction. Kluwer
Academic, 2000.

PAPER III

HOW ARE QUALITY
REQUIREMENTS SPECIFIED?

A DOCUMENT ANALYSIS
CASE STUDY

Abstract

This paper analyses a sub-contractor specification in the mobile handset domain.
The objective is to understand how quality requirements are specified and which
types of requirements exist in a requirements specification from industry. The
case study is performed in the mobile handset domain, where a requirements
specification was analyzed by codifying and characterizing the pertaining require-
ments. The requirements specification is written in structured natural language
with unique identifiers for the requirements. Of the 2,178 requirements, 827
(38%) are quality requirements. Of the quality requirements, 56% are quantified,
i.e., having a direct metric in the requirement. The variation across the differ-
ent sub-domains within the requirements specification is large. The findings from
this study suggest that methods for quality requirements need to encompass many
aspects to comprehensively support working with quality requirements. Solely
focusing on, for example, quantification of quality requirements might overlook
important requirements since there are many quality requirements in the studied
specification where quantification is not appropriate.

Richard Berntsson Svensson, Thomas Olsson, and Björn Regnell
Submitted to Information and Software Technology

134 How are quality requirements specified? A document analysis case study

1 Introduction

Software has become a substantial part of both industrial and consumer products,
and as a consequence, the complexity of the software has escalated. Hence, re-
quirements engineering (RE) is a cornerstone in software development, and central
for success [30]. A software product’s characteristics are not only determined by
the functional requirements (FR), but also quality requirements (also called non-
functional requirements) [12]. A FR specifies what the system should perform,
while quality requirements (QR) specify how well it should be performed [12], for
example, ”it shall not take longer than 1 second to open the web browser applica-
tion”.

To increase the chance of market success, it is important not only to develop a
software product that meets customers’ requirements and expectations, but also of-
fers high value for the software development company as well as for the customers,
hence QR are a key concern throughout the software lifecycle [17], [18], and can
be seen as a key competitive advantage [3]. However, despite the importance of
QR, it is generally acknowledged that QR are difficult to capture and specify. Sev-
eral studies, e.g., [5], [10], [12], [11], [19], [25], [29] have identified challenges
of QR as: difficult to gather, often poorly understood, general stated informally
in a non-quantifiable manner, where should QR document, and difficulties to get
attention for QR.

If methods for managing QR are immature and unusable (scalable) in indus-
trial practice [6], a first step towards developing more useful methods for QR, and
thereby improving industry practice, is to understand in more detail the problems
faced in industry. The importance of well specified and quantified QR have been
recognized in the literature. For example, Berntsson Svensson et al. discovered
that the difficulties in prioritizing QR are related to, e.g., well specified and quan-
tified QR [6], while Jacobs reported that the introduction of a new method with
focus on QR and quantification of QR, enabled the test cases to be based on mea-
surements instead of being untestable [25].

However, to the best of our knowledge, no study has actually looked into a
requirements specification in industry to analyze how QR are specified, in partic-
ular how QR are quantified, and which types of requirements exists in a require-
ments specification from industry. This paper presents the results of a case study
that includes data collected through a requirements specification that consists of
2,178 requirements from a market-driven development case company. After an
early analysis of the requirements specification, a short paper [33] was presented
at a workshop. This paper extends our previous report on preliminary findings [33]
with more in-depth description of the requirements specification and account of re-
search methodology, as well as a more thorough analysis, discussion, conclusions,
and examples of requirements. The study focuses on understanding QR and how
they are specified, in particular how metrics are used in an industrial requirements
specification within a market-driven embedded system company. The goal is not

2 Related Work 135

to test a specific theory or treatment, but to understand a specific phenomenon,
namely the requirements specification of QR in a real world industrial situation.
Hence, the research approach is open-ended, exploratory qualitative research [38].

The remainder of this paper is organized as follows. In Section 2, the back-
ground and related work are presented. The case company is presented in Section
3, while the research methodology is described in Section 4. Section 5 presents the
results and relates the findings to previous studies, and Section 6 gives a summary
of the main conclusions.

2 Related Work

Research in the area of QR has concentrated on modeling and representation of
QR. However, research related to specification, classification, and measurement of
QR are also introduced in the literature.

Borg et al. investigated the management of QR in two development organiza-
tions [10]. The results show that QR are discovered too late, or not discovered at
all; difficulties in prioritization of QR; and difficulties to estimate cost and mea-
sures of QR. In another study, Grimshaw and Draper conducted four case stud-
ies with an attempt to focus on the QR determination process and improve the
understanding [20]. Grimshaw and Draper found that QR are often overlooked,
methodologies for QR do not help in the elicitation process, and there is a lack
of consensus about quality requirements [20]. Lubars et al. conducted a field
study on requirements modeling and found that the rationale of performance re-
quirements is not always obvious, and that usability requirements should not be
documented in the requirements specification [32]. In another survey, Kamsties et
al. found that requirements are too vague to test, and challenges related to spec-
ification of usability requirements were identified [28]. In Berntsson Svensson et
al., three important challenges of QR were highlighted: (1) how to get QR into the
projects when FR are prioritized, (2) how to know when the quality level is good
enough, and (3) how to achieve testable quality requirements [4]. Moreover, in an-
other study by Berntsson Svensson et al., the results show that QR are sometimes
specified in a quantifiable manner [5].

In the literature there are several suggestions of how QR should be elicited.
Cysneiros and Leite argue that QR should not be dealt within the scope of FR
because QR require a more detailed reasoning [14]. On the other hand, Doerr et
al. argue that the elicitation of QR, FR, and the architecture must be intertwined
because the refinement of QR is not possible without detailed FR and architecture
[16]. In addition, Hassenzhal et al. argue that it is important to gather different
aspects such as QR, design approach, and the relationships among them to ensure
a basic understanding of the design problem [21].

Several studies have addressed the perceived importance of different types of
QR. Johansson et al. found that reliability was identified by a multitude of stake-

136 How are quality requirements specified? A document analysis case study

holders to be the most important QR [26], which was also identified as the most
important QR for intranet applications by Leung [31]. Sibisi and Waveren [39]
reported functionality as the most important one for two projects, while [15] iden-
tified usability requirements as the top QR type. In Berntsson Svensson et al.,
types of QR were studied from two perspectives, business-to-business (B2B) and
business-to-consumer (B2C) [5]. The results show that safety and performance
requirements are the two most important QR for B2B companies, while usability
and performance requirements were the most important once for B2C companies.

In the literature, only two methods for specifying measurable QR have been
empirically evaluated [7], the Gilb style method [25] and the QUPER model [8].
Jacobs introduced and evaluated the Gilb style method at a case company [25]. To
make QR measurable, concepts such as scale (the unit in which the requirement
should be measured) and meter (how the measurement will be performed) were
used. The method puts a focus on QR and a common understanding of QR was
considered as crucial. By using the concept of meter, it was found that test cases
were already defined during the RE phase. The QUPER model [8] has two main
concepts: breakpoints and barriers. A breakpoint is an important aspect of the
non-linear relation between quality and benefit, while barriers represent an inter-
esting aspect of the non-linear relation between quality and cost. The two concepts
of breakpoints and barriers provide three views: (1) the benefit view, (2) the cost
view, and (3) the roadmap view. Quality indicators are identified to measure the
aspects of quality of interests, where a level of benefit offered by competitors are
looked at. This information is used to plan needed level of quality for future release
of the software product.

Al-Kilidar et al. evaluated the ISO/IEC 9126 [24] standard in terms of its abil-
ity to quantify and measure the quality attributes of a software design [1]. The
results show that the ”common language” proposed by ISO/IEC9126 did not have
a standard interpretation. The authors argue that ISO/IEC 9126, in its present form,
does not achieve any of its objectives. Moreover, Berntsson Svensson et al. found
that there may be a possible mismatch between the established academic interpre-
tation of quality characteristics of ISO/IEC9126 and the industrial interpretation
of it [4].

3 Case Company Description

The case study is conducted at a case company that develops software and hard-
ware for the mobile handset market. The case company has more than 5,000 em-
ployees and develops their products, about 20-40 unique mobile phone models
each year, for a global and competitive market, where several millions of phones
are sold each year. The individual products are developed on a common platform
using a product line approach [34], hence, QR are mainly specified for the platform
instead of individual products. The case company has several consecutive releases

3 Case Company Description 137

of a platform (a common code base of the product line) where each of them is the
basis for one or more products that reuse the platform’s functionality and qualities.
The case company has two types of platform releases, a major and a minor release.
A major release has a lead-time between two and three years from start to launch,
and the focus is on functionality growth and quality improvements of the product
portfolio. Minor platform releases usually focus on the platform’s adaptations to
different products. Various sub-contractors develop parts of the platform, while
the case company itself develops others.

This case study investigates a requirement specification, which is described in
the following section, given to a sub-contractor of the case company. This particu-
lar sub-contractor provides mobile platform technology for integration into mobile
products. However, the sub-contractor does not only provide mobile platforms to
the case company, they provide platforms to the case company’s competitors as
well.

3.1 The Requirements Specification

The sub-contractor specification contains requirements in different sub-domains,
which in practice can be seen as a collection of several independent specifications
for different sub-domains. The different sub-domains, which range from being
very hardware centric to pure software sub-domains with several experts in each
sub-domain and little overlap of the expertise across sub-domains, are presented
in Appendix. Hence, the different sub-domains can more or less be viewed as
independent specifications, written by different practitioners at different point in
time and with different ways of specifying requirements. In total, the requirements
specification contains 2,178 requirements, including both hardware and software
requirements, as well as functional and quality requirements. The requirements
specification is written in English using natural language where a typical require-
ment consists of 1-5 sentences, and the requirements specification is structured
hierarchically. The QR range from being pure hardware to pure software related.
The requirements specification is focused on enabling technologies rather than
end-user requirements as the specification in question is for the core platform,
and not end-user applications. The requirements specification is reused over time,
where new requirements have been added, while obsolete requirements have been
removed.

The sub-contractor uses the specification as the basis for a statement of compli-
ance in the negotiation process with the case company. The specification has been
used over a longer period of time for several generations of platforms. Hence, the
requirements have been reviewed and used extensively over the years and across
several releases. Furthermore, sub-domain experts, usually between 2-10 experts
in each sub-domain, write the different requirements that are associated with each
sub-domain.

138 How are quality requirements specified? A document analysis case study

Table 1: Research questions

Research Questions (RQ)
RQ1: How are quality requirements distributed in a requirements specification?
RQ2: How are quality requirements specified, especially how are they quantified?
RQ3: What different types of quality requirements exist in a requirements speci-
fication?

4 Research Methodology

The investigation presented in this paper was carried out using a qualitative re-
search approach, namely a case study [37]. Qualitative research aims to investigate
and understand phenomena within its real life context [36]. A qualitative research
approach is useful when the purpose is to explore an area of interest, and when the
aim is to improve the understanding of phenomena [36], [37]. The purpose if this
study is to gain in-depth understanding of how QR are specified, in particular, how
metrics are used in an industrial requirements specification within market-driven
embedded system companies. Due to the focus of this study, an exploratory case
study methodology was chosen since case studies are an in-depth investigation of
phenomena on a specific case. In addition, in the case of an exploratory case study,
little knowledge about the phenomena is available; hence the study aims at identi-
fying propositions and hypothesis, which can be used in forthcoming confirmative
research and empirical studies, such as case studies, of QR. Our approach was to
explore how QR are specified without preconceived hypotheses aiming for an un-
biased understanding of the case [38]. The research questions in Table 1 provided
the focus for the empirical investigation.

As the focus of this study is how QR are specified, a requirements specification
(archival data [37]) was analyzed in depth, also called content analysis [36]. A
content analysis is an unobtrusive study of an artifact, where the analysis of the
content is a quantified codification of the artifact [36], [38]. One advantage of
using archival data is that access to the authors of the requirements specification is
not needed. Moreover, content analysis is unobtrusive since we are not influencing
a practitioner, which is a common risk in interviews. Hence, the analysis in this
study is based on the requirements specification alone, along with the experience
of the researchers.

4.1 Data Collection and Analysis

Since an exploratory methodology [35] was used in this research, no pre-defined
codes were used during data collection and analysis. At the start of the analysis,

4 Research Methodology 139

much focus and attention were given to the development of a good codification of
the requirements. We started out without a defined set of metrics since we did not
want to limit the coding in the beginning. Therefore, the first steps of the coding
were used to come up with a set of suitable metrics. The coding of requirements
was conducted in four steps. In the following, each step is described in detail.

1. A preliminary coding was performed to identify metrics of interest to
be coded in more detail.
An overall coding of the entire set of requirements was performed. The goal
was to have a first coding of the requirements into classes of functional and
quality requirements, and to explore a detailed classification. In this step,
all requirements were considered, not just QR. In the sub-sequent steps, the
effort is focused on the quality requirements.

2. The emerging codes are discussed and consolidated.
The overall coding was revised and consolidated. The revision consisted
of attaining orthogonal categories and agreeing on the meaning of the cat-
egories. The consolidation also consisted of raising the level of confidence
in the coding. The subjectively perceived coding confidence varied from
”very low” to ”very high” in five levels. It was agreed that the confidence
should be at least judged ”high” to be considered acceptable. The coding
was performed by all three researchers and discussed until an agreement
was reached, so called observer triangulation [36].

3. Detailed coding, initial iteration.
After the identification of which metrics to collect in the second step, a more
detailed coding of sub-domains, scales and characteristics of the QR fol-
lowed. During the first iteration, the main goal was to get a first understand-
ing to the QR. The requirements coding was performed (by all authors) of
different parts of the requirements specification in a random manner. Then,
the emerging codes and data were analyzed to derive a consistent and re-
liable codification. However, not all QR were coded in this step, as the
purpose of step 3 was to derive a suitable and consistent coding of the de-
tailed classification. The coding of all requirements was conducted in step
4. Similar to step 2, observer triangulation was used to limit the influences
of the individual researcher on the requirements specification.

4. Final detailed coding.
The purpose of step 4, the final detailed coding iteration, was to code all of
the existing QR in the requirements specification. This coding provides the
final result presented in Section 5. As in steps 2 and 3, observer triangula-
tion was used make sure the codes were consolidated and consistent before
finalizing the last step.

In all four steps, the coding was performed in parallel by all three authors. In
addition to the consolidating in the last three steps to ensure consistent and reliable

140 How are quality requirements specified? A document analysis case study

results, there was an overlap of the coding among the three authors. As the four
steps describe, the codes and the metrics were built up as the study progressed, and
instead of ”forcing” a requirement into a category and avoiding coding an aspect
previously not perceived, the coding scheme was updated to ensure that as many
relevant suitable metrics and codes as possible were discovered. Step 2 was mainly
a learning step for the authors where much time was spent on gaining a common
understanding, and a good basis for the continuing of the study.

In the data analysis phase, content analysis [36] and descriptive statistics [37],
[40] were used to identify patterns and interesting phenomena, and complemented
with examples of requirements to provide further illustrations and background.
Given the amount of data and number of ways to dissect it, the analysis was per-
formed iteratively over a period of time.

4.2 Validity

In this section, threats to validity in relation to the research design and data col-
lection are discussed. We consider the four perspectives of validity and threats as
presented in Wohlin et al. [40].

Construct validity: The construct validity is concerned with the relation be-
tween theories behind the research and the observations, i.e., choosing and col-
lecting the right measures for the concepts being studied. Correct data is a validity
threat, in this case whether the requirements specification data is accurately coded
(classifying requirements into FR and QR), and that the requirements are up-to-
date. As reported in Section 4.1, several researchers performed the coding of re-
quirements in parallel. Most requirements are coded by at least two persons, in
order to achieve a high reliability. Furthermore, the evolutionary manner in which
the specification is used indicates that the quality of the requirements specification
is good, and that the requirements are up-to-date. Otherwise, the requirements
specification would not be reused by the case company, which increases the con-
struct validity. Lastly, concerns about the probability that the identified theory is
likely to explain the observations are mainly addressed through peer reviews of the
result of this and other manuscripts presenting the result.

Conclusion validity: Threats to conclusion validity arise from the ability to
draw accurate conclusions i.e. the reliability of the results. Moreover, conclusion
validity is related to the repeatability of the study, such as the data collection pro-
cedures. To draw accurate conclusions relates to how the data in the case study
in question is interpreted, which is dependent on the collected data. Hence, if the
description is not valid, the interpretation cannot be valid. This issue is addressed
by having a mix of researchers (a practitioner, a senior researcher and a junior re-
searcher). Also, observations are discussed thoroughly and all results explained by
providing relevant examples, thereby justifying the interpretation. The threat con-
cerned with the repetition or replication of the study, and in particular that the same

5 Results and Analysis 141

result would be found if re-doing the study, is mitigated by providing a detailed
description of the process of coding the requirements.

Internal validity: These threats are related to issues that may affect the causal
relationship between treatment and outcome, for example, a change in the sub-
jects environment may affect the outcome without the researcher knowing about
it. One threat in this study is the reliability of the data, and if the data is accurately
collected and coded. This threat is mitigated by observer triangulation. Three
researchers have independently coded overlapping parts of the requirements spec-
ification. Both the overlaps and the uniquely coded parts are reviewed to ensure
that the metrics are collected correctly and the codes are accurate and reliable.
Also, an audit trail (research notes) was kept, to enable the researchers review not
only the outcome but also the process that lead to the outcome.

External validity: The external validity is concerned with the ability to gen-
eralize the results, i.e. in this case the applicability of the findings beyond the
included company. One threat to external validity in this study is that only one
case has been studied. Thus, the context and the case have been described in de-
tail, which supports the generalization of the problems identified. Furthermore,
qualitative studies rarely attempt to generalize beyond the setting; it is more con-
cerned with explaining and understanding the phenomena under study. In addition,
qualitative studies are impossible to replicate since identical circumstances cannot
be recreated. However, developing a theory may help in understanding other cases.

5 Results and Analysis
The following three sub-sections present and discuss one research question each,
corresponding to the research questions in Table 1.

5.1 Distribution of Quality Requirements (RQ1)
The requirements specification was analyzed and coded in detail, and the emerging
codes (types and characteristics), which are illustrated in Figure 1, are a result of
a long process. In Figure 1, we see that a requirement (R) can be one of the types
functional (FR) or quality (QR). Since the focus of this study is QR, FR are not
further broken down or analyzed.

A requirement has two characteristics, sub-domain and standard (see Figure
1). Sub-domain is a grouping of requirements into sub-domains of applications,
which are detailed in Appendix, for example, network access and multimedia. The
characteristic standard is a tagging whether or not the requirement is directly, or
indirectly referring to a specific standard. For example, to the 3GPP standard,
which is commonly used in the mobile handset domain, or to a multimedia stan-
dard such as video encoding.

A quality requirement has an ISO 9126 characteristic. This characteristic refers
to the standard ISO 9126 [24] and is a mapping of the quality requirements to

142 How are quality requirements specified? A document analysis case study

Requirements	 (R)

Sub-‐domain
Standard

Functional	 (FR) Quality	 (QR)

ISO	 9126

Non-‐Quantified	
(NQR) Quantified	 (QQR)

Scale
Interval

Figure 1: Emerging codes with characteristics

the ISO 9126 standard characteristics (Figure 7, in Section 5.3, shows the ISO
9126 characteristics found in the requirements specification). Although the ISO
9126 standard has been replaced by ISO 25030 [9], ISO 9126 was chosen as the
characteristics because of three reasons, (1) the quality model of ISO 25030 is
based on the ISO 9126, (2) ISO 9126 is more widespread in industry, and most
importantly, (3) the ISO 9126 standard is currently used at the case company.

A quality requirement is further detailed into two types, quantified quality re-
quirements (QQR) and non-quantified quality requirements (NQR). The QQR type
is a quality requirement with a direct quantification within the requirement, while
a NQR is a quality requirement without metrics. A QQR has two characteristics:

• Scale - whether on a discrete or a continuous scale. Memories, for example,
are only available on a 2-multiple scale, e.g., 32 or 64 MB. Typically, 23
MB of memory do not exist. Hence, memory size is a discrete scale. On the
other hand, response time is typically on a continuous scale, for example,
4.3 seconds or 22 milliseconds.

• Interval - whether the metric is specified as one value, or as an interval (one-
sided or double-sided). A QR such as ”Support for encoding frame rate of
15 fps.” does not specify an interval; it is an absolute value. On the other
hand, ”The platform shall support an online 90 degree image frame rate at

5 Results and Analysis 143

Table 2: Distribution of requirements across the sub-domains

Grand Total QR
Sub-domain FR & QR FR QR total (FR & QR + QR)
Architecture 6 199 59 264 65
Audio 21 57 37 115 58
Camera 10 13 12 35 22
Connectivity 25 196 33 254 58
Display 1 19 16 36 17
HW architecture 0 1 9 10 9
IMS 14 22 3 39 17
Industrialization 2 40 21 63 23
Java 24 16 8 48 32
Memory 3 69 32 104 35
Messaging 2 23 3 28 5
Mobile TV 7 32 4 43 11
Multimedia 32 181 14 227 46
Network 7 181 20 208 27
Positioning 2 31 9 42 11
Power 6 23 27 56 33
Radio 125 185 137 447 262
Security 2 7 81 90 83
UI 1 21 3 25 4
Video telephony 4 35 5 44 9
Grand Total 294 1351 533 2178 827

minimum 15 fps.” is a QQR with a one-sided interval, and ”The frame rate
change shall be variable between 15 and five (5) fps.” is a double-sided
interval.

In total, the requirements specification contains 2,178 requirements distributed
over 20 sub-domains, where the number of requirements per sub-domain varies
from 10 to 447, which is illustrated in Table 2 (FR & QR is a requirement that
have both a functional, as well as a quality aspect, see Section 5.2).

Figure 2 displays the distribution between FR and QR in the requirements
specification. The majority of the requirements are FR (62%), while 38% of the
requirements contain as aspect of quality, thus coded as QR.

Looking at the distribution of types of requirements across the different sub-
domains, the results show that no sub-domain completely lacks QR (see Figure 3).
The median is that 35% of the requirements in each sub-domain are QR; however
it varies across the subdomains. The sub-domain Network has the least percentage

144 How are quality requirements specified? A document analysis case study

Figure 2: Total distribution of requirements types

(13%) of QR, while the Security sub-domain has the highest percentage of QR
(92%).

0%

20%

40%

60%

80%

100%

Functional requirements (FR) Quality requirements (QR)

Figure 3: Distribution of FR and QR across the sub-domains

An interesting finding from the codification process is that the use of standards

5 Results and Analysis 145

is common. Standards are found in as many as 38% (in 313 out of 827 QR) of
the requirements. An example of a how requirement with a reference to a standard
can be specified:

Example 1 Support for AMR-WB.

The support for a specific codec is a FR; however, the standard may contain
several other requirements, including both FR and QR. Another example of how a
requirement can be specified:

Example 2 Support for H.263 Profile 0, Level 10.

In Example 2, a specific quality level is explicitly pointed out; hence it is a
QQR. In addition, the support for H.263 is specified in another (functional) re-
quirement. A third example of how a requirement (NQR) with a reference to a
standard can be specified:

Example 3 The platform shall be R99 compliant.

Although the requirement in Example 3 is only one line, the R99 standard is
huge and has large implications on the product. The sub-domains that use most
standard references are (see Table 2), Messaging (80%), IMS (76%), and Memory
(74%), while the sub-domains with least references to a standard are, HW archi-
tecture (0%), Audio (0%), Industrialization (0%), and UI (0%).

Discussion: In the analyzed requirements specification, 38% of all require-
ments (827 out of 2178 requirements) are QR, but the variation across the sub-
domains is large. The variation is related to number of QR (from 4 to 262 QR),
how QR are specified, and the types of QR that exists. The differences among the
sub-domains may be explained by, (1) the technically differences between the sub-
domains, ranging from having a main emphasis on hardware, mixed hardware and
software, to mainly focusing on software, (2) level of maturity, i.e., for how long
requirements for a particular sub-domain have been present in the software prod-
uct, (3) available resources in terms of practitioners working with requirements,
and (4) that some sub-domains may be more critical from a quality viewpoint and
more critical to important stakeholders than other sub-domains. Despite the dif-
ferences across the sub-domains, it seems unlikely that it stems solely from their
nature. It seems as if there is a methodological problem as well, with an insufficient
support for working with QR. Especially since several sub-domains are deficient
on QR, or have a low quantification penetration for QR that should be quantified.

The result that some sub-domains have many QR, while others scarcely any
suggests that the priority between FR and QR varies, which is similar to the results
in [5]. In our results, 827 QR (38% of all requirements) have been discovered and
specified, which suggests that many QR can, and have been elicited and specified.
This result is neither inline with the results in [10] where QR were found difficult

146 How are quality requirements specified? A document analysis case study

Table 3: Use of standard references across the sub-domains

Sub-domain No standard Standard Total QR
Architecture 54 11 65
Audio 58 0 58
Camera 18 4 22
Connectivity 18 40 58
Display 6 11 17
HW architecture 9 0 9
IMS 4 13 17
Industrialization 23 0 23
Java 11 21 32
Memory 9 26 35
Messaging 1 4 5
Mobile TV 9 2 11
Multimedia 32 14 46
Network 9 18 27
Positioning 4 7 11
Power 31 2 33
Radio 167 95 262
Security 43 40 83
UI 4 0 4
Video telephony 4 5 9
Grand Total 514 313 827

5 Results and Analysis 147

to discover, if discovered at all, nor in line with [20] that reports that QR are often
overlooked.

Looking into the representation of QR, although the majority of the QR are
separated from FR, which is partly in line with [11] who states that QR are usually
separated from FR, 36% of all QR (294 out of 827) are requirements with both a
functional aspect, as well as a quality aspect (see Example 5). Moreover, accord-
ing to [11] and to the IEEE Standard 830 - Recommended Practice for Software
Requirements Specifications [23], QR are listed separately under different sections
in the requirements specification, which is not in line with our results where most
QR and FR are grouped into sub-domains based on different areas. In addition,
the result that 36% of all QR are a mix of FR and QR suggests that the elicitation
of QR and FR needs to be intertwined. This is in line with the elicitation processes
in [14] and [16], but not in line with Hassenzhal et al [21] who argues that QR, de-
sign approaches, and their relationships should be gathered together, i.e., FR and
QR should not be dealt with within the same scope.

The use of standards specifically, but also how much information, such as
identification number, QR type, rationale, and originator, a requirement should
be comprised of are proposed by some authors, for example [35]. In practice, it is
not possible to specify every single detail. However, hiding requirements in stan-
dards, or relying on implicit domain knowledge might be risky. It does; however,
not appear to change how requirements are written in the analyzed requirements
specification. It is not possible to identify any correlation between quantified QR
and QR that refers to a standard, or between standards and how requirements are
written.

5.2 Specification of Quality Requirements (RQ2)

The requirements specification is written in structured natural language where re-
quirements are organized by the use of heading hierarchies. In addition, all re-
quirements are numbered with a unique ID. In general, a requirement only con-
tains a single requirement, i.e., two requirements are not written as one. The only
exception is the mixing of functional and quality aspects within one requirement.
Of all requirements (both FR and QR) in the requirements specification, 14% are
a mix of FR and QR, while 24% are ”pure” QR. A mixed requirement has both the
functional part as well as a quality part included, for example:

Example 4 (Bluetooth) Support for multi-link. Clarification: X1 simultaneous
links. (FR and QQR)

In Example 4, the functional part is multi-link, while the quality aspect is the
number of simultaneous links. Although this requirement is classified as QR, there

1Actual numbers will not be entered, for confidentiality reasons.

148 How are quality requirements specified? A document analysis case study

is a functional aspect, which makes the requirement a mixed requirement. How-
ever, typically, there are never multiple QR within one requirement, mixed or not.
Figure 4 shows the distribution of mixed FR and QR across the sub-domains.

0%

20%

40%

60%

80%

100%
Functional requirement and quality requirement Quality Requirement only

Figure 4: Distribution of mixed (FR and QR) across the sub-domains

Although two requirements are never written as one requirement, it is not un-
common; however, to have multiple quality level for one FR, for example:

Example 5 ”The platform shall receive uncompressed data and shall compress
and save the data to desired JPEG size. Clarification: It shall maximum XX
s/megapixel to accomplish the whole process for a YX M camera resolution.” (FR
and QQR)
”The platform shall receive uncompressed data and shall compress and save the
data to desired JPEG size. Clarification: It shall take maximum XY s/megapixel to
accomplish the whole process for a YY M camera resolution.” (FR and QQR)

In addition, another way of specifying requirements in the requirements spec-
ification is to write FR and QR separated:

Example 6 (Mobile TV) Support for Time Shift (playback with delay). (FR)
The limit for the time shift buffer is available memory. (NQR)

In Example 6, it has already been specified that there should be a time buffer,
thus the NQR specifies the quality level for the time buffer. A third way of spec-
ifying a QR to a particular sub-domain is to use the requirements specification’s

5 Results and Analysis 149

heading hierarchy. In these instances, the FR is not repeated, but there is one QR
for each level of quality. For example:

Example 7
Section 1.2.3. Audio A/D
Support for stereo A/D at 8 kHz. (QQR)
Support for mono A/D at 16 kHz. (QQR)

Example 7 shows the most common way of specifying QR, i.e., by the use of
the heading hierarchy within the requirements specification. By specifying QR in
this way, it is made implicit for what the QR refers to.

When looking at the distribution of quantified and non-quantified QR, we see
that 56% of all QR are quantified with a direct metric (QQR). However, the vari-
ance across the sub-domains is large, which is illustrated in Figure 5.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Quantified QR Non-quantified QR

Figure 5: Distribution of QQR and NQR across the sub-domains

In Table 4, the results show that the IMS sub-domain has no QQR at all, and
Security has a small portion of QR that are quantified.

One reason why IMS has no QQR may be due to many QR with a reference
to a standard, which may hide QQR. The Security sub-domain has many specified
QR that are not suitable to be quantified, for example:

Example 8 Support for X.509 certificates with MD2_RSA signature.

Furthermore, looking into the distribution of QQR over ISO 9126 character-
istics (see Figure 6), eight ISO 9126 characteristics have no QQR, e.g., Replace-
ability (sub characteristic of Portability) and Understandability (sub characteristic

150 How are quality requirements specified? A document analysis case study

Table 4: Distribution of NQR and QQR across the sub-domains

Sub-domain NQR QQR Total QR
Architecture 56 9 65
Audio 23 35 58
Camera 5 17 22
Connectivity 34 24 58
Display 3 14 17
HW architecture 5 4 9
IMS 17 0 17
Industrialization 10 13 23
Java 26 6 32
Memory 10 25 35
Messaging 23 3 5
Mobile TV 6 5 11
Multimedia 3 43 46
Network 15 12 27
Positioning 9 2 11
Power 4 29 33
Radio 48 214 262
Security 80 3 83
UI 2 2 4
Video telephony 4 5 9
Grand Total 362 465 827

5 Results and Analysis 151

of Usability), while Security (sub characteristic of Functionality) has few QQR.
Among the six main characteristics of the ISO 9126 standard, Efficiency and Reli-
ability have many QQR, while Portability only has a few. Among the sub-domains,
the two sub-domains with most QQR are Multimedia and Power (see Example 9
for an example of a QQR).

Example 9 Support for 2500mA charge current.

0%

20%

40%

60%

80%

100%

E
ffi

ci
en

cy

E
ffi

ci
en

cy
 c

om
pl

.

R
es

ou
rc

e
ut

ili
sa

tio
n

Ti
m

e
be

ha
vi

ou
r

A
cc

ur
ac

y

Fu
nc

tio
na

lit
y

Fu
nc

tio
na

lit
y

co
m

pl
.

In
te

ro
pe

ra
bi

lit
y

S
ec

ur
ity

S
ui

ta
bi

lit
y

C
ha

ng
ea

bi
lit

y

Te
st

ab
ili

ty

A
da

pt
ab

ili
ty

P
or

ta
bi

lit
y

P
or

ta
bi

lit
y

co
m

pl
.

R
ep

la
ce

ab
ili

ty

Fa
ul

t t
ol

er
an

ce

M
at

ur
ity

A
ttr

ac
tiv

en
es

s

O
pe

ra
bi

lit
y

U
nd

er
st

an
da

bi
lit

y

N
A

Quantified QR Non-quantified QR

Efficiency UsabilityReliabilityPortabilityMaint.Functionality

Figure 6: QQR and NQR distribution over ISO 9126 characteristics (”NA” rep-
resents requirements with no corresponding ISO 9126 characteristic)

QQR can either be specified using a single absolute value (Example 10) or
specified using an interval, single (Example 11) or double-sided (Example 12), for
example:

Example 10 Support for stereo D/A at 8 kHz.(Absolute, no interval, discrete scale)

Example 11 The maximum delay from call answer is pressed to opened audio
paths is XY ms. (One-sided interval, continuous scale)

Example 12 It shall be possible to dedicate a hostbuffer in RAM that is config-
urable between X to Y MB for HDD. (Double-sided interval, discrete scale)

Looking into how QQR are specified, 57% are specified with an absolute value
(like Example 10), 36% with a one-sided interval (like Example 11), while only
7% with a double-sided interval (like Example 12). The sub-domains with most

152 How are quality requirements specified? A document analysis case study

QQR using an interval are Industrialization and Power. On the other hand, the sub-
domains Java and UI only have QQR with absolute values. As many as 77% of
the QQR are quantified using a continuous scale; however, there are sub-domains
that mainly use a discrete scale to quantify QR, Display (86% of the QQR are on
a continuous scale), Multimedia (81%), and Video telephony (80%).

Discussion: In the literature, several authors [2], [13], [22] have used QR with
structured requirements representation notation, for example, combining QR with
use cases and misuse cases. However, not a single use case, or misuse case were
present in the analyzed requirements specification. Instead, all of the requirements
in the specification are written in natural language with a heading hierarchy where
all requirements are numbered. However, linking or references outside the heading
hierarchy is seldom found. This leads to two problematic situations:

• For mixed FR and QR, the functional part is sometimes repeated several
times for each quality level, which leads to redundant text and updating
problems.

• It is difficult to get an overview of QR associated with a FR and also if QR
are related.

The former is a compromise of readability and maintainability of the speci-
fication. It is usually easier to read the FR and QR together, but it does tend to
clutter the specification by repeating requirements. The latter puts constraints on
how relationships between requirements can be expressed in a usable manner. The
mixing of QR and FR may be explained by a lack of understanding that the quality
part can be considered to be a requirement on its own.

The interdependencies among requirements can cause problems if ignored [5],
which makes it difficult to specify crosscutting concerns. Without a structure for
specifying interdependencies among requirements, cross-functional aspects might
be difficult to specify. As a work-around, there is a separate section on perfor-
mance in the analyzed requirements specification, which is suggested by [19], [23]
for example:

Example 13
2. Performance
...
2.3 FM-Radio
...
2.3.4 FM-radio Record
Listening to FM-radio with Bluetooth headset and record from the radio at the
same time.
Use case extension: handling an incoming call (e.g. MP3 ringtone) without stop-
ping the recording.

5 Results and Analysis 153

The problem with this work-around is that not all requirements on a specific
subject, e.g. the FM-radio in Example 13, are specified at the same place in the
specification. Some requirements on the FM-radio are in the FM-radio section
and some are found in the Performance section. The lack of a good overview of
all QR related to a FR might lead to missing QR, as the completeness may be
more difficult to assess. For QR, the problem becomes even more severe com-
pared to interdependencies between FR since QR are typically crosscutting and
affects other QR as well as FR, both in a positive and negative way. By explicitly
documenting interdependencies between QR, it becomes easier to see through the
crosscutting aspects [5]. In the analyzed requirements specification, both implicit
interdependencies exist and cause problems as well as an inadequate structure forc-
ing cumbersome explicit handling, e.g. through repetition of requirements or deep
hierarchies. However, it still needs to be proven to be cost-effective before ex-
plicit handling of interdependencies can be said to be a general recommendation
in industry.

It is sometimes suggested that all QR should be quantified, e.g., in ISO/IEC
9126 [24]. In the analyzed requirements specification, 56% (465 out of 827) of
all QR are quantified. The results show that the quantification is given without
an interval and a rationale, which is in line with [28]. Without a rationale and
an interval, the developers are left guessing why a specified level of quality was
chosen, and how to handle even a small deviation from the target when testing
even with quantified QR. Furthermore, our study shows that there is a lack of
information, such as intervals and rationales, to deduct when the quality level is
reached, suggesting that the observations by Berntsson Svensson et al. [4] can be
confirmed in this case study. Moreover, Berntsson Svensson et al. found that qual-
ity requirements are sometimes specified in a quantifiable manner [5], which is in
line with the findings in presented in this paper. Although many QR are quanti-
fied in the analyzed requirements specification, several QR are not quantified, and
likely should not be quantified. Based on the findings, there are many examples
in this specification where quantification is not appropriate. Security, for exam-
ple, is one sub-domain (and ISO 9126 characteristic) that sticks out with a low
number of QQR (see Figure 6). Also areas such as portability and maintainability
have few QQR, suggesting that NQR are also a relevant part of the process and
the specification. Therefore, focusing solely on quantifying QR, as in the Gilb
style method [25] and the QUPER model [8], is inadequate if applied at the case
company. However, the variations in the quantified QR in our results suggest that
using a structured and systematic method to achieve quantification could improve
the specification of the QR that should be quantified.

There are large differences in how the quantified QR are written. It does not al-
ways make sense to quantify QR by using an interval (one-sided or double-sided),
e.g. sampling frequency. For memories, for example, only specific sizes exist. It
is not possible have 35MB of memory, it is either 32 or 64MB. Therefore, depend-
ing on the nature of the specific QQR, the quantification will be different. How

154 How are quality requirements specified? A document analysis case study

QQR are specified impacts other parts of the development process in addition to
the specification. For example, when prioritizing how much memory there should
be in a product in the mobile handset domain (more memory means higher cost)
the practitioners are faced with a discrete scale. Moreover, during requirements
testing, the use of interval quantification can be vital to assess the outcome of the
test case. It is rarely the case that, e.g., 4.2 seconds, is the only acceptable out-
come. Perhaps anything between 4 and 5 seconds is ok. Hence, using intervals in
the QQR clarifies how to interpret the test case outcome. Furthermore, intervals
can provide a direction on when, for example, to stop improving the performance.
For example, if the target is less than 10 seconds and the current performance are
at 1 second, it is unlikely that further improvements will improve the return on
investment. Although better performance is in general better, improving perfor-
mance beyond certain levels will not increase the value for the end customer [8].
By adding a double-sided QQR, it is clearer when further improvements will not
increase the market value.

5.3 Existing Types of Quality Requirements (RQ3)

The domain-specific coding developed for this study contains five types of require-
ments (see Figure 1), 20 sub-domains (see Appendix), and information about the
quantification of QR (see Section 5.1). The sub-domains of the specific coding
are comparable to the ISO 9126 sub-characteristic, though they may be on differ-
ent dimensions. Hence, they are complementary, as opposed to competing. To
assign an ISO 9126 characteristic and sub-characteristic to a QR requires both un-
derstanding of the QR as well as the ISO 9126 characteristic. The main problem
experienced with the ISO 9126 coding is that often several of the ISO 9126 char-
acteristics are candidates. In the studied requirements specification, ten ISO 9126
sub-characteristics are not present (see Table 5). In addition, an ISO 9126 sub-
characteristic could not be determined for some QR. Instead, only the top-level
characteristic is assigned.

Figure 7 shows which ISO 9126 characteristics and sub-characteristics that are
present in the different sub-domains, while Table 6 shows the distribution of QQR
and NQR across the ISO/IEC 9126 sub-characteristics. Figure 7 and Table 6 show
that 39% of the QR are in the Efficiency characteristic and 35% in Functionality.
In total, 11% of the QR could not be assigned to any ISO 9126 characteristic and
is marked ”N/A” in Figure 7 and Table 6.

Looking at Table 5 and Figure 7, it is not surprising that all sub-characteristics
of the Efficiency characteristic are present in the requirement specification, since
efficiency is central to the mobile phone. It is a small-embedded system, with an
ever increasing amount of uses, pushing the boundaries for that the hardware can
deliver. Also, being a telecommunications domain, following standards are cen-
tral, a major part of the Functionality characteristic. A surprising finding was the
lack of maintainability requirements, particular since the development methodol-

5 Results and Analysis 155

Table 5: ISO 9126 characteristics not present in the requirements specification

ISO 9126 Characteristic ISO 9126 sub-characteristic
Maintainability Analyzability

Stability
Maintenance compliance

Portability Replaceability
Installability
Co-existence

Reliability Recoverability
Reliability compliance

Usability Learnability
Usability compliance

ISO 9126
Characteristics

ISO 9126 sub
characteristics A

rc
hi

te
ct

ur
e

A
ud

io

C
am

er
a

C
on

ne
ct

iv
ity

D
is

pl
ay

H
W

 a
rc

hi
te

ct
ur

e

IM
S

In
du

st
ria

liz
at

io
n

Ja
va

M
em

or
y

M
es

sa
gi

ng

M
ob

ile
 T

V

M
ul

tim
ed

ia

N
et

w
or

k

Po
si

tio
ni

ng

Po
w

er

R
ad

io

Se
cu

rit
y

U
I

Vi
de

o
te

le
ph

on
y

G
ra

nd
 T

ot
al

Efficiency Efficiency 4 1 5
Efficiency compliance 1 1
Resource utilization 3 1 1 1 1 1 3 1 1 20 45 78
Time behavior 8 5 8 17 1 9 1 14 1 5 30 5 1 1 130 3 239

Functionality Accuracy 18 6 2 4 9 39
Functionality 2 2 4
Functionality compliance 1 2 11 5 5 19 14 2 2 12 5 2 4 2 86
Interoperability 7 2 2 11
Security 1 14 10 1 1 1 65 93
Suitability 14 4 3 1 5 1 4 3 4 14 53

Maintainability Changeability 5 2 11 3 2 1 1 2 1 1 29
Testability 7 11 1 4 1 2 26

NA NA 16 9 4 1 62 1 93
Portability Adaptability 5 10 1 1 1 2 1 1 1 23

Portability 1 1
Portability compliance 3 3
Replaceability 3 1 2 1 7

Reliability Fault tolerance 3 1 4
Maturity 1 1

Usability Attractiveness 4 5 1 10
Operability 6 1 3 4 3 3 20
Understandability 1 1

Grand Total 65 58 22 58 17 9 17 23 32 35 5 11 46 27 11 33 262 83 4 9 827

Figure 7: ISO 9126 to sub-domain mapping (an empty field means no ISO char-
acteristic found in that sub-domain), ”NA” representing requirements with no cor-
responding ISO 9126 characteristic

ogy at the case company follows a platform principle; hence reuse of the same
platform for many products.

Discussion: To assess a requirements specification for quality of the QR, a
detailed analysis is needed. As seen in Sections 5.1 and 5.2, there are large dif-
ferences across the requirements specification. Therefore, a standard set of met-
rics is likely to be too general to be useful, not only for practitioners, but also

156 How are quality requirements specified? A document analysis case study

Table 6: Distribution of QQR and NQR across ISO/IEC 9126 characteristics

ISO/IEC 9126 sub-characteristics QQR NQR QR
Efficiency 0 5 5
Efficiency compliance 0 1 1
Resource utilization 70 8 78
Time behavior 194 45 239
Efficiency Total 264 59 232
Accuracy 37 2 39
Functionality 0 4 4
Functionality compliance 32 54 86
Interoperability 4 7 11
Security 3 90 93
Suitability 16 37 53
Functionality Total 92 194 286
Changeability 15 14 29
Testability 7 19 26
Maintainability Total 22 33 55
NA 67 26 93
NA Total 67 26 93
Adaptability 2 21 23
Portability 0 1 1
Portability compliance 0 3 3
Replaceability 0 7 7
Portability Total 2 32 34
Fault tolerance 0 4 4
Maturity 1 0 1
Reliability Total 1 4 5
Attractiveness 7 3 10
Operability 10 10 20
Understandability 0 1 1
Usability Total 17 14 31
Grand Total 465 362 827

5 Results and Analysis 157

for researchers. Using a generic standard such as the ISO/IEC 9126 does have
drawbacks. As the requirements specification is not written with the standard in
mind, many QR can be classified as several characteristics and sub-characteristics.
Hence, for the sake of the coding, the characteristic that all authors felt was the
most appropriate was chosen. This indicates that a tailored model may be more
appropriate than the use of a standard model, which is also found in [1], [16],
and [27]. Furthermore, the ”common language” proposed by ISO/IEC 9126 do
not have a standard interpretation, hence, ISO/IEC 9126 in its present form does
not achieve any of its objectives [2], which is in line with the results in this study.
Moreover, Berntsson Svensson et al. found that there may be a possible mis-
match between the established academic interpretation of quality characteristics
of ISO/IEC9126 and the industrial interpretation of it [4]. Especially, our results
indicate that there is a need to tailor the breakdown of quality attributes to the do-
main in question. Although a domain-specific method for coding QR requires an
initial tailoring to be useful, once the coding scheme is defined, the method can be
reasonably reliable and efficient.

Looking into the types of QR that are present in the requirements specifica-
tion, the results show that efficiency requirements (323 of 827) are the most spec-
ified QR type in the requirements specification, followed by functionality (286 of
827) requirements, which is not in line with the findings in de la Vera et al. [15]
who found that performance requirements are the third most frequent specified QR
type. The most frequent QR type in [15] are usability followed by maintainability.

Among the sub-characteristics in Table 6 (excluding the NA category), the
most frequently specified QR types are: (1) Time behavior (239 of 827), (2) Se-
curity (93 out of 827), and (3) Functionality compliance (86 out of 827). The
frequency of specified time behavior and security requirements implies that these
are the most important types of QR to specify, which is not in line with the results
in Johansson et al. [26] who found that reliability is the most important QR. In ad-
dition, only five reliability requirements are present in the analyzed requirements
specification. Moreover, Leung found that the two most important types of QR are
availability and accuracy [31], which is not in line with our results. In addition,
Leung found that performance requirements (time behavior) are only considered
the fifth most important quality aspect. The importance of performance require-
ments is in line with the findings for B2B companies in Berntsson Svensson et
al. [5], which may be explained by the focus of the study. The case company’s
requirements specification in our study is in the B2B domain, and [5] is the only
study to analyze the importance of QR based on type of customers. In addition,
usability requirements were not considered as important for B2B companies in [8],
which is in line with our results.

158 How are quality requirements specified? A document analysis case study

6 Conclusions

In conclusion, this paper presents the results of an empirical study that examines
how QR are specified in industrial practice at a case company in the mobile handset
domain. Data is collected from a requirements specification written in structured
natural language that contains 2,178 requirements, whereof 827 (38%) are QR.

In relation to RQ1, how QR are distributed in a requirements specification, the
findings reveal that there is a large variation across the different sub-domains. The
variation is related to number of QR (ranging from 4 to 262 QR), existing QR
types, and how QR are specified, e.g., number of NQR, QQR, and use of standard
references. This variation can to some part be explained by the characteristics of
the different sub-domains. However, the results indicate that there is a lack of a
systematic method for QR, especially since some areas have deficiencies when it
comes to QR.

Although relatively many QR exists in the requirements specification, there
are areas of improvement. For example, there are very few maintainability re-
quirements in the requirements specification. As the case study company employs
a platform development approach, maintainability is a key factor in keeping high
quality and reducing effort of using the same platform for several products. It may
be, though, that maintainability requirements are hidden in other quality require-
ments such as portability and functionality. Standards are commonly used in all
types of requirements in the case company’s requirements specification. However,
the phenomena is not well understood when it comes to problems and implications
of hiding requirements within standards.

The findings for RQ2, quantification of QR, show that 56% (465 out of 827)
of all QR are quantified. This and other variations across the sub-domains suggest
that methods for QR need to be able to cope with a variety of QR types. Solely
focusing on, for example, quantifying QR might overlook important requirements.

The specification is written in structured natural language without explicit
specification of interdependencies across requirements. As QR typically crosscut a
functional decomposition, the lack of referencing structure creates obstacles. For
example, FR are sometimes repeated several times for each associated QR. An-
other example is having a separate section for crosscutting concerns, apart from
the functional structure of the specification. This causes problems with getting an
overview of QR, which may lead to deficiencies in completeness and even con-
tradicting requirements, discovered late in the process. In addition, this may lead
to a maintainability problem, as requirements on one subject are spread out in the
specification with little or no support for finding them in the specification. Hence,
practitioners are reliant on the human factor to find the interdependencies across
requirements. By improving the structure for specifying relationships across re-
quirements, many positive effects could potentially be seen.

In relation to RQ3, existing types of QR in the requirements specification, the
findings reveal that performance requirements are the most frequently specified

6 Conclusions 159

types of QR in the requirements specification, which is not surprising considering
the developed software products (small embedded system) at the case company.
In addition, the several of the characteristics and sub-characteristics of ISO/IEC
9126 does not exist in the requirements specification, and as many as 11% of all
QR could not be classified as any of the characteristics in the ISO/IEC 9126 stan-
dard. Using standard methods such as ISO/IEC 9126 may be difficult as it fails to
incorporate domain specific aspects relevant for a successful approach. Moreover,
the use of ISO/IEC 9126 was more time consuming and less reliable than the tai-
lored codes. Therefore, a general conclusion is that for a method to be successful,
it is important that it is flexible enough to handle the diverse nature of QR. This
impacts all areas of RE, starting with elicitation and analysis to specification and
validation.

To complement this study, an interview study with sub-domain experts would
improve the understanding of the rationale behind the specifications of require-
ments. The impact of standards on the requirements practice is only briefly an-
alyzed in this study. Therefore, to further understand the impact of standards,
interviews with practitioners are recommended.

Writing requirements in a structured natural language form is commonly used
in industry. Despite many years of traceability research and research on depen-
dencies across requirements, the state of practice still struggle with complex in-
terdependencies among requirements. Therefore, it would be interesting to ana-
lyze requirements specifications focused on explicit and implicit interdependen-
cies among requirements in general, and QR in particular. This can be performed
as a document analysis study and complemented with interviews to get a com-
prehensive understanding of the problems. It is also important when evaluating
methodologies for dependencies among requirements to keep in mind the return
of investment. It is not obvious that adding explicit dependencies will be ben-
eficial when analyzing the complete development process, since maintainability
problems may occur.

Acknowledgment
This work was partly funded by VINNOVA (the Swedish Agency for Innovation
Systems) within the MARS project and by the Industrial Excellence Center EASE
- Embedded Applications Software Engineering, (http://ease.cs.lth.se). Further-
more, we would like to thank all of the participants and their companies who have
helped in making the data collection possible for this research.

160 How are quality requirements specified? A document analysis case study

Appendix

Architecture Architecture includes requirements on the architecture as such, e.g. API re-
quirements or componentization of software.

Audio Requirements related recording and playback of audio are found in this sub-
domain, e.g. sampling rate or number of speakers.

Camera Camera includes requirements on the camera and its interfaces, e.g. resolution
support and encoding of pictures.

Connectivity Requirements related to local connectivity, e.g. USB or BluetoothTM , as
opposed to connections to the mobile phone network.

Display Display includes requirements on e.g. color depth, resolution or number of
displays.

HW architec-
ture

Hardware requirements or mechanical requirements, e.g. component height
or pin compatibility, are associated with the HW architecture sub-domain.

IMS The IP Multimedia Subsystem (IMS) is a framework for delivering Internet
Protocol (IP) multimedia services to mobile devices, such as voice or chat
applications.

Industrialization Industrialization includes requirements related to production of devices in fac-
tory, such as time to download software to the devices and test log require-
ments.

Java Java includes requirements on which Java APIs to support, such as JSR-135,
and on behavior of java applications, such as memory requirements.

Memory Requirements on memories, e.g. RAM bit order or flash memories error han-
dling, found in the Memory sub-domain.

Messaging Requirements on e.g. SMS or email, are found in the Messaging sub-domain.
Mobile TV Mobile TV includes requirements on Mobile-TV enables, such as broadcast

standard and recording requirements.
Multimedia Multimedia application requirements, such as encoding and decoding stan-

dard and bit rate of video, are part of the Multimedia sub-domain.
Network Requirements related to GSM or UMTS network access, both circuit-switched

as well as packet-switched, are part of the Network sub-domain.
Positioning Positioning related requirements, e.g. GPS and emergency location services,

are found in the Positioning sub-domain.
Power Power includes requirements on charging, batteries, etc.
Radio Everything surrounding radio access protocols, such as sensitivity and fre-

quencies, are part of the Radio sub-domain.
Security Security includes requirements on Security, such as encryption and identifica-

tion of users.
UI UI include requirements in, for example, input, such as simultaneous key

presses, and output, such as mechanical feedback.
Video tele-
phony

Video telephony related requirements, such as resolution on a video call and
protocols, are part of the Video Telephony sub-domain.

Bibliography 161

Bibliography

[1] H. Al-Kilidar, K. Cox, and B. Kitchenham. The use and usefulness of the
iso/iec 9126 quality standard. In Proceedings of the International Symposium
on Empirical Software Engineering, pages 122–128, 2005.

[2] I. Alexander. Misuse cases help to elicit non-functional requirements. Com-
puting & Control Engineering Journal, 14(1):40–45, 2003.

[3] S. Barney, A. Aurum, and C. Wohlin. A product management challenge:
Creating software product value through requirements selection. Journal of
Systems Architecture, 54(6):576–593, 2008.

[4] R. Berntsson Svensson, T. Gorschek, and B. Regnell. Quality requirements
in practice: An interview study in requirements engineering for embedded
systems. In Proceedings of the 15th International Working Conference on
Requirements Engineering: Foundation for Software Quality, pages 218–
232, 2009.

[5] R. Berntsson Svensson, T. Gorschek, B. Regnell, R. Torkar, A. Shahrokni,
and R. Feldt. Quality requirements in industrial practice - an extended inter-
view study at eleven companies. IEEE Transaction on Software Engineering,
2011. In print.

[6] R. Berntsson Svensson, T. Gorschek, B. Regnell, R. Torkar, A. Shahrokni,
R. Feldt, and A. Aurum. Prioritization of quality requirements: State of
practice in eleven companies. In Proceedings of the 19th International Re-
quirements Engineering Conference, pages 69–78, 2011.

[7] R. Berntsson Svensson, M. Höst, and B. Regnell. Managing quality require-
ments: A systematic review. In Proceedings of the 36th EUROMICRO Con-
ference on Software Engineering and Advanced Applications, pages 261–
268, 2010.

[8] R. Berntsson Svensson, Y. Sprockel, B. Regnell, and S. Brinkkemper. Set-
ting quality targets for coming releases with quper - an industrial case study.
Requirements Engineering, 2011. In print.

[9] J. Boegh. A new standard for quality requirements. IEEE Software, 25(2):57–
63, 2008.

[10] A. Borg, A. Yong, P. Carlshamre, and K. Sandahl. The bad conscience of
requirements engineering: An investigation in real-world treatment of non-
functional requirements. In Proceedings of the Third Conference on Software
Engineering and Practice in Sweden, pages 1–8, 2003.

162 How are quality requirements specified? A document analysis case study

[11] L. Chung and J.C.S do Prado Leite. On non-functional requirements in soft-
ware engineering. In Lecture Notes in Computer Science, volume 5600,
pages 363–379, 2009.

[12] L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Require-
ments in Software Engineering. Kluwer Academic Publishers, 2000.

[13] L. Chung and S. Supakkul. Representing nfrs and frs: A goal-oriented and
use case driven approach. In Lecture Notes in Computer Science, volume
3647, pages 29–41, 2006.

[14] L.M. Cysneiros, J.C.S. do Prado Leite, and J. de Melo Sabat Neto. A frame-
work for integrating non-functional requirements into conceptual models.
Requirements Engineering, 6(2):97–115, 2001.

[15] J. de la Vara, K. Wnuk, R. Berntsson Svensson, J Sanchez, and B. Regnell.
An empirical study on the importance of quality requirements in industry. In
Proceedings of the 23rd International Conference on Software Engineering
and Knowledge Engineering, pages 438–443, 2011.

[16] J. Doerr, D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki. Non-functional
requirements in industry - three case studies adopting an experience-based
nfr method. In Proceedings of the 13th IEEE International Conference on
Requirements Engineering, pages 373–382, 2005.

[17] C. Ebert. Putting requirement management into praxis: dealing with non-
functional requirements. Information and Software Technology, 40(3):175–
185, 1998.

[18] N.A. Ernst and J. Mylopoulos. On the perception of software quality require-
ments during the project lifecycle. In Lecture Notes in Computer Science,
volume 6182, pages 143–157, 2010.

[19] M. Glinz. On non-functional requirements. In Proceedings of the 15th IEEE
International Requirements Engineering Conference, pages 21–26, 2007.

[20] D.J. Grimshaw and G.W. Draper. Non-functional requirements analysis:
Deficiencies in structured methods. Information and Software Technology,
43(11):629–634, 2001.

[21] M. Hassenzahl, R. Wessler, and K.C. Hamborg. Exploring and understanding
product qualities that users desire. In Proceedings of the 15th Annual Con-
ference of the Human-Computer Interaction Group of the British Computer
Society, pages 95–96, 2001.

[22] A. 21. Herrmann and B. Paech. Moqare: misuse-oriented quality require-
ments engineering. Requirements Engineering, 13(1):73–86, 2008.

Bibliography 163

[23] IEEE. IEEE Recommended Practice for Software Requirements Specifica-
tions. IEEE Std. 830-1998, 1998.

[24] ISO/IEC 9126-2001(E). Software Engineering - Product Quality - Part 1:
Quality Model, 2001.

[25] S. Jacobs. Introducing measurable quality requirements: a case study. In
Proceedings of the Fourth IEEE International Symposium on Requirements
Engineering, pages 172–179, 1999.

[26] E. Johansson, A. Wesslen, L. Bratthall, and M. Höst. The importance of
quality requirements in software platform development-a survey. In Proceed-
ings of the 34th Annual Hawaii International Conference on System Sciences,
2001.

[27] H-W. Jung, S-G. Kim, and C-S. Chung. Measuring software product quality:
A survey of iso/iec 9126. IEEE Software, 21(5):88–92, 2004.

[28] E. Kamsties, K. Hörnmann, and M. Schlich. Requirements engineering in
small and medium enterprises. In Proceedings of the International Confer-
ence on European Industrial Requirements Engineering, pages 84–90, 1998.

[29] L. Karlsson, Ȧ.G. Dahlstedt, B. Regnell, J. Natt och Dag, and A. Persson. Re-
quirements engineering challenges in market-driven software development -
an interview study with practitioners. Information and Software Technology,
49(6):588–604, 2007.

[30] S. Konrad and M. Gall. Requirements engineering in the development of
large-scale systems. In Proceedings of the 16th IEEE International Require-
ments Engineering Conference, pages 217–222, 2008.

[31] H.K.N. Leung. Quality metrics for intranet applications. Information and
Management, 38(3):137–152, 2001.

[32] M. Lubars, C. Potts, and C. Richter. A review of the state of the practice
in requirements modelling. In Proceedings of the First IEEE International
Symposium on Requirements Engineering, pages 2–14, 1993.

[33] T. Olsson, R. Berntsson Svensson, and B. Regnell. Non-functional require-
ments metrics in practice - an empirical document analysis. In Workshop on
Measuring Requirements for Project and Product Success, 2007.

[34] C. Pohl, G.Böckle, and F.J. van der Linden. Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer-Verlag, 2005.

[35] S. Robertson and J. Robertson. The Volere requirements process, Mastering
the Requirements Process. Addison-Wesley, 1999.

164 How are quality requirements specified? A document analysis case study

[36] C. Robson. Real World Research. Blackwell, 2002.

[37] P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, 2009.

[38] C. Seaman. Qualitative methods in empirical studies of software engineering.
IEEE Transaction on Software Engineeirng, 25(4):557–572, 1999.

[39] M. Sibisi and C.C. van Waveren. A process framework for customising soft-
ware quality models. In Proceedings of the IEEE AFRICON Conference,
pages 547–554, 2007.

[40] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlson, B. Regnell, and A. Wess-
lén. Experimentation in Software Engineering: An introduction. Kluwer
Academic, 2000.

THE QUALITY
PERFORMANCE MODEL

PAPER IV

VALIDATION OF THE QUALITY
PERFORMANCE MODEL:
SUPPORTING RELEASE
PLANNING OF QUALITY

REQUIREMENTS

Abstract

In a competitive open market, as experienced by market-driven software product developing
organizations, it is important to plan the product’s releases with time-to-market in mind.
For a software product to be successful in the market, the software product needs to be
released to the market at the right time, and with higher level of quality than its competitors’
products. Hence, quality requirements can be seen as a key competitive advantage. This
results in challenges related to setting the right quality target in relation to future market
demands and competitors’ products. When is the quality level a competitive advantage?
This situation was identified as a direct need in industry. A model, with three views and
a detailed guideline of how to apply the model in practice, was developed in response to
the industrial need. The model aims at supporting high-level decision-making, e.g., release
planning of quality requirements. The model was validated at a case company in the mobile
handset domain with 11 professionals using real quality requirements. The results from the
industrial validation point to a relevant and feasible model that is applicable in an industrial
environment. The model will allow decision-makers, e.g., product managers, to have more
substance to the decisions of what level of quality to aim for in the coming releases.

Richard Berntsson Svensson, Björn Regnell, and Jane Cleland-Huang
Submitted to IEEE Transaction on Software Engineering

168 Validation of the Quality Performance Model: Supporting Release . . .

1 Introduction

Market-driven incremental product development and delivery (release) is becom-
ing more common in the software industry [27]. One goal of market-driven incre-
mental product development is to develop a product with high customer value by
delivering an ”optimal” subset of requirements in a certain release. In addition, to
increase the chances of market success, the software product needs to be released
to the market at the right time with higher level of quality than the competitors’
products [3]. The decisions (a.k.a. software release planning) about what features
and quality at what point in time have to be taken, making these decisions a major
determinant of the success of a product [31], [22]. Moreover, lack of good release
planning may result in unsatisfied customers [31].

Software release planning is the process of deciding which features should be
included in which release [2]. Software release planning is closely associated with
product management and requirements engineering decisions. Software release
planning is conducted at two levels, strategic and operational [2]. In strategic re-
lease planning (SRP), managers prioritize and assign features to releases to meet
technical and resource constraints to achieve maximum customer satisfaction. Op-
erational release planning (ORP) takes place after the strategic release planning
process where the focus is on one particular release. ORP focuses on assigning
developers to tasks to develop the selected features for the particular release. The
idea of SRP is to select what features and requirements a release should contain,
when it should be released (time) and at what cost this should be achieved.

An especially challenging problem for an organization that develops software-
intensive incremental products offered to a market is to set the right quality target
in relation to future market demands and competitor products. When is the quality
level good enough? When is the quality level a competitive advantage? In the liter-
ature, there are several approaches that provide support for SRP and prioritization,
e.g. Release Planning Prototype [9], EVOLVE [13], and release planning through
optimization and what-if analysis [1]. These methods use generic algorithms to
resolve the release planning issue. Although it may be possible to define release
planning as a mathematical optimization problem, it may not be worthwhile to ap-
ply complex mathematics or advanced computational algorithms to achieve ”op-
timal”, if the input data to the optimization process is highly uncertain. To the
best of our knowledge, few studies have looked into SRP and prioritization of
quality requirements (QR), despite the fact that QR are of major importance for
market success [2], [14]. According to [30], only two SRP methods address qual-
ity constraints. The quantitative Win-Win model [26] addresses effort and time
constraints, but not the quality level of QR. Arguably, then, the only method to
address quality and cost constraints of QR is the QUPER model [30].

The QUPER model, (QUality PERformance model), was developed to support
release planning and roadmapping of QR, more specifically with the goal to pro-
vide concepts for qualitative reasoning of orders of magnitude rather than precise

2 Related Work 169

mathematical formulas. QUPER was developed at a case company in the mobile
handset domain [23], while abstract generic guidelines of how to apply QUPER in
practice were developed in cooperation between academia and industry [21].

This paper is based upon previous work published in [6], [7], [8], [21], [23]
where different aspects of the QUPER model were introduced. We are now in a
position to present a complete version of the QUPER model. This paper adds the
following contributions to our previous investigations of QUPER:

• The added step of how to incorporate cost dependencies between QR.

• The added step of defining scale and unit, for example, if a performance
requirement is added, should the quality level be measured in milliseconds
or seconds?

• A detailed step-by-step practical guideline of how to apply QUPER in prac-
tice, with an illustration of a QR from the first to the last step.

• A complete overview of QUPER’s steps and workflow.

• A new validation of the complete version of the QUPER model with 11
professionals at a case company to evaluate QUPER’s usefulness and appli-
cability using the detailed guidelines in a non-simulated environment using
real quality requirements.

The remainder of this paper is organized as follows. Section 2 offers an
overview of related work, while background and motivation is presented in Sec-
tion 3. Section 4 offers an introduction and exemplification of the QUPER model.
Section 5 presents how QUPER was evaluated at the case company, and lessons
learned are discussed. Limitations of the study are discussed in Section 6, while
Section 7 gives a summary of the main conclusions.

2 Related Work

The process of selecting requirements for a certain release of a software product is
called release planning, where the primary goal is to maximize the expected value
of a product release. Several approaches and strategies have been proposed to
resolve issues related to requirements selection and prioritization. In this section,
a selection of release planning methods is presented: EVOLVE [13], EVOLVE*
[28], F-EVOLVE [19], Release Planner Prototype [9], and a method for software
release planning using optimization of what-if analysis [1].

EVOLVE [13] is an evolutionary and iterative method that looks ahead for
more than one release. The method balances stakeholders’ conflicting opinions to
achieve the highest degree of satisfaction with the available resources. EVOLVE*
[28] is a hybrid intelligent framework with the objective to create synergy between

170 Validation of the Quality Performance Model: Supporting Release . . .

computational intelligence and the knowledge and experience of human experts.
Software product release planning through optimization and what-if analysis [1]
is a method that applies mathematical programming to provide a solution for the
next release problem. The release planner prototype [9] is based on fixed release
dates and intervals, which allows the requirements to be allocated to lists with a
”must” part and a ”wish” part.

All of these release planning methods use generic algorithms and linear pro-
gramming to resolve the release planning issue. Input data such as requirements
value, requirements cost, resources, stakeholder importance, and budget constraints
are used to come up with an ”optimal” release. In addition, analysis of require-
ments dependencies is present in these methods. However, none of the methods
address quality constraints. According to Svahnberg et al., only two strategic re-
lease planning methods address quality constraints [30]. The quantitative Win-
Win [26] addresses effort and time constraints, but not the quality level of quality
requirements. The only method to address quality and cost constraints of QR is
the QUPER model [30]. For a more comprehensive analysis of 24 strategic release
planning methods, we refer to Svahnberg et al. [30].

Prioritization of requirements is often conducted prior, or as a part of the re-
lease planning process. Several prioritization techniques and cost-benefit models
are introduced in the literature. The contributions in this area include: Kano [15],
Planguage [11], a cost-value approach [17] based on the analytical hierarchical
process (AHP) [29], and quality function deployment (QFD) [16]. Planguage has
roadmap related concepts such as past, record, and trend in templates for quality
requirements. QUPER could be used together with the planguage method to ex-
press breakpoints, barriers, and targets related to, for example, express competing
products in different market segments.

The cost-value approach [17] uses a two-dimensional graph that displays the
requirements value against its cost. AHP [29] is used from a customer and user
perspective to assess the value of each requirement, followed by an assessment
of the requirements cost from an implementation perspective. The next step is
to plot these into a cost-value diagram, which is used to analyze and discuss the
requirements. This approach, supporting trade-off analysis and is mainly used
for functional requirements. Quality requirements can be included as objects of
prioritization in AHP, but as discrete objects are compared against each other, the
relation to a sliding scale of quality is not explicitly addressed. The QUPER model
thus goes further by introducing a third dimension related to the continuous (or a
set of discrete points on a scale) nature of quality attributes. There are potential
strategies for combining QUPER with AHP-based approaches, e.g. by comparing
breakpoints of different use cases.

Similar to QUPER, Kano et al. [15] developed a model for evaluating patterns
of quality. The evaluation is based on customer’s satisfaction with specific quality
attributes. Kano’s model explains the relationship between customer satisfaction
and the degree of achievement of a specific quality attribute in a two-dimension

3 Background and Motivation 171

graph. Kano’s approach views quality as non-linear. However, Kano’s approach
does not include a cost dimension. Moreover, Kano’s model is not related to
roadmapping, benefit breakpoints, or cost barriers to indicate important aspects
of quality relations.

QFD [16] is a comprehensive, customer and user oriented approach to product
development. The QFD process starts by organizing the project, including the for-
mation of a cross-functional team, followed by the establishment of relationships
among requirements and then prioritization. To fully implement QFD, customers
and users need to be visible; however, not all market-driven projects have access
to customers and users. Furthermore, QFD measures quality attributes using a
scale where no clear distinctions between the values are provided. While QFD
may require a complete change of current practices, QUPER is a simple reference
model to be used in combination with current practices to support communication
of quality attributes.

3 Background and Motivation

The development of QUPER was prompted by the faced challenges of rapid tech-
nology development in combination with increasing market demands on expand-
ing product portfolios targeting a wide scope of different capabilities and price
ranges in the mobile device industry [24]. Moving towards rapidly changing mar-
ket requirements and environmental regulations has urged dramatic changes in
software companies for future economic survival. Moreover, global competition
forces companies to become more competitive and responsive to consumers and
market developments, and creating value for software companies is more impor-
tant than ever before.

Software quality is not only defined by the relevant perspectives, but also by
the context in which it exists [18]. For example, just as each line of cars has a target
market, software quality must be planned to allow a development company to meet
its business objectives. Less than perfect software quality may be ideal [32], but
deciding what is good enough can only be decided in a given business context [18].
Thus, the tough question to answer is ’when is the quality level good enough’?
There is no silver bullet to this question; it must consider the context in which it is
being asked.

The need for a supporting model for handling and working with quality re-
quirements in this context was also explicitly identified during an investigation of
the cross-company requirements engineering process between two case compa-
nies [24]. Furthermore, the companies explicitly stated the importance of having
a handle on QR. The importance of having a handle on QR has been confirmed in
Berntsson Svensson et al. [4].

172 Validation of the Quality Performance Model: Supporting Release . . .

3.1 Requirements Decision Assessment Results

During the requirements decision assessment conducted at the cross-company re-
quirements engineering process between two case companies [24], in total 16 re-
quirements compliance (decision) issues were identified and formulated (see [24]
for detailed information). The QUPER model was primarily built on five of the 16
issues in [24]. The five issues are presented and described below:

• Issue-1: Transient inclusion: The assessment findings identified a typical
reason behind transient inclusion is that a certain requirement may have
been excluded due to technology development or market considerations.
Therefore, being responsive to technology and market changes is consid-
ered crucial.

• Issue-2: De-scoped to next: The assessment findings identified several rea-
sons for a requirement to be de-scoped to next release, including: (1) the cus-
tomer has changed the requirement’s priority due to, e.g. market changes;
and (2) unrealistic cost estimates, thus not possible to implement within
available resources. Due to great uncertainties in the market and cost esti-
mations, improved techniques for cost estimations may minimize these un-
certainties.

• Issue-3: Change inclusion is a typical change request with the result of an
accepted change request. Hence, the requirement is allowed to change the
plans of the on-going development. Several reasons for change requests
were identified between the two cross-companies, including late discovery
of (1) system performance problems, and (2) specification quality problems.
The specification quality problems resulted in misaligned interpretation of
what should be delivered.

• Issue-4: Change reconsidered scenarios result from rejected changes that
are reconsidered during on-going development; however, these scenarios are
a very uncommon. One reason behind change reconsidered is reconsidered
estimations, e.g. product market value, due to a changing environment and
uncertain predictions of future market needs.

• Issue-5: Proprietary solution chosen. One reason to make a proprietary
solution is due to competitive advantage (in relation to competing product
vendors). Even if the company offers a solution of a certain feature, it may
not be as advanced or as high performing as the competing products.

3.2 Motivation

Two main factors motivated the creation and evolvement of QUPER: (1) a di-
rect need identified in industry (see Section 3.1) and (2) a suitable model was not

3 Background and Motivation 173

found in the literature, i.e. a model for supporting release planning of quality
requirements (see Section 2).

Regarding the industry need (1) there was an expressed interest from the two
cross-companies to improve the way of working with quality requirements towards
the needs of the market. The actual need for this type of model has become even
more apparent after the initial development of QUPER. A different organization in
a different domain than the mobile handset showed an interest in applying QUPER
to their organization [8], due to which they experienced similar challenges as the
two cross-companies.

Looking at the state of art, there is a research being conducted in the area
of strategic release planning in a market-driven development situation. Although
there is an identified need in industry to support QR in release planning (described
in Section 3.1), and it is important to have a handle on QR [4], there is a lack of
an appropriate model (2). Offering support for release planning of QR prompted
the effort to develop QUPER in a generic way for organizations faced with certain
issues, rather than tailoring the model towards on organization.

3.3 Evolvement of the Quality Performance Model

The QUPER model was developed in several stages, in close collaboration with
industry, where the process can be described by the technology transfer model’s
step 1-3 and 5-6 [12], as illustrated in Figure 1.

Subsequent to (1) the initial identified improvement areas in industry (see Sec-
tion 3.1), (2) problem formulation and studying the research field and domain (see
Section 2), and (3) formulation of a candidate solution in cooperation with indus-
try (see [23]), QUPER went through four (two static, e.g., interviews, and two dy-
namic, e.g., pilot projects and controlled small tests) major validations. The static
validation (step 5 in Figure 1) steps involved brainstorming and interview sessions
with selected practitioners that are involved in/responsible for release planning of
quality requirements. The dynamic validations (step 6 in Figure 1) consisted of
using QUPER for a real live release planning effort. Each round of the validation
processes was used to refine the model in terms of contents, structure, as well as
testing issues relating to usability and usefulness.

First, (5) a static validation with four practitioners was conducted to evaluate
QUPER’s benefit view [21], followed by a (6) dynamic validation of the bene-
fit view where four practitioners applied the practical guidelines of the benefit
view for 3 months in a non-simulated environment in real projects using real re-
quirement [6]. Then, a second (5) static validation with eight practitioners was
conducted to evaluate QUPER’s cost view [7]. Finally, a second (6) dynamic vali-
dation was conducted of QUPER’s cost and benefit view where four practitioners
applied to concepts in real projects using real requirements [8].

The version of QUPER presented in this article (see Section 4), i.e. the model
that evolved as a result of the validations, is the first version that includes all

174 Validation of the Quality Performance Model: Supporting Release . . .

Candidate
solution

Industry

Academia

Dynamic
validation

Static
validation

Problem/
issue

1

2

3

5

6

Study state
of the art

Problem
formulation

Figure 1: Overview of QUPER evolvement [12]

steps and the detailed guidelines of how to apply QUPER in practice. QUPER is
mainly aimed towards establishing support for discussion and decision-making in
upstream requirements engineering related to, e.g. release planning and roadmap-
ping.

4 QUPER Structure and Guidelines

This section describes QUPER’s structure and the supporting guidelines of apply-
ing QUPER in practice developed as part of it.

The new contributions of this paper (in Section 4) are: (1) the added step of
how to identify cost dependencies between QR (Section 4.7), (2) the added step of
defining scale and unit (Section quper:step2), (3) the detailed step-by-step practi-
cal guidelines with an illustration of a QR (Sections 4.1-4.7), and (4) a complete
overview of QUPER’s steps and the workflow of QUPER, which is shown in Ap-
pendix (parts of the Appendix have been published previously in [4]).

The reason for adding the cost dependency step is because dependencies may
have a major impact on the estimated cost for other QR. The cost to improve the
quality level for one QR may imply an improved level of quality for other QR.

4 QUPER Structure and Guidelines 175

This may lead to a change of other QR cost barriers and which QR to select for
the coming release. Therefore, it is important incorporate a cost dependency step
in the QUPER model.

The QUPER model aims to support the ability to make early estimates with ad-
equate accuracy of QR that are input to discussion and high-level decision-making
related to, e.g. release planning and roadmapping. One objective of QUPER is
to define a prioritization model that includes a third dimension related to qual-
ity, as a complement to cost and value that are used in prioritization of functional
requirements [17].

The basis for the construction of QUPER and its three (benefit, cost, and
roadmap) views is the concepts of breakpoints and barriers. The first view, the
benefit view (Figure 2), illustrates the relation between quality and benefit in terms
of three breakpoints. The utility breakpoint marks the shift from useless to useful
quality, while the differentiation breakpoint marks the shift from useful to com-
petitive quality (which only a few competitors’ products reach). The saturation
breakpoint marks the shift from competitive to excessive quality.

Useful

Useless

Competitive
advantage

Excessive

Utility breakpoint

Differentiation
breakpoint

Quality level

Benefit

Saturation
breakpoint

Figure 2: The benefit view [23]

The cost view (Figure 3) illustrates the relation between quality and cost in
terms of cost barriers. A cost barrier occurs when the cost shifts from a plateau-
like situation where an increase in quality has a low cost penalty, to a sharp rise
where an increase in quality has a high cost penalty.

The roadmap view (Figure 4) combines the benefit and cost view by position-
ing the breakpoints and cost barriers on the same scale, which enables a visualiza-

176 Validation of the Quality Performance Model: Supporting Release . . .

Quality level

Cost

Cost barriers

Figure 3: The cost view [23]

tion of the current situation. To support release planning and roadmapping, this
view incorporate targets for coming releases.

Current Questionable Target

Quality Indicator

Target release n1
Competitor B

Competitor A

Target release n2

Utility Differentiation Saturation

Legend:
Utility breakpoint
Differentiation breakpoint
Saturation breakpoint

Cost barrier

Figure 4: The roadmap view [23]

The version of QUPER presented in this section is based on the one developed
in close collaboration with Sony Ericsson Moblie Communication AB (SEMC),
see Section 5.2 for company description, and is an example of how QUPER can

4 QUPER Structure and Guidelines 177

look like. However, the presented version is intended as a starting point for any
other organization wanting to tailor QUPER for their specific organization and
products. The examples (to preserve confidentiality, all examples throughout this
article are fictitious) in this section are important when working with QUPER as
a mean to support training and practical use of QUPER for supporting release
planning of QR.

To apply QUPER in practice, seven steps are envisioned, as can be seen in
Appendix.

In the first step (Identify candidate QR) it is enough to pinpoint any relevant
quality requirements and list them as candidate QR. The second step (Define scale
and unit) is about defining which scale and measurement unit that can be used to
express the level of quality of a selected QR. The third step (Identify reference
levels) is centered around identifying competing as well as own products’ qual-
ity levels to further calibrate the estimates, while in the forth step (Elicit quality
breakpoints) market expectations are defined in terms of breakpoints. Step five
(Estimate cost barriers) is about estimating the cost in terms of the values of cost
barriers, and then candidate requirements (Step 6 - Set candidate requirements) are
proposed, discussed, and decided. Finally, in step seven (Identify cost dependen-
cies), dependencies, in terms of how cost estimates are affected by other QR, are
identified. Each of these steps is described in further detail below.

4.1 Step 1 - Identify candidate QR
When defining quality requirements, it is important to consider relevant features,
market segment, competitor, and hardware platform capability. Once such feature
has been identified, the consequences for the particular quality requirement should
be consider, for example:

• Different mobile phones offered to different market segments may have dif-
ferent requirements on image quality

• A competitor may recently have released a mobile phone with better gaming
performance changing the perception of gaming quality

• Today’s hardware is not the same as tomorrows, features may run much
faster

• Users’ evolving expectations, expects better performance in the latest mo-
bile phones

If several QR have been identified, it may not be useful to apply QUPER’s
steps on all of them. Quality requirements where QUPER may not be relevant
include, for example:

• Quality requirements that refers to a certain standard

178 Validation of the Quality Performance Model: Supporting Release . . .

• Quality requirements where a certain level of quality is always the same,
e.g. in mobile TV where 28 frames per second is standard

It may be wise to prioritize the top-n (n might be decided to be, e.g. 10) QR
using a defined criterion of ”importance” (e.g. using simple priority grouping
or based on expert judgment), in order to focus the QUPER efforts on the most
important QR.

Figure 5 illustrates an example of the considered quality requirement Time shift
buffer size for the feature Mobile TV Time Shift.

FEATURE: Mobile TV Time Shift
ID: MTV_12
QUALITY REQUIREMENT: Time shift buffer size

Figure 5: Illustration of considered feature and its quality requirement

4.2 Step 2 - Define scale and unit
For selected (most important, e.g. top 10 from step 1) QR, define a scale and a
measurement unit that can be used to express the level of quality of QR. A scale
can for example be ”time” and the measurement unit can be ”minutes”. Figure 6
shows the defined scale and unit for Time shift buffer size.

FEATURE: Mobile TV Time Shift
ID: MTV_12
QUALITY REQUIREMENT: Time shift buffer size
DEFINITION: The number of minutes of HDTV buffered

Figure 6: Illustration of defined QR with scale and unit

4.3 Step 3 - Identify reference levels
For each quality requirement, it is useful to identify reference levels based on ac-
tual products. Reference levels can be based on competing as well as own products
(Qref). Estimates can be given in three forms, depending on how the potential un-
certainty in the estimates should be captured:

• Point estimates including a single figure, e.g. 3 minutes

4 QUPER Structure and Guidelines 179

• Interval estimates including a [min, max] interval, e.g. 3-4 minutes

• Triangle distribution estimates including a three-tuple of [low bund, most
probable, high bound] figures that show the estimated probability distribu-
tion, e.g. low: 3 minutes, high: 5 minutes, probable 4 minutes.

Although three forms of estimates can be given, point estimates was the most
common form in previous case studies [6]. The reference levels further calibrate
the estimates and provide objective measures to relate the QR to. Figure 7 illus-
trates added reference levels for Time shift buffer size.

FEATURE: Mobile TV Time Shift
ID: MTV_12
QUALITY REQUIREMENT: Time shift buffer size
DEFINITION: The number of minutes of HDTV buffered
REFERENCE LEVELS

PRODUCT: Competitor X LEVEL: 20 min
PRODUCT: Own product Y LEVEL: 40 min
PRODUCT: Competitor Z LEVEL: 160 min

Figure 7: Illustration of added reference levels

4.4 Step 4 - Elicit quality breakpoints

When all reference levels have been identified, for each quality requirement, the
market expectations should be defined in terms of the values of quality break-
points.

First, determine the utility breakpoint, which is the lowest acceptable value on
the market for a given segment.

How to judge what is lowest acceptable value:

• Is it possible to sell this feature at this quality? If not, then below utility

• Will this quality generate a too high return rate? If yes, then below utility

Then, determine the saturation breakpoint, representing quality levels that are
clearly considered excessive by the market.

How to judge what is excessive quality:

• Over this breakpoint will not sell any more products

• Over this breakpoint will not give any market advantages

180 Validation of the Quality Performance Model: Supporting Release . . .

• Will enhance the user experience

Finally, the differentiation breakpoint somewhere between utility and satura-
tion is determined. Values above this quality level gives market advantage com-
pared to the current products of your competitors.

How to judge differentiation quality:

• The quality will be better than competitors

• The quality can be used in marketing the product

Similar to step 3 (Identify reference levels), estimates can be given in three
forms; however, point estimates are the preferred form (see Step3 for more details).

Figure 8 shows the identified quality breakpoints for Time shift buffer size,
while Figure 9 illustrates the roadmap view of Time shift buffer size with reference
levels and the three (utility, differentiation, and saturation) quality breakpoints.

FEATURE: Mobile TV Time Shift
ID: MTV_12
QUALITY REQUIREMENT: Time shift buffer size
DEFINITION: The number of minutes of HDTV buffered
REFERENCE LEVELS

PRODUCT: Competitor X LEVEL: 20 min
PRODUCT: Own product Y LEVEL: 40 min
PRODUCT: Competitor Z LEVEL: 160 min

QUALITY BREAKPOINTS
UTILITY: 15 min RATIONALE: all products are able
SATURATION: 200 min RATIONALE: films are shorter
DIFFERENTIATION: 50 min RATIONALE: high price point

Figure 8: An illustration of quality breakpoints have been defined

4.5 Step 5 - Estimate cost barriers
When market expectations have been identified, for each quality requirement,
estimate the cost in terms of the values of cost barriers (CB). To identify the
cost barrier, practitioners with good domain and architectural knowledge may be
needed. If possible, identify similar quality requirements’ cost barriers from pre-
vious projects and use as input.

Although it is possible to identify and estimate one, two, or several cost barriers
for each QR, the recommended number of cost barriers is two. The first cost barrier

4 QUPER Structure and Guidelines 181

Quality level
(Feature Mobile TV Time Shift)

Utility Differentiation Saturation

Competitor X

Own product Y

Competitor Z

Figure 9: Illustration of reference levels and quality breakpoints merged into the
roadmap view

is mainly related to software changes, while a second cost barrier is mainly related
to new hardware components, or affects the entire software architecture.

First, estimate the first CB in terms of cost (C1) and at what quality level (Q1)
where an increase in quality has a high cost penalty.

How to identify the first cost barrier:

• Q1: May relate to software changes, for example, requires a change in one
or a few parts of the architecture, extensive optimization of code, or a major
re-work of the code

• Q1: May only affect your own and/or closely related projects’ code/archi-
tecture

• C1: Represents the cost penalty of raising the quality level from the current
quality level (Qref) to Q1

Then, estimate the second CB in terms of cost (C2) and at what quality level
(Q2) where an increase in quality has a high cost penalty.

How to identify the second cost barrier:

• Q2: May affect major (if not all) parts of the entire products’ architecture

• Q2: The hardware’s physical constraints may be used as Q2

• Q2: May require major infrastructure (e.g. code optimization) changes in
several projects

• C2: Represents the cost penalty given that the C1 investment has been made,
when raising the quality from Q1 to Q2

In Figure 10, cost barriers have been identified for Time shift buffer size, while
Figure 11 illustrates the added cost barriers in the roadmap view.

182 Validation of the Quality Performance Model: Supporting Release . . .

BARRIER
Qref: 40 min
Q1: 90 min RATIONALE: new SW architecture needed

C1: 4 weeks
Q2: 180 min RATIONALE: new HW component needed

C2: 24 weeks

FEATURE: Mobile TV Time Shift
ID: MTV_12
QUALITY REQUIREMENT: Time shift buffer size
DEFINITION: The number of minutes of HDTV buffered
REFERENCE LEVELS

PRODUCT: Competitor X LEVEL: 20 min
PRODUCT: Own product Y LEVEL: 40 min
PRODUCT: Competitor Z LEVEL: 160 min

QUALITY BREAKPOINTS
UTILITY: 15 min RATIONALE: all products are able
SATURATION: 200 min RATIONALE: films are shorter
DIFFERENTIATION: 50 min RATIONALE: high price point

Figure 10: Illustration of feature with cost barriers

Quality level
(Feature Mobile TV Time Shift)

Utility Differentiation Saturation

Q1 Q2

Competitor X

Own product Y

Competitor Z

Figure 11: Illustration of quality breakpoints, reference levels, cost barriers
merged into a roadmap view

4.6 Step 6 - Set candidate requirements

Now, make estimations, propose candidate requirements, discuss and decide actual
requirements for coming releases, where estimates can be given in three forms (as
in Step 3):

4 QUPER Structure and Guidelines 183

• Point estimates including a single figure

• Interval estimates including a [min, max] interval

• Triangle distribution estimates including a three-tuple of [low bund, most
probable, high bound] figures that show the estimated probability distribu-
tion

One way to specify a requirements quality interval is by using both a Good
and a Stretch target. The actual quality requirement is the interval that is specified
by the two targets. It is possible to define the requirement interval in the following
ways:

• With both a Good target and a Stretch target

• With only a Stretch target, which means the highest value is specified

• With only a Good target, which means the lowest accepted value is specified

Figure 12 shows the identified target, as an interval using Good and Stretch, for
Time shift buffer size. Figure 13 illustrates the roadmap view for Time shift buffer
size when the actual requirement (level of quality) for the next release is defined.

4.7 Step 7 - Identify cost dependencies

If cost dependencies among quality requirements are considered important to iden-
tify for cost estimations, then, for each top-n QR, identify which modules (archi-
tectural components/parts) that needs to be changed if that QR is to be improved
beyond the ”next” breakpoint (either utility or differentiation depending on its cur-
rent position).

How to identify potential dependencies:

• If two (or more) QR affect the same architectural part(s), they may be de-
pendent on each other.

• Identify dependencies by already existing dependency tools/models, e.g. by
a traceability tool or a Feature Dependency Model.

When potential cost dependencies among the top-n QR have been identified,
for each top-n QR: (1) list which other top-n QR that are easier/cheaper to improve
if this QR is improved, and (2) list which other top-n QR that are more difficult/-
expensive to improve if this QR is improved.

Then, an expert subjectively (based on experience and ”gut feeling”) select m
QR (e.g. the ones that will be implemented, the most important QR to improve the
level quality) that is a subset of the top-n QR (m<=n) and set a quality level target
for each of these m QR that seem to provide a reasonable cost increase.

184 Validation of the Quality Performance Model: Supporting Release . . .

BARRIER
Qref: 40 min
Q1: 90 min RATIONALE: new SW architecture needed

C1: 4 weeks
Q2: 180 min RATIONALE: new HW component needed

C2: 24 weeks

FEATURE: Mobile TV Time Shift
ID: MTV_12
QUALITY REQUIREMENT: Time shift buffer size
DEFINITION: The number of minutes of HDTV buffered
REFERENCE LEVELS

PRODUCT: Competitor X LEVEL: 20 min
PRODUCT: Own product Y LEVEL: 40 min
PRODUCT: Competitor Z LEVEL: 160 min

QUALITY BREAKPOINTS
UTILITY: 15 min RATIONALE: all products are able
SATURATION: 200 min RATIONALE: films are shorter
DIFFERENTIATION: 50 min RATIONALE: high price point

STRETCH: 90 min RATIONALE: if SW architecture is feasible
GOOD: 80 min RATIONALE: will beat most

TARGET

Figure 12: Illustration of feature with targets

Quality level
(Feature Mobile TV Time Shift)

Utility Differentiation Saturation

Q1 Q2

Target

Competitor X

Own product Y

Competitor Z

Figure 13: Illustration of quality breakpoints, reference levels, cost barriers and
target merged into a roadmap view

5 QUPER Validation 185

Then, for this set of m QR; make an effort estimation in weeks or months
informed by the above, by first making individual effort estimates of each m QR
given that all of the targets are implemented by subjectively taking into account the
”synergies” and the ”counter working” in step 5, and the sum all up to a complete
effort for the m QR.

Finally, if the total effort is too high or too low compared to available resources
then change the subset in a ”smart way” (this new candidate set is derived subjec-
tively based on ”gut feeling” and the experience of the expert) to arrive at another
”better” effort estimate.

5 QUPER Validation

This section offers a summary of prior validations of parts of the QUPER model,
a presentation of the validation methodology of QUPER (as described in Section
4) as it was validated in industry against an organization faced with the issues
described in Section 3.1. Finally, the lessons learned from the new validation are
presented and discussed.

Although the QUPER model has been evaluated in prior evaluations (see Sec-
tions 3.3 and 5.1), the important step of cost dependencies has not been evaluated,
neither by itself nor in combinations with all of QUPER’s steps. Furthermore, the
detailed guidelines of how to apply QUPER in practice (Sections 4.1-4.7) have not
been evaluated by professionals in an industrial setting to evaluate its usefulness
and applicability in an industrial setting. In addition, the detailed guidelines have
not been evaluated in combination with QUPER’s steps. Therefore, to investigate
the usefulness and applicability of the complete QUPER model using the detailed
guidelines in an industrial setting using real QR, a new validation is needed.

5.1 Prior Validations

The QUPER model has been developed and evaluated in several stages, as de-
scribed in Section 3.3. The prior evaluations have evaluated different parts of the
QUPER model.

First, the model was developed based on industry needs, and an initial evalua-
tion of the model with six practitioners was conducted at one case company [23].
Then, the benefit view was tested using real requirements in real projects [6]. The
cost view was evaluated by eight practitioners [7], followed by an evaluation of
QUPER’s benefit and cost views [8]. However, the cost dependency step (see Sec-
tion 4.7) has not been evaluated in any of the previous evaluations.

The QUPER model has matured over the several industrial evaluations and
improvements have been made to the model to be useful in an industrial setting.
In addition, steps have been added to the model, and the detailed guidelines (see
Sections 4.1-4.7) have evolved and been refined due to the industrial evaluations.

186 Validation of the Quality Performance Model: Supporting Release . . .

In the following sub-sections, the first novel evaluation of the complete QUPER
model (as described in Section 4) at a case company (see company description in
Section 5.2) and the lessons learned are presented.

5.2 Case Company Description

The case company has more than 9,000 employees and develops embedded sys-
tems for a global market using a product line approach [20]. The company’s re-
quirements database consists of more than 20,000 requirements where approxi-
mately 25% of the requirements are quality requirements. The company has sev-
eral consecutive releases of a platform (a common code base of the product line)
where each of them is the basis for one or more products that reuse the platform’s
functionality and qualities. The case company has two types of platform releases,
a major and a minor release. A major release has a lead-time between two and
three years from start to launch, and the focus is on functionality growth and qual-
ity improvements of the product portfolio. Minor platform releases usually focus
on the platform’s adaptations to different products. The company uses a stage-gate
model with several increments, where Milestones (MSs) are used for controlling
and monitoring the project progress. There are four milestones (MS1-MS4) for
requirements management and design before the implementation starts, and three
milestones (MS5-MS7) for the implementation and maintenance phase.

5.3 Validation Methodology

As the QUPER model was completed, it was set to be evaluated in an industrial en-
vironment using real quality requirements. The evaluation of the complete QUPER
model was carried out using a qualitative research approach and in-depth semi-
structured interviews [25] and self-administrated questionnaires [10], [25].

The first step was to plan the study and how to evaluate the QUPER model at
the case company. The interview instrument (see Table 1) was design with inspira-
tion from [8], while the self-administrated questionnaire (see Table 2) was inspired
by [5]. The self-administrated questionnaire used a seven-point Likert scale, rep-
resenting levels of agreement from ”strongly disagree” to ”strongly agree”. To
test the interview instrument and the questionnaire, two pilot interviews were con-
ducted to improve the instruments prior to the industry validation. The selection of
practitioners for participating in the evaluation was conducted in cooperation with
two managers at the case company. Eleven practitioners, representing different
roles and areas were chosen. The roles chosen are: 4 product managers, 2 project
managers, 1 software architect, 1 test manager, 1 head of software quality, and 2
senior software engineers.

The second step involved applying the QUPER model in practice. The prac-
titioners received the detailed practical guidelines, of how to use the model, to
follow the steps using real quality requirements from their projects. The variation

5 QUPER Validation 187

Table 1: The Interview Instrument

Questions about the QUPER model
What is your general view of using QUPER?
What was helpful compared to the previous way of working?
Was it easier to coordinate the decision process?
What were the challenges in applying QUPER?
Do you think the estimates (targets) will be more accurate with QUPER?
Can the use of QUPER improve the decision-making process?
Final question
Is there anything else you would like to add that we have not mentioned?

Table 2: The Questionnaire

ID Questions
Q1 QUPER is easy to understand
Q2 QUPER’s guidelines work in an industrial setting
Q3 QUPER improves the understanding of needed level of quality
Q4 QUPER improves the understanding of QR
Q5 QUPER improves the decision-making process, e.g. release plan-

ning, of QR
Q6 QUPER’s benefit view is helpful when specifying QR
Q7 It is difficult to identify the breakpoints
Q8 QUPER’s cost view is helpful when specifying QR
Q9 It is difficult to identify the cost barriers
Q10 QUPER’s roadmap view is helpful when specifying QR
Q11 Applying QUPER takes too much time to be useful

188 Validation of the Quality Performance Model: Supporting Release . . .

of how many QR each practitioner applied QUEPR’s steps to range from a few
QR up to 20. The main goal of the second step is to achieve an understanding of
the QUPER’s usefulness and applicability in an industrial environment.

The third step was carried out using semi-structured interviews [25] in the of-
fices of the practitioners and lasted between 40 and 60 minutes each. During the
interviews, the purpose of the evaluation was explained. Then, the practitioners
answered the self-administrated questionnaire, followed by questions (from the in-
terview instrument) about applying the complete QUPER model in practice, which
was discussed in detail.

We took records in the form of audio recording and transcribed the recordings
in order to facilitate and improve the analysis process. The collected data was
analyzed using content analysis [25]. The content analysis involved marking and
discussing interesting sections of the transcripts. The first author examined the
sections from different perspectives for explicitly stated or concealed pros and
cons in relation to the usefulness and applicability of the model.

5.4 Lessons learned

Below, lessons learned and the results from the self-administrated questionnaire
are discussed. The results from the self-administrated questionnaire are presented
in Table 3, while the median value of each question is shown in Table 4.

Ease of use

In general, the practitioners agree that the QUPER model is easy to understand
(Q1 in Table 4), that the detailed guidelines work in an industrial environment
(Q2), and the model does not take too much time to apply in practice (Q11).

During the interviews, several practitioners explained that the detailed guide-
lines (sections 4.1-4.7) are very helpful due to easy steps to follow, and in particular
the provided examples (see Figures 5-13) for each step. Moreover, the steps in the
detailed guidelines have about enough information, not too much or too little to
be applicable in industry. Several practitioners stressed another important issue in
relation to QUPER’s applicability in industry, all steps are not mandatory to use
(see Appendix). According the practitioners, if they are ”forced” to go through all
steps, some people may be too scared to use the model. One practitioner explained
further, ”a model cannot be too big or too complicated, it must be a ’light model’
to be applicable in industry, which QUPER fulfills”. In addition, the steps in the
detailed guidelines were seen as following a logical order when applied to QR.

Although the practitioners viewed QUPER as easy to use and understand, there
were two main concerns about the detailed guidelines. First, a need for more ex-
amples, in particular of other QR than performance requirements, e.g., usability
requirements. One practitioner asked, how do you specify a usability requirement
using the QUPER model when the usability is not related to performance require-

5 QUPER Validation 189
Ta

bl
e

3:
D

is
tr

ib
ut

io
ns

of
qu

es
tio

nn
ai

re
an

sw
er

s

ID
St

ro
ng

ly
di

sa
gr

ee
D

is
ag

re
e

Sl
ig

ht
ly

di
sa

gr
ee

N
eu

tr
al

Sl
ig

ht
ly

ag
re

e
A

gr
ee

St
ro

ng
ly

ag
re

e
Q

1
0

0
0

2
3

5
1

Q
2

0
0

0
0

1
8

2
Q

3
0

0
0

0
3

5
3

Q
4

0
0

0
1

5
3

2
Q

5
0

0
0

5
0

5
1

Q
6

0
0

0
2

4
4

1
Q

7
0

2
3

3
1

2
0

Q
8

0
0

0
5

1
4

1
Q

9
0

0
1

4
2

3
1

Q
10

0
0

0
0

0
5

6
Q

11
1

5
1

3
1

0
0

190 Validation of the Quality Performance Model: Supporting Release . . .

Table 4: Questionnaire median value per question

ID Median
Q1 Agree
Q2 Agree
Q3 Agree
Q4 Slightly agree
Q5 Agree
Q6 Slightly agree
Q7 Neutral
Q8 Slightly agree
Q9 Slightly agree
Q10 Strongly agree
Q11 Disagree

ments? The second main concern was related to inconsistent usage of the model.
The practitioners believed that some people may use the concepts of the QUPER
model in different ways, and a special concern was related to that higher quality is
sometimes related to higher value, while other times a lower value means higher
quality.

Importance of the three views

In Table 3, the results show that the roadmap view is the most important view of
the QUPER model (Q10 in Table 4). In addition, the benefit view may be helpful
when specifying QR (Q6 in Table 4), while the cost view is the least important
(Q8) of the three views. One explanation of why the roadmap view is seen as the
most important view was discovered during the interviews, the information from
both the benefit and cost view is visualized in the roadmap view. Hence, the other
views are not seen as important.

Several practitioners explained that the roadmap view provides a great visual-
ization of the market situation and it provides an easy to understand overview. One
subject further explained, ”the roadmap view gives you a real visualization of the
reality”.

In Table 4, the results show that the identification of breakpoints in the benefit
view is viewed as neither difficult, nor easy (Q7). The reason may be explained
by the different approaches of identifying the breakpoints. During the interviews,
four different approaches of how to identify the breakpoints were discovered:

• Using their own subjective estimate, i.e., the practitioner has an understand-
ing, based on his/her experience and ”gut feeling”, of the estimates for the

5 QUPER Validation 191

breakpoints.

• To perform several new tests of the competitors’ products level of quality,
and use these values as input when estimating the breakpoints.

• If these tests (as described above) have all ready been performed, it is easy
to access a database with this information.

• To use advanced and extensive market analysis techniques to identify the
breakpoints.

The cost view was viewed as the least important among the three views, which
is related to the perceived difficulties on estimating the cost of requirements ac-
cording to the practitioners. Several practitioners explained that cost estimation,
in general, is always difficult regardless if it is for functional requirements or for
QR. The difficulties lie in the ability to estimate the cost and map that cost to a
real value, i.e., not only using cost estimations for resources planning, but actually
estimate the actual cost of implementing QR. However, most of the practitioners
believe that the accuracy of the cost estimates in QUPER’s cost view would be
as accurate as any other feature/requirement’s cost estimation. This may explain
why the practitioners viewed it slightly difficult to estimate the cost barriers (Q9
in Table 4). In addition, one practitioner explained, to estimate a cost barrier, an
extensive estimation analysis work may be needed, which will be time consum-
ing and therefore not useable in practice. However, the practitioner believed that
practitioners that do cost estimations in their everyday work would find it easier to
estimate the cost barriers.

Applicability of the cost dependency step

The last step in the QUPER model, identify cost dependencies (see Section 4.7),
was viewed as easy to follow, and at the same time detailed enough to be useful
in practice. The detailed guidelines provided the practitioners with a good enough
understanding of potential dependencies between QR. According to several prac-
titioners, the detailed guidelines for the cost dependency step are similar to their
approach of dealing with dependencies between features. One practitioner be-
lieved that this step might be difficult to follow and apply for some practitioners;
however, according to the practitioner, the QUPER model would still be useful
even if everyone does not use this step.

Supporting release planning

In general, all practitioners agreed that QUPER improves the understanding of QR
(Q3 in Table 4), and that the model would improve the decision-making process
in, e.g., release planning of QR (Q5 in Table 4). In addition, the roadmap view is

192 Validation of the Quality Performance Model: Supporting Release . . .

seen as the central part of the improvement in the decision-making process (Q10
in Table 4).

During the interviews, the practitioners explained the importance of the roadmap
view. The roadmap view provides the decision-makers with an overview, which
is a good basis for discussions of which quality level to aim for in the coming
releases. One practitioner further explained, it is easier to understand the thought
behind, and the need for a certain level of quality when it is presented on the
roadmap view since it is related to the market and the competitors.

The importance of relating the needed level of quality to the market and the
competitors was expressed by several of the interviewed practitioners. One practi-
tioner explained, ”the relation to the market and our competitors is very important
for our ’selling features’ since we will have a better understanding if we are mar-
ket leaders or not”. Furthermore, the decisions about the needed level of quality
will have a better substance compared to just presenting a metric of the quality
level.

In addition to the decision-making process, the practitioners believe that the
QUPER model could improve the communication between the people. For exam-
ple, the concepts of QUPER provide them with a ”common language” that every-
body (that has used QUPER) understands and make sure they are talking about the
same things.

Although this first evaluation of the complete QUPER model shows promising
results, the practitioners had a few concerns. First, there may be difficulties to
convince others at the case company to use the model. It is easier to just decide
the level of quality out of the blue instead of learning a new model and follow a set
of guidelines. Some of the practitioners suggested to have a workshop to teach the
QUPER model to the employees of the case company where a ”QUPER expert”
should be present at the first time.

Second, according to one practitioner, it is important to choose the right QR to
apply QUPER. The QUPER model cannot be applied to all QR, e.g., certain QR
must have a specific level of quality to fulfill a certificate or a standard.

Third, as several practitioners stated, to fully understand and evaluate the im-
provements of the decision-making process, the QUPER model should be used in
a project from the start of a project until the product is launched to the market.
However, the lead-time for projects at the case company is between two and three
years.

6 Limitations

As for all empirical studies, there are limitations and threats to the validity. One
threat is related to confounding factors, which are important when making infer-
ences about root-cause relationships. In this paper, inferences are made about
the improvements of release planning for QR. The confounding factors cannot be

7 Conclusions 193

ruled out as the study was conducted in an uncontrolled industrial environment.
The use of very enthusiastic or skeptical subjects could be a confounding factor.
In this study, several of the subjects have been involved during the entire, or part
of the evolvement of the QUPER model. Hence, they may have a positive attitude
towards the model from the beginning. To minimize this threat, several subjects
that had not been part of the evolvement of the model were included in the sample
size. Moreover, the case company is rather immature when it comes to handling
QR. No process, or method of dealing with QR are used at the case company,
which may influence the positive view of QUPER as it may be better to have any
process than none at all.

Another threat is external validity, i.e., the ability to generalize the results be-
yond the included case company. Although the case company is large and devel-
ops technically complex embedded systems, it cannot be taken as a representative
for all types of large companies developing embedded systems. Hence, the re-
sults should be interpreted with some caution. However, qualitative studies rarely
attempt to generalize beyond the actual setting since it is more concerned with
explaining and understanding the phenomena under study. Some of the problems
introduced as motivation behind the conception of QUPER, to some extent could
be general for organization faced with developing embedded products for a mar-
ket. In addition, from a perspective of the concepts and practical application of
QUPER as described in this paper can give an overview of the challenges facing
companies that may implement QUPER.

Finally, further evaluations in industry where the long-term effect, in terms of
benefits and challenges, of using QUPER needs to be investigated to validate its
feasibility and scalability.

7 Conclusions

The QUPER model was developed in response to needs identified in industry and
the lack of an appropriate model in the literature to address these needs. The
goal of the QUPER model was to offer decision-makers, e.g., product managers,
a model for supporting release planning of quality requirements for market-driven
software product developing companies.

This paper presents the first complete version of the QUPER model, including
the detailed guidelines of how to apply QUPER in practice. The goal of the model
is to be useful in industry by being simple and robust, yet relevant to high-level
decision-making such as release planning.

The basis for the construction of QUPER and its three (benefit, cost, and
roadmap) views is the concepts of breakpoints and barriers. The benefit view in-
cludes three breakpoints; the cost view with cost barriers indicates steep increases
of cost for relevant quality; while the roadmap view combines the benefit and cost

194 Validation of the Quality Performance Model: Supporting Release . . .

view into an ordinal scale where competitors’ products and future targets for re-
leases can be discussed.

As part of QUPER’s development, evolvement, and refinement, parts of the
model has been validated in a series of steps in prior industry validation in this
article. During these prior validations, QUPER has matured, and improvements
have been made. In this article, the complete version of QUPER was validated
in industry at one case company with 11 industry professionals using real quality
requirements. The validation was performed to assure QUPER’s applicability in
industry, and that the model is useful for decision-makers.

During the validation, the results show that QUPER is useful and applicable in
an industrial setting, and the validation results indicate that the model improves the
decision-making process of release planning for quality requirements. In particu-
lar, the visualized roadmap with relations to the market and competitors provides
more substance to decisions of what level of quality to aim for in the coming re-
leases.

As stated earlier, QUPER presented in this article was developed with decision-
makers in mind, particular product managers, supporting them in release planning
of quality requirements. The initial results of QUPER show great promise, but also
give information about limitations on which future research can be based on.

The next phase that will be undertaken in the validation and evolvement of
QUPER, as described in this article, is further evaluations in industry in different
domains where the long-term effects, in terms of benefits and challenges, of using
QUPER need to be investigated to fully validate its feasibility and scalability.

Acknowledgment
This work was partly funded by VINNOVA (the Swedish Agency for Innovation
Systems) within the MARS project and by the Industrial Excellence Center EASE
- Embedded Applications Software Engineering, (http://ease.cs.lth.se). Further-
more, we would like to thank all of the participants and their companies who have
helped in making the data collection possible for this research.

7 Conclusions 195

Appendix

Identify
candidate QR

Decision

Define scale
and unit

Identify
reference

levels

Elicit quality
breakpoints

Identify cost
dependencies

Estimate cost
barriers

Set candidate
requirements

Decision
[OK] [Not OK]

[Use QUPER][Not use QUPER]

Decision
[Need to][Not needed]

Decision [Need to][Not needed]

196 Validation of the Quality Performance Model: Supporting Release . . .

Bibliography
[1] M. van den Akker, S. Brinkkemper, G. Diepen, and J. Versendaal. Software

product release planning through optimization of what-if analysis. Informa-
tion and Software Technology, 50(1–2):101–111, 2008.

[2] A. Al-Emran, D. Pfahl, and G. Ruhe. Decision support for product release
planning based on robustness analysis. In Proceedings of the 18th IEEE
International Requirements Engineering Conference, pages 157–166, 2010.

[3] S. Barney, A. Aurum, and C. Wohlin. A product management challenge:
Creating software product value through requirements selection. Journal of
Systems Architecture, 54(6):576–593, 2008.

[4] R. Berntsson Svensson, T. Gorschek, B. Regnell, R. Torkar, A. Shahrokni,
and R. Feldt. Quality requirements in industrial practice - an extended inter-
view study at eleven companies. IEEE Transaction on Software Engineering,
page in print, 2011.

[5] R. Berntsson Svensson, P. Lindberg Parker, and B. Regnell. A prototype
tool for quper to support release planning of quality requirements. In Fifth
International Workshop on Software Product Management, 2011.

[6] R. Berntsson Svensson, T. Olsson, and B. Regnell. Introducing support for
release planning of quality requirements - an industrial evaluation of the
quper model. In Second International Workshop on Software Product Man-
agement, 2008.

[7] R. Berntsson Svensson, B. Regnell, and A. Aurum. Towards modeling guide-
lines for capturing the cost of improving software product quality in release
planning. In Second proceeding: Short papers, Doctoral Symposium and
Workshops of the 11th international conference on product focused software
process improvements, pages 24–27, 2010.

[8] R. Berntsson Svensson, Y. Sprockel, B. Regnell, and S. Brinkkemper. Cost
and benefit analysis of quality requirements in competetive software prod-
uct management. In Proceedings of the fourth International Workshop on
Software Product Management, pages 40–48, 2010.

[9] P. Carlshamre and B. Regnell. Requirements lifecycle management and re-
lease planning in market-driven requirements engineering processes. In Pro-
ceedings of the 11th International Workshop on Database and Expert Sys-
tems Applications, pages 961–965, 2000.

[10] A. Fink. The survey handbook. Sage Publications, 2003.

[11] T. Gilb. Competitive Engineering. Elsevier Butterworth-Heinemann, 2005.

Bibliography 197

[12] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. A model for technology
transfer in practice. IEEE Software, 23(6):88–95, 2006.

[13] D. Greer and G. Ruhe. Software release planning: an evolutionary and itera-
tive approach. Information and software technology, 46(4):243–253, 2004.

[14] S. Jacobs. Introducing measurable quality requirements: a case study. In
Proceedings of the Fourth IEEE International Symposium on Requirements
Engineering, pages 172–179, 1999.

[15] N. Kano, S. Nobuhiro, S. Takahashi, and S. Tsuji. Attractive quality and
must-be quality. Hinshitsu, 14:39–48, 1984.

[16] J. Karlsson. Managing software requirements using quality function deploy-
ment. Software Quality Journal, 6(4):311–325, 1997.

[17] J. Karlsson and K. Ryan. A cost-value approach for prioritizing requirements.
IEEE Software, 14(5):67–74, 1997.

[18] B. Kitchenham and S. Pfleeger. Software quality: The elusive target. IEEE
Software, 13(1):12–21, 1996.

[19] S. Maurice, G. Ruhe, O. Saliu, and A. Ngo-The. Value-Based Software Engi-
neering, chapter Decision Support for Value-Based Software Release Plan-
ning, pages 247–261. Springer, 2006.

[20] C. Pohl, G.Böckle, and F.J. van der Linden. Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer-Verlag, 2005.

[21] B. Regnell, R. Berntsson Svensson, and T. Olsson. Supporting roadmapping
of quality requirements. IEEE Software, 25(2):42–47, 2008.

[22] B. Regnell and S. Brinkkemper. Engineering and Managing Software Re-
quirements, chapter Market-Driven Requirements Engineering for Software
Products, pages 287–308. Springer, 2005.

[23] B. Regnell, M. Höst, and R. Berntsson Svensson. A quality performance
model for cost-benefit analysis of non-functional requirement applied to the
mobile handset domain. In Proceedings of the 13th working conference on
requirements engineering: foundation for software quality, pages 277–291,
2007.

[24] B. Regnell, H. Olsson, and S. Mossberg. Assessing requirements compliance
in system platform subcontracting. In Proceedings of the Seventh Interna-
tional Conference on Product Focused Software Development and Process
Improvement, pages 362–376, 2006.

[25] C. Robson. Real World Research. Blackwell, 2002.

198 Validation of the Quality Performance Model: Supporting Release . . .

[26] G. Ruhe, A. Eberlein, and D. Pfahl. Trade-off analysis for requirements
selection. International journal of software engineering and knowledge en-
gineering, 13(4):345–366, 2003.

[27] G. Ruhe and D. Greer. Quantitative studies in software release planning
under risk and resource constraints. In Proceedings of the 2003 International
Symposium on Empirical Software Engineering, pages 262–270, 2003.

[28] G. Ruhe and A. Ngo-The. Hybrid intelligence in software release planning.
International Journal of Hybrid Intelligent Systems, 1(2):99–110, 2004.

[29] T.L. Saaty. The Analytical Hierarchy Process. McGraw-Hill, 1980.

[30] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, and S.B. Saleem. A system-
atic review on strategic release planning models. Information and Software
Technology, 52(3):237–248, 2010.

[31] M.I. Ullah and G. Ruhe. Towards comprehensive release planning for soft-
ware product lines. In Proceedings of the First International Workshop on
Software Product Management, pages 51–55, 2006.

[32] E. Youdon. When good enough is best. IEEE Software, 12(3):79–81, 1995.

PAPER V

SETTING QUALITY TARGETS
FOR COMING RELEASES

WITH QUPER - AN
INDUSTRIAL CASE STUDY

Abstract

Quality requirements play a critical role in driving architectural design and are an
important issue in software development. Therefore, quality requirements need to
be considered, specified, and quantified early during system analysis and not later
in the development phase in an ad-hoc fashion. This paper presents the quality per-
formance model that estimates quality targets in relation to market expectations as
a basis for the architecting of quality requirements. The purpose of the model is to
provide concepts for qualitative reasoning of quality levels in the decision-making
of setting actual targets of quality requirements for coming releases of the product.
The quality performance model is evaluated at one case company, using a market-
driven development approach, in the electronic payment-processing domain. The
results show that the model is useful for supporting early decision-making in, e.g.,
release planning of quality requirements.

Richard Berntsson Svensson, Yuri Sprockel, Björn Regnell, and Sjaak Brinkkem-
per
Requirements Engineering Journal, 2011, in print

200 Setting quality targets for coming releases with QUPER - an industrial . . .

1 Introduction

Quality requirements (QR) describe important constraints upon the development
and behavior of a software system. Hence, quality is one of the most important
issues in software development [1]. The ability of a software-intensive system
to meet a set of QR is to a large degree depending on the software architecture
(SA) [8], and the SA thus constraints the achievement of various QR [2]. Conse-
quently, QR are a driving force for architectural design [2]. Therefore, QR should
be considered and specified as early as possible during system analysis [9]. De-
spite their importance, QR are often discovered late in the development process in
an ad-hoc fashion, which may lead to problems such as architectural solutions fail-
ing to take into account critical QR, and systems may fall short of meeting users’
real needs [9]. Therefore, one of the most critical tasks for a software architect is
to create a design that can meet the QR that are vital to the success of the software
product [10].

A challenging problem for an organization that develops software-intensive
products offered to a market is to set the right quality target in relation to future
market demands and competitor products. When is the quality level good enough?
When is the quality level a competitive advantage? The decided level of relevant
quality attributes that a future product release should achieve may have a major
impact on the SA, since quality cannot be added to the system afterwards; it has to
be built into the system and its architecture from the beginning [30].

This paper presents one case study of tailoring, implementation, and the most
important evaluation of a method called QUality PERformance (QUPER) [23] that
complements existing methods, such as ATAM [18], SAAM [17], and QASAR [6],
with estimations of benefit and cost of quality targets in relation to market expecta-
tions as a basis for the architecting of QR. The QUPER model has the specific goal
to provide concepts for qualitative reasoning on the orders of magnitude of quality
levels in the decision-making that needs to take place when a software organiza-
tion is setting the actual targets of QR for the coming releases of the product. The
QUPER model is aimed to facilitate the elicitation, specification, quantification,
and prioritization of QR. The main objectives of the case study are two: firstly,
to investigate how the model performs in terms of usability and usefulness when
combining all three views, and secondly, to understand how QUPER can be tai-
lored to fit in a domain different from the previously studied domain (the mobile
handset domain) [23], [3], [21], [4]. The novel contribution of this paper is the
first dynamic validation to include all the three views of QUPER. Furthermore,
this paper presents examples of one transaction processing and one upgradability
QR to illustrate the process of QUPER. This paper extends our previous report on
preliminary findings [5], with more in-depth description of the evaluated QUPER
guidelines and account of research methodology, a more detailed explanation of
the tailoring of the QUPER activities and real data on quality targets from the case,
as well as further analysis, discussion, and lessons learned.

2 Background and related work 201

The remainder of this paper is organized as follows. In Sect. 2, the background
and related work are presented. Section 3 introduces the case company where
QUPER has been used. The concept of model tailoring and the implementation
of QUPER at the company are presented in Sect. 4. The research methodology is
described in Sect. 5, and Sect. 6 presents the results. Section 7 gives a summary
of the main conclusions.

2 Background and related work

The development of QUPER was performed in close collaboration with industry.
The process can be described by the technology transfer model’s step one, two,
three, five, and six [12], which is illustrated in Fig. 1.

Candidate
solution

Industry

Academia

Dynamic
validation

Static
validation

Problem/
issue

1

2

3

5

6

Study state
of the art

Problem
formulation

Figure 1: Overview of QUPER development

Industry needs and possibilities for improvements were investigated by focus-
ing on the interface between the two case companies and the cross-company re-
quirements engineering process [24]. The investigation results acted as a basis
for model development [23]. QUPER was validated in several incremental steps
through static validation (for example, interviews) and dynamic validation (for ex-
ample, pilot projects and controlled small tests) [3], [5], [21], [4]. Each round of

202 Setting quality targets for coming releases with QUPER - an industrial . . .

the validation process was used to refine the model in terms of contents, structure,
as well as test issues relating to usability and usefulness.

The evaluation presented in this paper aims to scope the success of the first
dynamic validation in the form of implementation of QUPER’s all three views in
industry. The industry trails allow us to validate the models’ usability and useful-
ness in a non-simulated environment. Feedback obtained from this evaluation will
be used to further refine the model.

2.1 Introduction to QUPER

The QUPER model aims to support the ability to make early estimates with ade-
quate accuracy of QR that are input to discussion and high-level decision-making
in upstream requirements engineering related to, for example, roadmapping, re-
lease planning, and scoping. More details about roadmapping in market-driven
requirements engineering can be found in Regnell and Brinkkemper [22]. One
of QUPER’s main objectives is to define a model for specification, quantification,
and prioritization of QR that includes a third dimension related to quality, which
may be used as input for the architecting process of QR, as a complement to cost
and value that are used in prioritization of functional requirements [16].

Two hypotheses were used as reference when QUPER was developed. First,
quality is continuous. Rather than being either included or excluded, quality re-
quirements are assumed of having the potential of being measured on a continuous
scale, i.e., a quality requirement is typically viewed as different shades of quality
on a sliding scale. Second, quality is nonlinear, i.e., for quality requirements, such
as performance; two questions regarding changes in quality level may be relevant:

1. Would slightly better performance be significantly more valuable from a
market perspective?

2. Would significantly better performance be just slightly more expensive to
implement?

The change in quality level may result in nonlinear changes to both cost and
benefit, which is of interest to release planning and roadmapping. Aspects such as
release targets, end-user experience, and business opportunities must be taken into
account. At the same time, the feasibility with the evolving system architecture
and available development resources must be considered.

Based on the results in [24] and from discussions with domain practitioners,
three goals were selected as a guide to the QUPER model:

• Robust to uncertainties. The relations between quality requirements, their
market value, and the implementation cost may be complex and thus difficult
to estimate with high accuracy.

2 Background and related work 203

• Easy to use. QUPER should be easy to learn, remember, understand, and
use by practitioners by only including a few concepts. This goal is inline
with Pfleeger’s recommendation for technology transfer from academia to
industry [20].

• Domain-relevant. QUPER should be possible to combine with existing
practice and possible to tailor to a particular domain. Adaption and tailoring
are often prerequisites to successful technology transfer from academia to
industry [12].

The basis for the construction of the QUPER model is the concepts of break-
points and barriers. A breakpoint is an important aspect of the nonlinear relation
between quality and benefit, for example, when a product’s start-up time shifts
from normal expectations to outperforming most competitors. Barriers represent
an interesting aspect of the nonlinear relation between quality and cost, for exam-
ple, achieving better performance may require an expensive rebuild of the archi-
tecture. The two concepts of breakpoints and barriers are the basis for QUPER’s
three views: (1) the benefit view, (2) the cost view, and (3) the roadmap view.

The benefit view (Fig. 2) illustrates the relation between quality and benefit
in terms of three breakpoints. A breakpoint indicates a change in benefit level
with respect to users’ perception of quality and market value. The first breakpoint,
utility breakpoint, marks the border between useless and useful quality. Useless
quality means that a product is not accepted in the market, and users do not rec-
ognize its value. After passing the utility breakpoint, a product starts to become
useful and thus have a market value. The second breakpoint, differentiation break-
point, marks the shift from useful to competitive quality, which only a few of the
competitors’ products reach. The third breakpoint, saturation breakpoint, marks
the shift from competitive to excessive quality; that is, quality levels beyond this
breakpoint have no practical impact on the benefit for the considered context.

The cost view (Fig. 3) illustrates the relation between quality and cost in terms
of foreseen cost barriers.

For a specific quality aspect in a specific context, we approximate the quality-
cost relation to have two different steepness ranges. A cost barrier occurs when
the cost shifts from a plateau-like situation where an increase in quality has a low-
cost penalty, to a sharp rise where an increase in quality has a high-cost penalty. A
typical cost plateau may be when comparatively inexpensive software optimization
might produce high gains of performance. A typical cost barrier may be that an
increase in quality is not feasible without a large reconstruction of the product’s
architecture.

The roadmap view (Fig. 4) combines the two previous views (benefit and cost
views) by positioning the breakpoints and cost barriers on the same scale, which
enables a visualization of breakpoints and cost barriers in relation to a product’s
current quality level and the competing products’ quality. To support roadmapping,
the roadmap view incorporates targets for coming releases.

204 Setting quality targets for coming releases with QUPER - an industrial . . .

Useful

Useless

Competitive
advantage

Excessive

Utility breakpoint

Differentiation
breakpoint

Quality level

Benefit

Saturation
breakpoint

Figure 2: The QUPER benefit view

Quality level

Cost

Cost barriers

Figure 3: The QUPER cost view

The QUPER model generally aims to avoid making complete predictions of
the inherently difficult relations between a product’s benefit, cost, and quality. In-

2 Background and related work 205

Current Questionable Target

Quality Indicator

Target release n1
Competitor B

Competitor A

Target release n2

Utility Differentiation Saturation

Legend:
Utility breakpoint
Differentiation breakpoint
Saturation breakpoint

Cost barrier

Figure 4: The QUPER roadmap view

stead, QUPER simplifies the problem by finding reasonable good predictions of a
limited set of breakpoints and cost barriers (with ranges to indicate error margins,
if appropriate). In all three views, the quality levels on the horizontal axes are
measured by quality indicators, which may be specific to different entities such as
feature, use case, domain, and market segment. Every quality indicator must be
considered carefully to find special cases. The definition of these quality indicators
is the main issue in tailoring QUPER for a certain domain or product.

QUPER guidelines

QUPER as presented in Sect. 2.1 is generic in nature. The practical application
of QUPER’s benefit view in [3], cost view in [4], and benefit and cost view in [5]
are adopted prior to the model being set into operation at the companies. To apply
QUPER in practice, the following steps are envisioned:

1. Define quality aspects.

2. Estimate your product’s current quality level (for a given release) and the
competing products’ quality (at present or envisioned).

3. For each quality aspect and for each relevant qualifier, estimate the break-
points.

4. Estimate the closest cost barrier in terms of cost (C1), and at what quality
level where an increase in quality level (Q1) has a high-cost penalty.

5. Estimate the second cost barrier in terms of cost (C2), and at what quality
level (Q2) where an increase in quality has a high-cost penalty.

206 Setting quality targets for coming releases with QUPER - an industrial . . .

6. Estimate candidate targets and discuss and decide on actual targets for com-
ing releases.

In step 1, when defining quality aspects, it is important to identify relevant
qualifiers and consider their consequences for the particular indicator; for exam-
ple, different products offered to different market segments have different require-
ments (levels of quality) for a quality aspect, or a competitor might recently have
released a product with better performance, thereby changing users’ perception of
performance. Moreover, today’s hardware is not the same as tomorrows. This has
implications for performance requirements, as software features may run faster.
In addition, users’ evolving expectations might influence quality targets as users
except better performance in the latest products.

In step 2, after identifying quality aspects, identify reference levels based on
actual products, both your own (Qref) and the competitors’. These levels further
calibrate the estimations to provide objective measures to relate to the breakpoints
in step three.

In step 3, for each quality indicator, define the current market expectations in
terms of the values of the three breakpoints in Fig. 2. First, determine the utility
breakpoint, the lowest acceptable value on the current market. Then, determine the
saturation breakpoint, which represents quality levels clearly considered excessive
in the current market. Finally, determine the differentiation breakpoint; values
above this breakpoint give market advantages.

In step 4, estimate the closest cost barrier (CB1) in terms of cost (C1) and at
what quality level (Q1) where an increase in quality has a high-cost penalty. In or-
der to identify and estimate CB1, the quality level (Q1) may be related to software
changes, for example, requires a change in one or a few parts of the architecture,
extensive optimization of the code, or a major rework of the code. Moreover, Q1
may only affect your own and/or closely related projects’ code/architecture. It is
important to note that C1 represents the penalty of raising the quality level from
the current product’s (Qref) quality level.

In step 5, estimate the second cost barrier (CB2) in terms of cost (C2), and at
what quality level (Q2) where an increase in quality has a high-cost penalty. In
order to identify and estimate CB2, the following three inputs may be used, Q2
may affect major (if not all) parts of the entire product’s architecture, the hard-
ware’s physical constraints may be used as Q2, and major infrastructure (e.g. code
optimization) changes in several projects may be required. C2 represents the cost
penalty given that the C1 (in step four) investment has been made, when raising
the quality from Q1 to Q2. Furthermore, the quality level for each cost barrier (Q1
and Q2) is one estimate, while the cost (C1 and C2) is another estimate.

In step 6, the final step, candidate targets are requirements with potential qual-
ity commitments. Different quality indicators may have a different number of
relevant targets. The actual quality requirement is an interval that is specified by
two targets, min target (the lowest acceptable quality for this quality indictor) and
max target (the highest needed quality). Actual targets for the upcoming release or

2 Background and related work 207

future releases are chosen from the defined candidate targets. Figure 5 shows an
example of a feature (quality requirement) of the collected and estimated informa-
tion from all six steps (to preserve confidentiality, the feature, and the estimates in
Fig. 5 are fictitious).

•  !"#$%&%'%(#)*+,$-./%
–  !"#$%&'(%)*%+#&,-.!"#$%!&'!()*+!$,-#.!/-%.'01-2!

–  !"#$%&'(&'/0.!3%45'4$*0.%!

–  102)%3,).!6%*-,4%1!54'$!()*+%4!#07'8%!9,:'0!(4%--%1!,0;)!$,-#.!#-!()*+%1!,-#0<!=!>?!$%$'4+!-;.8!&+(%!@!A#&B!CDD!

&4*.8-!A#&B!*7%4*<%!1,4*;'0!'5!E!$#0!

•  !"#$%0%'%12++#/"%+#3#+#/*#%$+.42*")%
–  4,5/03&,-(6-,*"+&(7.!F!-%.'01-!
–  4,5/03&,-(6-,*"+&(8.!=!-%.'01-!
–  9:)(6-,*"+&(;(<!-0=>.!E!-%.'01-!

•  !"#$%5%6%12++#/"%78+9#"%#:$#*"8-./)%
–  ?3$%&'(@-0#A/,%)&.!G!-%.'01-!
–  1%B0-0)3#3,)(@-0#A/,%)&.!CHG!-%.'01-!
–  C#&"-#3,)(@-0#A/,%)&.!DH=!-%.'01-!

•  !"#$%;%6%<)-78"#%"=#%*>.)#)"%*.)"%?8++,#+%@1A&B%
–  !D.!=!-%.'01-!
–  4D.!F!A%%8-!

•  !"#$%C%6%<)-78"#%"=#%)#*./4%*.)"%?8++,#+%@1A0B%
–  !E.!C!-%.'01!
–  4E.!=F!A%%8-!

•  !"#$%D%6%18/4,48"#%"8+E#")%
–  F%)(&#-G0&.!=!-%.'01-!I!"B#-!&*4<%&!#-!('--#9)%!A#&B',&!*!0%A!*4.B#&%.&,4%J!9,&!0%%1-!-'$%!-'KA*4%!'(;$#L*;'0H!

–  F#H(&#-G0&.!C!-%.'01!I!M5!A%!.4%*&%!*!0%A!*4.B#&%.&,4%J!&B#-!&*4<%&!NAB#.B!#-!9%:%4!&B*0!1#O%4%0;*;'0P!A#))!9%!%*-+!&'!
4%*.BH!Q-%4-!$#<B&!4%R,#4%!&B#-!)%7%)!'5!R,*)#&+!A#&B#0!=!+%*4-H!

Figure 5: An example of a QR of QUPER’s six steps

2.2 Related work
In this section, work on addressing QR at the architecture level is presented. Dif-
ferent software architecture design methods for evaluating a SA quality are pre-
sented, followed by release planning methods for selection and prioritization of
requirements (including QR). Finally, other requirements prioritization techniques
are described.

The software engineering research community has defined various software ar-
chitecture design methods [18], [17], [6], for example, the scenario-based architec-
ture analysis method (SAAM) [17]. SAAM uses scenarios for evaluating quality
attributes and is applied to a final version of the SA but prior to the detailed design.
Another method is the architecture trade-off analysis method (ATAM) [18], which
is developed to find trade-offs among quality attributes that affect each other at the
architecture level. Moreover, the quality attribute-oriented software architecture
design method (QASAR) [6], is a method for software architecture design that

208 Setting quality targets for coming releases with QUPER - an industrial . . .

employs explicit assessment of and design for QR of a software system. How-
ever, these design methods start with the design of the software architecture based
on the functional requirements specified in the requirements specification, where
most QR are typically not explicitly defined at this stage [10]; that is, requirements
should be elicited, specified, quantified, and prioritized before the methods can be
applied.

Several approaches and strategies have been proposed to resolve issues re-
lated to requirements selection and prioritization [29]. In this section, a selection
of release planning methods is presented: EVOLVE [13], Release Planner Proto-
type [7], and a method for software release planning using optimization of what-if
analysis [31]. All of these three methods use generic algorithms to resolve the re-
lease planning issue. In addition, analysis of requirements dependencies is present
in these methods. However, none of the methods address quality constraints. Ac-
cording to Svahnberg et al. [29], only two strategic release planning methods ad-
dress quality constraints. The quantitative Win-Win [26] addresses effort and time
constraints, but not the quality level of quality requirements. The only method to
address quality and cost constraints of QR is the QUPER model [29]. For a more
comprehensive analysis of 24 strategic release planning methods, we refer to [29].

Several prioritization techniques and cost-benefit analysis models are intro-
duced in literature. The contributions in this area include: Planguage [11], Kano
[14], and quality function deployment (QFD) [15], and a cost-benefit approach
[16] based on the analytical hierarchical process (AHP) [28]. Planguage has road-
map related concepts such as past, record, and trend for quality requirements.
QUPER could be used together with Planguage to, e.g., express competing prod-
ucts in different market segments. Kano’s model views quality relationships as
nonlinear between customer satisfaction and the degree of achievement in a two-
dimension graph. However, Kano’s model does not include a cost dimension. QFD
is a comprehensive, customer and user oriented approach to product development.
To fully implement QFD, customers and users need to be visible; however, not
all market-driven projects have access to customers and users. QFD measures QR
using a scale where no clear distinctions between the values are provided. The
cost-value approach, Karlsson and Ryan [16], prioritize requirements based on the
AHP. Their approach is mainly used for functional requirements; however, QR can
of course be included as objects of prioritization in AHP.

3 Case company

The case company employs more than 250 employees, has more than 120,000 cus-
tomers’ and business partners, and operates in the electronic payment-processing
market. The case company is an international organization that specializes in pay-
ment terminals, transaction processing, and development of saving- and customer-
card systems. In order to structure and regulate the electronic payment market,

3 Case company 209

third-party organizations coordinate and set standards for the market, and how or-
ganizations are allowed to operate with other parties, e.g., banks and acquirers.
Moreover, the third parties define a majority of the functionalities and require-
ments, which leaves little room for the case company to differentiate itself from its
competitors. Hence, quality requirements play an important part.

At the moment, the case company does not have any defined quality stan-
dard to adhere to in relation to product requirements. First, product requirements
are defined at a high abstraction level with input from the market. Then, the re-
quirements are specified in more details for the software development team. It is
the responsibility of the development team to estimate the realization costs and
to communicate this with the management. Then, management decides, in col-
laboration with the development team, what requirements should be included in
the upcoming release, and what requirements are planned for future releases. Af-
ter a realization acceptance test is performed, a pilot test is conducted to test the
requirements.

Since the case company is growing internationally, there is a higher focus on
identification and gathering of quality requirements. In order to monitor the qual-
ity levels, a more structured approach to deal with quality requirements is needed.
However, at the moment, when a software upgrade is about to be released, quality
requirements are dealt with in an ad-hoc approach, unlike the product require-
ments. One of the case company’s larger software upgrade releases for 2010 is the
first release where quality requirements are elaborated.

Daily challenges faced by the case company include, how can we measure the
quality of our products? When is the quality level good enough, and how much
would it cost us? The case company does realize that quality requirements need
to be planned and decided in the early decision-making process (such as release
planning), before the initiation of the software development process.

3.1 System architecture

Figure 6 illustrates a general, high-level, view of the case company’s architectural
design of their product (due to confidentiality, no detailed description of the archi-
tectural design is presented).

The architecture presents different types of electronic payment solution (EPS)
of which the customer chooses one that fits its business best. The EPS in use is
connected through an interface to the software management system, which is oper-
ated by the case company. This software management system uses the connection
with the EPS mainly for software upgrade, trouble shooting, and overall moni-
toring. Trouble shooting and overall monitoring was minimal and not considered
reliable, i.e., only connection details were obtainable and whether the EPS was
operating properly or not. This was due to the immatureness and instability of the
software management system. Another important responsibility, yet not as chal-
lenging, the software management system has is to forward data from the customer

210 Setting quality targets for coming releases with QUPER - an industrial . . .

Interfaces

Software
Management

System

P

Q

R

S

T

Electronic
Payment
Solution

1

Electronic
Payment
Solution

2

Electronic
Payment
Solution

3

Electronic
Payment
Solution

n

Standards &
Mechanisms

Processing
Party

System

Payment
Fulfillment

System

Customer Case Company Payment Processor Acquirer

Figure 6: Simplified system architecture

to the payment processor. The Processing Party System is responsible for commu-
nication and provides instructions to the Acquirer. This communication happens
through a series of obliged standards and mechanisms that has been imposed by
the third-party organizations. This insures a controlled and secured environment to
transmit delicate data. Finally, the Payment Fulfillment System is responsible for
finalizing the actual payment, which has financial consequences for the customer
and the end-user.

Figure 6 illustrates the architectural components that are influenced by QR,
i.e., EPS, interfaces, the Software Management System, and the Processing Party
System. The two colored lines in Fig. 6 represent two different types of QR that
have been used in this case study (see Sect. 5.2). The blue line represents up-
gradeability (upgradability is a used term at the case company, but the description
of upgradability is similar to perfective maintenance [19]); the Software Manage-
ment System uses the connection through the interfaces to upgrade the EPS with
the new software and the EPS reports back. The yellow line represents Transaction
Processing (performance); the EPS sends data through the interfaces to the case
company, which in turn forwards the data to the Payment Processor. The payment
processor reports back to the EPS. Some instructions are provided directly to the
Acquirer, and others are performed on a scheduled basis.

In this case study, upgradability refers to the capability to upgrade the running
system on the EPS (see Fig. 6) with new software. A scenario may be where the
case company has a new version of the software or when the third-party organiza-
tions push for, e.g., new standards. The quality indicators (see Table 1, Sect. 6.1)
of upgradability indicate the upgrading of the system in use, whereas the qual-
ity indicator Download Success Rate is measured by the success rate of upgrades
in percentage; for example, upgrade version B12.34 for EPS1 via interface P has
a success rate of 67%, while the success rate via interface Q is 52% (these are

4 Model tailoring 211

fictitious examples).

4 Model tailoring

QUPER as presented in Sect. 2.1 is generic in nature; therefore, an adaption of
the six steps in Sect. 2.1 needs to be addressed prior to the model being set into
operation in an organization. This can be seen as a tailoring of QUPER to fit a spe-
cific organization. The tailoring of QUPER was conducted in meetings between a
researcher and practitioners of the case organization (see Sect. 5.2). The tailoring
process resulted in three additions to QUPER’s steps and one modification, which
are illustrated in a Process-Deliverable Diagram in Fig. 9 in ”Appendix.”

In QUPER’s first step, prioritization of selected QR was added. The case com-
pany operates in a competitive domain and gives priority to market requirements
and customers’ wishes. Once all QR were identified, the case company priori-
tized six QR (see Sects. 5.1 and 5.2) to indicate which QR the case company
would like to apply QUPER for. The second step of QUPER includes estimating
quality levels of competitor products. In the case company’s domain, gathering
competing products’ quality level is difficult due to a dense market with only three
competitors. To gather competing products’ quality level, a competitor analysis
was conducted together with the Sales & Marketing Department. The results of
how the competitor analysis was performed are presented in Sect. 6.1.

A modification of QUPER’s steps four and five with regard to estimate cost
barriers was needed. The case company had difficulties in estimating two cost
barriers, in particular the second cost barrier. The practitioners thought of the
meaning of the first cost barrier and realized, for the case company, it is enough to
estimate one cost barrier. In QUPER’s last step, estimate candidate targets; a direct
cost was added. The direct cost, relating to the development cost, is an estimate of
reaching the defined targets.

5 Evaluation design

The evaluation in this paper was carried out using a qualitative research approach,
namely action research [25] and in-depth semi-structured interviews [25]. Qual-
itative research aims to investigate and understand phenomena within its real-life
context and is useful when the purpose is to explore an area of interests [25].
In addition, qualitative research aims to improve the understanding of phenom-
ena [25], [27]. Action research aims to improve practice, the understanding of
practitioners, and the situation in which the practice took place [25]. Hence, we
chose action research to test QUPER in a live development situation (referred to
dynamic validation hereafter). The idea was to use QUPER for real requirements
in order to validate its components and to investigate whether QUPER was appli-

212 Setting quality targets for coming releases with QUPER - an industrial . . .

cable to a real development situation, which involved validating all three views of
QUPER.

In action research, a researcher enters the project where tasks are performed
by using the researchers method. Action research comprises of four steps [25]:

1. Plan how current practice can be improved.

2. Implement the plan.

3. Observe the effects.

4. Reflection.

After step four (reflection), the researcher evaluates the performance of the
used method and draw conclusions. The evaluation of QUPER’s performance was
conducted by using semi-structured interviews (referred to static validation here-
after). Due to the potential richness and diversity of data that could be collected,
semi-structured interviews would best meet the objectives of the evaluation. Semi-
structured interviews help to ensure common information on predetermined areas
is collected but allow the interviewer to probe deeper where required.

The evaluation was divided into three phases, where the first phase (planning)
relates to the first step in action research. The second phase (workshop) relates
to the second and third steps in action research, while the third phase (interviews)
relates to the last step (step four) in action research. Each of the three phases is
detailed below.

5.1 Phase 1: planning
In the planning phase, brainstorming sessions, meetings to plan the study, and how
to apply QUPER at the case company were conducted. In a meeting with the case
company, six QR such as upgradability, usability, efficiency, and reliability were
identified for applying QUPER. The interview instrument [5] was designed with
inspiration from [3]. To test the interview instrument, a pilot interview was con-
ducted to improve the instrument prior to the static validation. The selection of
interview subjects for participating in the evaluations was conducted in cooper-
ation with a manager at the case company. Four interview subjects representing
different roles were chosen. The roles chosen are as follows: two product man-
agers, one product quality manager, and one acceptance manager.

5.2 Phase 2: workshop
This phase consists of two steps: presentations and applying QUPER in practice.

Presentations The theory and concepts of QUPER and practical application
of the model were presented in several steps. A first presentation was held for
a product manager where an introduction of QUPER was presented. After the

5 Evaluation design 213

presentation, the product manager showed an interest in QUPER. Therefore, a new
presentation of QUPER and its practical application was given to several managers
at different departments. After the second presentation, planning meetings of how
to apply QUPER at the case company using the generic guidelines presented in
Sect. 2.1 were conducted. The adaption of the generic guidelines is presented
in Sect. 4. As a result of the planning meetings, a third and final presentation
of QUPER and model tailoring was presented to selected managers and experts,
which were selected based on their roles and expertise by the local manager.

Applying QUPER in practice The main goal of the workshop is to achieve
an understanding of how to use QUPER on real requirements in coming projects.
During the application of QUPER, the second author provided help and feedback
of how to apply QUPER on their requirements to the practitioners. Due to limited
time to the dynamic validation and absence of vital information, the case company
decided to apply QUPER on two QR: one upgradability and one performance re-
quirement (see Sect. 6.1).

5.3 Phase 3: interviews

The interview phase was conducted in two steps: data collection and data analysis.
Data collection The static validation uses a semi-structured interview [25] ap-

proach where all interviews were carried out by one interviewer and one inter-
viewee. During the interviews, the purpose of the study was first presented and
followed by questions about applying QUPER in practice. Questions about ap-
plying QUPER in practice were discussed in detail. For all interviews, varying
in length from 35 to 60 min, we took records in the form of audio recording and
transcribed the recordings in order to facilitate and improve the analysis process.

Data analysis The content analysis [25] involved marking and discussing in-
teresting sections in the transcripts. The first author examined the categories from
different perspectives and searched for explicitly stated or concealed pros and cons
in relation to applying QUPER in practice. The results from the analysis are found
in Sect. 6.

5.4 Validity threats

In this section, threats to validity in relation to the research design and data col-
lection are discussed. We consider the four perspectives of validity and threats as
presented in Wohlin et al. [32].

Conclusion validity

Threats to conclusion validity arise from the ability to draw accurate conclusions.
The interviews were done in one uninterrupted work session. Thus, answers were
not influenced by internal discussions. The sampling strategy used for the dynamic

214 Setting quality targets for coming releases with QUPER - an industrial . . .

validation may pose a threat to the validity of the investigation. The subjects may
not be totally representative of the role they represent at the company. The main
assurance that this misrepresentation is minimized is the fact that the subjects were
selected in cooperation with a senior manager with extensive knowledge and expe-
rience concerning the development process and the personnel at the company. To
ensure that the interview instruments, including the posed questions, are of high
quality to obtain highly reliable measures, several pilot studies were conducted to
avoid poor question and poor layout, prior to conducting the interviews.

Internal validity

These threats are related to issues that may affect the causal relationship between
treatment and outcome. As the evaluation of the QUPER model was conducted
with different subjects, they were called upon to voice their opinions and views
regarding the release planning practices with regards to the implementation of
QUPER. The potential problem of instrumentation threats was alleviated by de-
veloping the research instrument with close reference to literature relating to qual-
ity requirements, influenced by previously validated and piloted interview instru-
ment [10], [30], [3]. Moreover, keeping the interview session to 60 min, which
was possible by collecting background information before the interview session
started, alleviates maturation threats [6].

External validity

The external validity is concerned with the ability to generalize the results, i.e., in
this case, the applicability of QUPER in industry at companies other than the case
company. Qualitative studies rarely attempt to generalize beyond the actual setting
since it is more concerned with characterizing, explaining, and understanding the
phenomena under study. The nature of qualitative designs also makes it impossible
to replicate since identical circumstances cannot be recreated. However, as some
of the problems introduced as motivation behind the conception of QUPER, to
some extent could be general for organization faced with developing embedded
products for a market.

However, it is not possible to generalize the results from this evaluation; al-
though from a transferability perspective, the concepts and practical application
of QUPER in this study and in [23], [3], [5], [21], [4] can provide an overview of
faced challenges when QUPER has been implemented.

Construct validity

The construct validity is concerned with the relation between theories behind the
research and the observations. The variables in our research are measured through
interviews, including open-ended aspects where the participants are asked to ex-
press their own opinions. By collecting data from four subjects representing four

6 Evaluation results 215

Table 1: Overview of features

Feature Quality
Indicator

Measurement Interface

Upgradability Time Time measured
in minutes

P Q R S T

Download
success
rate

Success rate P Q R S T

Transaction
Processing

Speed A Time measured
in seconds

P Q R S T

Speed B Time measured
in seconds

P Q R S T

different roles on the topic, mono-operation bias [32] was avoided. The poten-
tial problem of evaluation apprehension [32] was alleviated by the guarantee of
anonymity as to all information divulged during the interviews and the answers
was only to be used by the researcher, i.e., not be showed or used by any other
participants, companies, or researcher.

6 Evaluation results

The evaluation results are presented in the four following subsections; general
view of QUPER and the first two steps of applying QUPER in practice (Sect. 2.1),
the benefit view, the cost view, and the roadmap view.

6.1 General view of QUPER

The subjects identified two, one upgradability and one transaction processing fea-
ture (QR), to apply and use the concepts of QUPER for the evaluation. For each
of the features, two quality indicators (QI) were identified, and for each QI, five
different interfaces were used, which is illustrated in Table 1 (to preserve confi-
dentiality, the names in Table 1 are fictitious); that is, for each quality indicator,
QUPER’s steps 2–6 were performed five times (once for each interface). Through-
out the evaluation results of applying QUPER at the case company, two fictitious
examples of quality indicators, ”Download success rate” and ”Speed B” will be
used to illustrate the process of QUPER.

The case company’s previous process of estimating and quantifying QR was
based on gut feeling. One subject explained there was never a market approach. In-
stead, the practitioners estimated and quantified the QR based on what they would

216 Setting quality targets for coming releases with QUPER - an industrial . . .

find acceptable. The requirements were tested later in the process (after deliver-
ance and implementation), but only on workability and not if certain goals (level
of quality) were achieved. One subject explained, we tested more on the function-
ality part and not other aspects such as QR. The introduction of QUPER helped the
practitioners to become more aware of QR and their position on the market in rela-
tion to their competitors. This was further explained by one subject, ”the QUPER
way of thinking is essential because it forces you to know where you stand on the
market, what you want to achieve, and how much it would cost you to get there.”
Due to the introduction of QUPER, the company constantly thinks of, measures,
and defines its position on the market, which, according to the subjects, improves
the early decision-making process by raising discussions.

One of QUPER’s three goals (Sect. 2.1) is an easy to use model, i.e., easy to
learn, remember, understand, and use by practitioners. All subjects agreed that it is
easy to identify which QR is applicable to apply and use the concepts of QUPER
for. Moreover, most of the subjects viewed QUPER as understandable, not very
easy, but definitely not difficult. However, one subject found QUPER’s concepts
of breakpoints and cost barriers difficult to understand. The subject explained,
”for me, it was the terms (terminology). We are not used to such terms or way of
working... it takes some time, mostly because it is completely new to us”.

The second step in QUPER’s practical guidelines is to identify reference levels
by gathering information about the competitors. With only three competitors in a
relatively dense market, it is not desirable to give away information that the com-
petitors may use. Hence, it was a challenge to conduct a competitor analysis. One
subject explained the situation, ”it is difficult for us to know where the competitors
are, we know just about, but we would need to put in far more energy in order to
gain more information and then determine where we are positioned.” More struc-
tured information about the competitors would be needed in order to complete the
steps according to the subjects.

Another subject stated that the Marketing and Sales Department calls its com-
petitors, as private individuals that are interested in their products, to collect sales
information, e.g., offer-prices and the process. One subject missed the opportunity
to receive important information about its competitors from the customer feed-
back. The customers give little input about the competitors.

To be able to gather any information about the competitors’ current level of
quality, with regards to the selected quality requirements, a short questionnaire
was developed together with the Marketing and Sales Department. The second
author called all three of the competitors to conduct a competitor analysis in a
discrete manner. Since sales-employees gave the answers to technical questions,
the second author decided to conduct the competitor analysis a second time to
confirm the answers. In addition, according to the case company’s experts, some
of the collected quality levels were viewed as unrealistic. The second competitor
analysis was conducted by using the same questionnaire as in the first round, but
with a different sales-employee that answered the questions the first time; names

6 Evaluation results 217

Table 2: Speed B breakpoints in seconds

Breakpoints Speed B (per interface)
P Q R S T

Utility 30 23 3 20 15
Differentiation 18 20 1.5 12 8
Saturation 10 5 1 10 5

Table 3: Download success rate breakpoints in percentage

Breakpoints Download success rate (per interface)
P Q R S T

Utility 60 60 60 40 50
Differentiation 90 90 90 75 90
Saturation 100 100 100 80 95

of the sales-employees were noted.
A general challenge of applying QUPER was identified. Moving from no

method/process of dealing with QR to a method with new terminology, accord-
ing to the subjects, it was difficult to apply a new model and its terminology. The
main reason for this was that the subjects were used to estimate quality require-
ments based on gut feeling, that is, no process or common terminology was used
in the pervious ”process”. Working with QR in a more structured way was com-
pletely new to the subjects.

6.2 Benefit view

Tables 2 and 3 show the identified breakpoints for the quality indicators Speed B
and Download success rate. When estimating the three breakpoints, a combina-
tion of expertise in the area, the latest tests, and years of domain knowledge, and
experience of the system were used. The utility breakpoints are mostly defined by
third-party organizations, which all actors in the electronic payment-processing
market must adhere to. However, even if the estimated value marks the shift use-
less to useful quality as defined by the third-party organizations, it may not be
acceptable from a customer point of view. Therefore, the case company some-
times used their experience and extensive domain knowledge to estimate the utility
breakpoint. Collecting and organizing customer feedback is an important input to
the estimations of saturations breakpoints. One subject explained the importance
of having a high accuracy of the estimates because ”we want to earn more money
on our contracts, so the better the quality management, the more profit we have”.

218 Setting quality targets for coming releases with QUPER - an industrial . . .

The uncertainties of the estimated breakpoints range from reasonable to quite
some doubts. This is mainly due to the fact that the case company had never ac-
tively upgraded their products remotely. The estimates are based on small tests,
which did not represent the actual numbers in the ’real world’. In addition, the sub-
jects stated that the uncertainties in estimates are also related to lack of gathering
and using information about their own product’s level of quality, i.e., the exist-
ing information was not reliable. However, one subject stated, if we can apply it
correctly and measure, then we would get a better prediction.

In general, all subjects viewed the saturation breakpoint as the most important
one. An example was provided by one subject, ”for instance, we were going to
invest more in improved quality [for a certain QR], but for the customers, it is less
interesting if it is actually one second faster, while the investment was AC40,000.
That is what the graph [the benefit view] explains.” Moreover, the benefit view was
viewed as a great template to use for discussion with management. If management
wants to improve a certain quality requirement, there is no need to write a full story
because the benefit view show where the market is and when to stop improving the
quality (the saturation breakpoint).

The subjects identified three main challenges:

1. Difficult to estimate the saturation breakpoint.

2. Difficult to estimate the differentiation breakpoint.

3. Difficult to apply QUPER’s steps within the case company.

The saturation breakpoint was experienced as the most challenged breakpoint
to estimate, it was difficult to know at which level the quality was seen as excessive.
When do you know that you are ’over the top’ asked one subject? Moreover,
another subject questioned who should decide what is excessive quality.

The differentiation breakpoint was identified as a difficult breakpoint to esti-
mate. Two main reasons were provided. The first reason is related to the difficul-
ties to gather information about the competitors, while the second reason is closely
related to the lack of feedback from the main customers.

The third challenge is the applicability of QUPER’s steps within the case com-
pany. One subject explained that there are no hard figures to test, which makes it
difficult to estimate a value for a breakpoint. In addition, no customer research is
conducted.

6.3 Cost view

Tables 4 and 5 illustrates the estimated cost barriers (CB) for Speed B and Down-
load success rate, where Qref represents the current level of quality for each quality
indicator. According to QUPER’s guidelines (Sect. 2.1), two cost barriers should
be estimated. However, in the case company, as explained in Sect. 4, only the

6 Evaluation results 219

Table 4: Speed B cost barrier

Interface Qref Q1 Q2 CB
P 35 24 24 15% of the total software optimization budget
Q 15 15 15
R 3 3 3
S 15 15 15
T 3–15 10 10

Table 5: Download success rate cost barrier

Interface Qref Q1 Q2 CB
P 85 90 95 10% of the total software optimization budget
Q 95 90 95
R 89 90 95
S 40 90 95
T 50 90 95

first cost barrier is estimated (Tables 4, 5 show the quality level (Q1 and Q2) for
both CB, but the quality level is estimated to be the same). The estimated cost for
the cost barriers is measured through percentage of the total software optimization
budget, e.g., for Speed B, the cost to improve all interfaces (to reach Q1 and Q2) is
estimated to be 15% of the total software optimization budget. To estimate the cost
barrier, the subjects’ related, as much as possible, to products where they have a
direct influence since not all products are always accessible for the case company.
The subjects used market expectations and their own knowledge and experience as
input to the estimates. One subject explained there are values that must be adhered
to in the market segment; however, important QR for the customers must also have
a dedicated part of the improvement budget.

The subjects viewed the first cost barrier as a reachable improvement. More-
over, the first cost barrier, according to the subjects, is related to software optimiza-
tion. The subjects believe the second cost barrier should be seen as a differentiator
from the competitors, and that the cost is related to the cost of designing new soft-
ware architecture. One subject stated, ”CB2 is more a blank page, how would we
do it if we were to do it [estimate the second cost barrier] all over again, probably
a new architecture”. The estimates for the cost view are more uncertain than the
estimates for the benefit view according to the subjects. Two reasons were discov-
ered, first, lack of reliable and historical data to support the estimates of the cost

220 Setting quality targets for coming releases with QUPER - an industrial . . .

barriers. Second, the subjects’ lack of in-depth knowledge and experience of cost
estimations of QR had an impact on the uncertain estimates.

In general, all subjects agreed that the cost view is very useful in their situation.
The mapping of cost to potential quality level improvements in an early phase, i.e.,
before the development starts, is very important. One subject explained, ”This is
the most important for me. Thinking in advance which budget, what is most impor-
tant, what do we want, and what does it [the system in terms of quality level] have
to deliver”. Another subject compared with the previous process of handling QR,
before the competitors quality level was unknown, it was not known how much
we needed to improve, and therefore, impossible to estimate the cost. The subject
explained, with QUPER it is possible to understand where our product stands in
relation to the competitors, and ”we have an idea where the differentiation break-
point is, so we can give better estimations on how much we should improve and if
we find it worth it”.

6.4 Roadmap view

Tables 6 and 7 show the targets, an interval between good and stretch target, for
Speed B and Download success rate. In general, the subjects appreciated the use of
intervals to quantify QR. However, intervals should not be used for all QR, some
QR are better quantified by an absolute value. In addition, as explained in Sect. 4,
the case company added a direct cost in the last step. The reason is to estimate the
cost (direct cost in Tables 6, 7) to reach the target, which is the cost to achieve the
targets for all five interfaces. The direct cost in Tables 6 and 7 is calculated by:

(Number of months needed)
x (number of needed employees)
x (working hours per month)
= numbers of needed man-hours

(Number of needed man-hours) x (cost per hour)
= direct cost

Figures 7 and 8 illustrates the visualization of all collected information from
QUPER’s six steps for the QR Speed B for interface T and Download success rate
for interface T.

One subject stated that he/she already uses the mindset of QUPER for func-
tional requirements. The subject explained feature A is a functionality that some
of their competitors have, but the case company is missing. To stress the impor-
tance of implementing this feature, the subject created a presentation for the board
to explain where the competitors are, and where the case company is, and required
investment to surpass the competitors. According to the subject, the introduction

6 Evaluation results 221

Table 6: Speed B targets and direct cost

Interface Qref Good target Stretch target Direct cost
P 35 30 22 AC430,080
Q 15 12 8
R 3 2 2
S 15 12 10
T 3–15 7 5

Table 7: Download success rate targets and direct cost

Interface Qref Good target Stretch target Direct cost
P 85 90 100 AC273,360
Q 95 90 100
R 89 90 100
S 40 80 95
T 50 80 95

!"#$%&'"'()*+('',',+-%$+).'+$'/'0*'+0-)'$+).'+('1)+$'/'0*'+2345+2667+8(%9*+).0)+).':+0$'+/'0,;(<+9;).+=>?@+0(,+A0(+0--%$)+)%+B*'+$'*%B$A'*+)%+;"#$%&'+%).'$+0$'0C*+0(,+/')+).;*+%('+090;)+%('+$'/'0*'5

D$0(*#0$0()+*0)B$0);%(+E>+'(+)0$<')+;()'$&0/+9'$'+%$;<;(0/+&0/B'*+-$%"+).'+FG>H?+)'"#/0)'+;(#B)+%-+?'(I+'(+EJ

D$0(*#0$0()'+6E+;*+,'-;(',+K:+H,90$,

L+)0$<')+;()'$&0/+K')9''(+M+0(,+N++;*+K'))'$O+K'A0B*'+).'+AB$$'()+&0/B'*+0$'+0/$'0,:+$'0A.;(<+).'+M+*'A%(,*P

3'9+*0)B$0);%(+#%;()+;*+,')'$";(',+K:+/%%8;(<+0)+).'+AB$$'()+&0/B'*+%-+667O+9.;A.+;*+('0$;(<+M+*'A%(,*

E0$$;'$+

E$'08#%;()+

GQ/;):+

!"#$%&'($)*)$(
2@#'',+EO+!()'$-0A'+D5R+@0)B$0Q%(+S;T'$'(Q0Q%(+

6%"#'Q)%$+L+ 6%"#'Q)%$+E+

D0$<')+$'/'0*'++U+

4V+ 4+*'AP+

UM+ +W++X+

!"#$%&'()"*+%

Target interval

D0$<')+$'/'0*'++4+

6%"#'Q)%$+6+

Figure 7: Roadmap view of Speed B

!"#$%#&'(#%$)*+,$-.//'#/$.001'#+$&*/$.11$23.1',4$'(%'5.,*/+6$!"#$5*+,+$&*/$'70/*8#7#(,$%*(9,$%'&&#/$735"

!/.(+0./#(,$3,'1',4$-:$'+$,"#$.8#/.;#$<:=>$+355#++$/.,#$&*/$8#/+'*($?@6?A$#($?@6?B
!/.(+0./#(,$%'&&6$.(%$+.,3/6$-:$./#$*1%$8.13#+$*&$=#(C
!/.(+0./#(,$)-A$'+$%#&'(#%$D4$=#(C
!/.(0./#(,$)-@$'+$%#&'(#%$D4$E'5".'1
!/.(+0./#(,$!./;#,$F(,#/8.1$'+$7*/#$/#.1'+,'5$&/*7$74$0*'(,$*&$8'#G

-.//'#/$

-/#.H0*'(,$

IJ1',4$!"#$%&'($)*)$(
KL*G(1*.%$+355#++$/.,#M$F(,#/&.5#$!NO$

>.,3/.J*($

L'P#/#(J.J*($?$Q$ A??Q

R?$ SR$

!"#$%&'()"*+%

Target interval

S?$

)*70#J,*/T)*70#J,*/$-$)*70#J,*/$)$

Figure 8: Roadmap view of Download success rate

of QUPER helps the case company in making these decisions for both functional
requirements and QR.

222 Setting quality targets for coming releases with QUPER - an industrial . . .

The roadmap view was viewed as the most essential and influencing part of
QUPER by the subjects. The visualization of the roadmap view and the support
for early decision-making, the constant thinking of where to aim, and how much
of the budget should be reserved to achieve it, triggers for improvement. One
subject explained, ”when you show two competitors that are in front of [the case
company] in a picture, then that is our trigger to improve”. Moreover, another
subject stated that the ”roadmap view depicts clearly where you stand and your
competitors... it visualizes and people are sensitive for that, it stays with you and
you remember it”.

6.5 Lessons learnt
Five main lessons learnt were identified during the evaluation of the QUPER model
in this study:

1. Time to adopt and apply QUPER in practice.

2. Tailoring of QUPER.

3. Applicability of QUPER in more than one domain.

4. Applicability on upgradability and performance requirements.

5. Improved decision-making.

Time to adopt and apply QUPER in practice

One of QUPER’s goals is that the model should be easy to learn, remember, and
use by practitioners. Within three months, it was possible to introduce, apply,
and evaluate QUPER at the case company, without any direct support. The prac-
titioners at the case company that were involved in the introduction of QUPER
spent between 10 and 13 h each, that is, in performing QUPER related activities.
However, these hours do not only include performing QUPER’s six steps, but it
also includes introduction of QUPER, presentations, and general meetings, brain-
storming and planning meetings, results and evaluation meetings, and the tailoring
of QUPER.

Tailoring of QUPER

A third goal with QUPER is for the model to be domain-relevant, i.e., it should be
possible to combine the concepts of QUPER with existing practices by tailoring
the model. It was possible, with a few additions and one modification, to adopt
and tailor QUPER’s generic concepts and guidelines (Sect. 2.1) to the case com-
pany. The main addition to QUPER’s steps was competitor analysis. In order to
identify competitive advantage and identify the differentiation breakpoint, com-
petitors’ level of quality is essential. If an organization does not have a process or

6 Evaluation results 223

an approach for gathering information about its competitors, one approach could
be to call its competitors in a discrete manner through anonymous inquiries to,
e.g., the competitors sales and support services, which was a strategy applied by
the case company. Furthermore, a direct cost was added to the candidate target
step. Instead of quantifying QR by using QUPER and then, in a later phase of the
development process, estimate the cost, the case company identified a possibility
to estimate the cost of achieving the specified target directly in QUPER’s steps.
One main benefit of adding the direct cost was the ability to discuss the targets in
release planning and know its cost, which may have an influence on the specified
targets for coming releases.

Applicability of QUPER in more than one domain

In previous evaluation of QUPER [3], [4], the model has only been evaluated in
the mobile handset domain. In this evaluation, the QUPER model was evaluated
in a different domain, namely the electronic payment-processing domain. The re-
sults from the two domains are similar. The view of an improved release planning
process by using QUPER and importance of a rich understanding of the market
as input for release planning and early decision-making is inline with the results
in Berntsson Svensson et al. [3]. In addition, similar to the experiences in the
mobile handset domain [3], the main benefit of the breakpoints was the saturation
breakpoint, where the quality level changes from competitive to excessive quality.
Moreover, the challenges of the identification of the values for the differentiation
and saturation breakpoints are the same as in [3]. However, the reasons differ,
while the case company in this study had problems with gathering competitor in-
formation to be able to calibrate the differentiation breakpoint, in [3], the mobile
handset company’s problems was related to when to stop calibrating those break-
points.

Similar to the practical guidelines of QUPER’s cost view in [4], the subjects
believe that the first cost barrier is related to software optimization, while the sec-
ond cost barrier may be related to new investments in larger architectural evolution
steps. Furthermore, the first cost barrier is viewed as easier to estimate than the
second cost barrier. The reason is that the first cost barrier is closer to the current
quality level than the second one, which is inline with the results in [4].

Applicability on upgradability and performance requirements

In general, the subjects did not experience any major differences between applying
QUPER for upgradability or performance requirements. The subjects believe that
performance requirements are easier to measure; however, if the success rate of
upgradability requirements is specified correctly, it is as easy to measure. One
difference between the two types of QR was identified; upgradability requirements
have more environmental variables/uncertainties than performance requirements.
However, as stated by one subject, ”if we are relating to QUPER, then QUPER

224 Setting quality targets for coming releases with QUPER - an industrial . . .

helps us with upgradability requirements because of its complexity”. This result
may indicate that the QUPER model is applicable to more QR beyond performance
requirements that where applied in previous case studies [3], [4].

Improved decision-making

In general, QUPER does not only help in creating a more aligned view of quality
requirements, but also to use one method to measure all quality requirements. All
subjects confirmed that QUPER would support and coordinate the early decision-
making process, e.g., release planning. The subjects agreed that the roadmap view
provides a clear and understandable representation of the market as a basis for de-
cisions. Particular information about targets, what the estimated cost for reaching
the targets is, competitors and your own product’s level of quality, and the identi-
fied saturation breakpoint was viewed to be of major help in release planning. To
be able to discover and quantify quality targets in relation to market expectations
early during system analysis may help software architects to build in the markets’
and users’ expected level of quality into the system and its architecture from the
beginning, Hence, minimizing the risk of architectural failure and falling short of
meeting users’ real needs.

Before the case company used QUPER, quality requirements were dealt with
in an ad-hoc approach. The use of QUPER improved the decision-making of spec-
ifying and quantifying quality requirements, that is, QUPER made it clear to the
case company where (what level of quality) they are in relation to market expec-
tations and competitors, what level of quality they should aim for, and what the
aimed quality level will cost the case company; for example, when the roadmap
view of download success rate (Fig. 8) showed two competitors in front of the
case company, it was easier, due to more details and a better understanding of the
market situation, to make a decision of what level of quality is needed for the next
release.

7 Conclusions
This paper has introduced one case study of tailoring, implementation, and evalu-
ation QUPER to provide estimations of benefit and cost of quality targets in rela-
tion to market expectations as a basis for the architecting of quality requirements.
Industry professionals evaluated the QUPER model in the electronic payment-
processing domain in real projects, using real requirements.

First, the overall result indicates that QUPER is relevant in early decision-
making process, e.g., release planning. The concepts of breakpoints, competitor
analysis, cost barriers, and identification of own products quality level provides a
greater understanding of the needed level of quality for the coming releases. The
combination of all three views, in particular the visualization of the roadmap view,
provides a clear picture of the current market situation, and what level of quality

7 Conclusions 225

to aim for. Second, the QUPER model can be used to support early discovery and
quantified quality targets in relation to the market and users’ expectations, which
minimizes the risks of architectural failure and falling short of meeting users’ real
needs when design the software architecture.

The evaluation indicates, not only that QUPER is applicable and relevant in the
selected domain of electronic payment processing, but also extending beyond the
previously investigated mobile handset domain. Moreover, the results show that
the goal of QUPER to be domain-relevant by tailoring the model is feasible. The
case company successfully adopted QUPER’s generic concepts and guidelines by
adding four steps, where the additional step of competitor analysis was the main
and most important addition. In addition, the evaluation indicates that QUPER
may be applied to other quality requirements than performance requirements.

The subjects identified two main challenges by using QUPER. First, difficulties
to identify and specify the values for the differentiation and saturation breakpoints.
Second, determining an improvement where a significant investment is required,
i.e., identifying the cost barriers and their values.

This paper has provided a first validation of the usefulness of combining QUP-
ER’s all three views. Additional work is still required to improve the QUPER
model. First, dependencies may have a major impact on the estimated cost for
other features. The cost to improve the quality level for one feature may imply
an improved level of quality for other features. This can lead to a change of other
features cost barriers and which feature to select for the coming release. There-
fore, it is important to find heuristics to efficiently support and incorporate cost
dependencies into the QUPER model. Second, Pfleeger highlights the importance
of effective tools and tool support to facilitate technology diffusion [20]. To en-
able easier adoption of QUPER by practitioners, a QUPER tool support will be
developed. Third, investigate if software architecture evaluation methods, such as
ATAM, may be used together with QUPER as input to the second cost barrier. The
subjects believe the second cost barrier is related to new software architecture.
Therefore, if methods, such as ATAM, could evaluate the current architecture,
identify the current level of quality for a certain quality indicator the SA could
generate, may make it easier to estimate QUPER’s second cost barrier.

226 Setting quality targets for coming releases with QUPER - an industrial . . .

Appendix

Determine utility breakpoint

Determine saturation breakpoint

Determine differentiation breakpoint

Communicate &Review roadmap

[changes needed]

[else]

REFERENCED
QUALITY LEVEL

ROADMAP

Owner
Release version
Description
Date

Create roadmap for future releases

Identify relevant products features

Define Quality

TARGET

Good quality level
Stretch quality level
Direct costs

Define quality indicator

Define own quality level

Define competing quality level

Define Market Expectations

Estimate Quality Costs

Estimate first quality improvement

Estimate cost barrier

Define & Communicate Targets

Specify good target

Specify stretch target

Update roadmap

SELECTED FEATURE
LIST

1..*

1..*

RE team

Quality Manager

Product Managers

RE team

QUALITY INDICATOR

COMPETING
QUALITY LEVEL

1

1

UTILITY
BREAKPOINT

SATURATION
BREAKPOINT

DIFFERENTIATION
BREAKPOINT

1

1

1

1

1

1

COST BARRIER

Quality improvement 1
Quality improvement 2
Costs

input

input

0..*

1

1

1

1
1
1

1
1

0..*

1

1

1

1..*

1

1

1

has

1

Prioritze selected products features
PRIORITIZED FEATURE

LIST

Gather competitors data

input

Estimate second quality improvement

Estimate direct costs
1

Figure 9: The QUPER activities and data tailored to the specific case

Bibliography 227

Bibliography
[1] M. Ali-Babar and R. Capilla. Capturing and using quality attributes knowl-

edge in software architecture evaluation process. In Proceedings of the First
international workshop on managing knowledge, pages 56–62, 2008.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley, 2003.

[3] R. Berntsson Svensson, T. Olsson, and B. Regnell. Introducing support for
release planning of quality requirements - an industrial evaluation of the
quper model. In Second International Workshop on Software Product Man-
agement, 2008.

[4] R. Berntsson Svensson, B. Regnell, and A. Aurum. Towards modeling guide-
lines for capturing the cost of improving software product quality in release
planning. In Second proceeding: Short papers, Doctoral Symposium and
Workshops of the 11th international conference on product focused software
process improvements, pages 24–27, 2010.

[5] R. Berntsson Svensson, Y. Sprockel, B. Regnell, and S. Brinkkemper. Cost
and benefit analysis of quality requirements in competetive software prod-
uct management. In Proceedings of the Fourth International Workshop on
Software Product Management, pages 40–48, 2010.

[6] J. Bosch. Designing and Use of Software Architecture Adopting and Evolving
a Product Line Approach. Pearson Education, 2000.

[7] P. Carlshamre and B. Regnell. Requirements lifecycle management and re-
lease planning in market-driven requirements engineering processes. In Pro-
ceedings of the 11th International Workshop on Database and Expert Sys-
tems Applications, pages 961–965, 2000.

[8] J. Carriere, R. Kazman, and I. Ozkaya. A cost-benefit framework for making
architectural decisions in a business context. In Proceedings of the 32nd
international conference on software engineering, pages 149–157, 2010.

[9] J. Cleland-Huang, R. Settimi, X. Zou, and P. Sole. Automated classification
of non-functional requirements. Requirements Engineering, 12(2):103–120,
2007.

[10] E. Folmer and J. Bosch. Architecting for usability: a survey. The journal of
systems and software, 70(1–2):61–78, 2002.

[11] T. Gilb. Competitive Engineering. Elsevier Butterworth-Heinemann, 2005.

[12] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. A model for technology
transfer in practice. IEEE Software, 23(6):88–95, 2006.

228 Setting quality targets for coming releases with QUPER - an industrial . . .

[13] D. Greer and G. Ruhe. Software release planning: an evolutionary and itera-
tive approach. Information and software technology, 46(4):243–253, 2004.

[14] N. Kano, S. Nobuhiro, S. Takahashi, and S. Tsuji. Attractive quality and
must-be quality. Hinshitsu, 14:39–48, 1984.

[15] J. Karlsson. Managing software requirements using quality function deploy-
ment. Software Quality Journal, 6(4):311–325, 1997.

[16] J. Karlsson and K. Ryan. A cost-value approach for prioritizing requirements.
IEEE Software, 14(5):67–74, 1997.

[17] R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenario-based analysis
of software architecture. IEEE Software, 13(6):47–55, 1996.

[18] R. Kazman, M. Barbacci, M. Klein, and S.J. Carriere. Experience with per-
forming architecture tradeoff analysis. In Proceedings of the 21st interna-
tional conference on software engineering, pages 54–63, 1999.

[19] S. Lauesen. Software Requirements - Styles and Techniques. Addison-
Wesley, 2002.

[20] S.L. Pfleeger. Understanding and improving technology transfer in software
engineering. Journal of Systems and Software, 47(2):111–124, 1999.

[21] B. Regnell, R. Berntsson Svensson, and T. Olsson. Supporting roadmapping
of quality requirements. IEEE Software, 25(2):42–47, 2008.

[22] B. Regnell and S. Brinkkemper. Engineering and Managing Software Re-
quirements, chapter Market-Driven Requirements Engineering for Software
Products, pages 287–308. Springer, 2005.

[23] B. Regnell, M. Höst, and R. Berntsson Svensson. A quality performance
model for cost-benefit analysis of non-functional requirement applied to the
mobile handset domain. In Proceedings of the 13th working conference on
requirements engineering: foundation for software quality, pages 277–291,
2007.

[24] B. Regnell, H.O. Olsson, and S. Mossberg. Assessing requirements com-
pliance scenarios in system platform subcontracting. In Proceedings of the
Seventh international conference on product focused software process im-
provements, pages 362–376, 2006.

[25] C. Robson. Real World Research. Blackwell, 2002.

[26] G. Ruhe, A. Eberlein, and D. Pfahl. Trade-off analysis for requirements
selection. International journal of software engineering and knowledge en-
gineering, 13(4):345–366, 2003.

Bibliography 229

[27] P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, 2009.

[28] T.L. Saaty. The Analytical Hierarchy Process. McGraw-Hill, 1980.

[29] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, and S.B. Saleem. A system-
atic review on strategic release planning models. Information and Software
Technology, 52(3):237–248, 2010.

[30] M. Svahnberg, C. Wohlin, L. Lundberg, and M. Mattsson. A method for
understanding quality attributes in software architecture structures. In Pro-
ceedings of the 14th international conference on software engineering and
knowledge engineering, pages 819–826, 2002.

[31] M. van den Akker, S. Brinkkemper, G. Diepen, and J. Versendaal. Software
product release planning through optimization of what-if analysis. Informa-
tion and Software Technology, 50(1–2):101–111, 2008.

[32] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlson, B. Regnell, and A. Wess-
lén. Experimentation in Software Engineering: An introduction. Kluwer
Academic, 2000.

PAPER VI

A PROTOTYPE TOOL FOR
QUPER TO SUPPORT

RELEASE PLANNING OF
QUALITY REQUIREMENTS

Abstract

Release planning plays an important role for the success of a software product
vendor that develops software-intensive incremental products. It is important that
the software product is released to the market at the right time, and offers higher
quality than the competitors. However, an especially challenging problem for a
software product vendor is to set the right quality target in relation to future mar-
ket demands and competitor products. In this paper, we present a prototype for
QUPER, a special-purpose tool for supporting release planning of quality require-
ments. The applicability of the QUPER prototype tool is demonstrated through
academic and industrial evaluations. The study showed that the tool provides a
clear overview of the current market situation by the generated roadmaps, and to
reach an alignment between practitioners, e.g., product managers and developers,
of what level of quality is actually needed.

Richard Berntsson Svensson, Pontus Lindberg Parker, and Björn Regnell
Fifth International Workshop on Software Product Management (IWSPM), Trento,
Italy, 30 August, 2011.

232 A Prototype Tool for QUPER to Support Release Planning of Quality . . .

1 Introduction

Market-driven product development and delivery is increasingly common in the
software industry [29]. Deciding what requirements to include into a product is
not a trivial task, and only a sub-set of the requirements may be included, while
others often are postponed to a later point in time [12], [29]. One major goal of
market-driven product development is to develop a product with high customer
value. Moreover, to increase the chance of market success, it is important that the
software product is released to the market at the right time, and it is often of high
priority that it offers a better quality than the competitors’ products [2]. Hence,
release planning is a major determinant of the success of a product [20], [29], and
lack of good release planning practices may result in unsatisfied customers [29].

Release planning is the process of deciding what features should be included
in the next releases, and what features should be included in which release [29].
In literature, there are several models and tools that provide support for release
planning, for example, Release Planning Prototype [6], EVOLVE [12], and the
ReleasePlannerTM tool [23]. However, none of these models and tools has explicit
support for release planning of Quality Requirements (QR), also known as non-
functional requirements, including requirements on e.g. performance, capacity,
usability, reliability, maintainability, etc. [13].

To create a successful product and assure quality, it is not enough to fulfill
the functional requirements. Quality requirements describe important constraints
upon the development and behavior of a software system. Therefore, QR play a
critical role in software product development [9]. A challenging problem for an
organization that develops market-driven products is to set the right quality tar-
gets in relation to future market demands and competitor products. Therefore, we
have developed the QUality PERformance model (QUPER) [21] to support release
planning of QR with the goal to provide concepts for qualitative reasoning of or-
ders of magnitude of important quality attributes. QUPER has been evaluated in
two companies in two different domains, namely the mobile handset [3], [4] and
electronic payment processing domains [5]. However, the development and evalu-
ations of the QUPER model are conducted based on manual usage of the QUPER
model, i.e., adding information about QR in, e.g., a database or spreadsheet with-
out any visualization (see Section 4.2).

To facilitate technology diffusion from academia to industry, effective tools
and tool support are important [17]. Furthermore, to transfer technology in prac-
tice, tool support and tool adaptation are important for the model’s scalability, and
to incorporate training efforts in future model implementations [11].

In this paper, we present a first version of the QUPER prototype tool, a tool
that we have developed based on the QUPER model and input elicited from prac-
titioners. A main objective of the paper is to enable easier adoption of the QUPER
model by practitioners and thereby to improve the technology transfer in practice.
Another major objective is to evaluate how tool support of the QUPER model may

2 Background and Related Work 233

improve the practical application of the model in an industrial context. The de-
velopment and evaluation of the tool have been conducted in close cooperation
between academia and industry. The main contribution of this work is two-fold:
(1) the tool prototype for QUPER based on requirements elicitation with several
types of stakeholders from an industrial partner using the QUPER method, and
(2) a two-step tool evaluation with lessons learned for further development and
application of the QUPER tool support and the underlying method.

The remainder of this paper is organized as follows. Section 2 offers an
overview of the basic concepts of the QUPER model and related work, while the
case company is described in Section 3. Section 4 presents how the QUPER pro-
totype tool was developed and its main features. Section 5 describes the design of
the industrial evaluation and the results of the tool evaluation. Section 6 gives a
summary of the main conclusions.

2 Background and Related Work

In this section, the basic concepts of the QUPER model are described. Also related
work of release planning and tools for QR are presented.

2.1 The Quality Performance Model

The aim of the QUPER method is to support the ability to make early estimates
of quality with adequate accuracy in order to provide QR that can act as adequate
input to discussion and high-level decision-making in upstream requirements en-
gineering related to, for example, release planning and roadmapping.

QUPER is based on two hypotheses:

1. Quality is continuous. Rather than being either included or excluded, QR are
assumed of having the potential of being measured on a continuous scale,
i.e. a QR is typically viewed as different shades of quality on a sliding scale.

2. Quality is non-linear. For QR, such as performance, a change in a software
product’s quality level may result in non-linear changes to both cost and
benefit.

The basis for the construction of the QUPER model is the concepts of break-
points and barriers.

A breakpoint is an important aspect of the non-linear relation between quality
and benefit, for example, when a product’s start-up time shifts from normal ex-
pectations to outperforming most competitors. A breakpoint indicates a change of
benefit level with respect to users’ perception of quality and market value. The
first breakpoint, the utility breakpoint, marks the border between useless and use-
ful quality. The second breakpoint, differentiation breakpoint, marks the shift from

234 A Prototype Tool for QUPER to Support Release Planning of Quality . . .

useful to competitive quality, which only a few of the competing products on the
market reach. The third breakpoint, saturation breakpoint, marks the shift from
competitive to excessive quality. That is, quality levels beyond this breakpoint
have no practical impact on the benefit for the considered context.

A barrier represent an interesting aspect of the non-linear relation between
quality and cost, for example, achieving better performance may require an expen-
sive rebuild of the architecture. For a specific quality aspect in a specific context,
we approximate the quality-cost relation to have two different steepness ranges. A
cost barrier occurs when the cost shifts from a plateau-like situation where an in-
crease in quality has a low cost penalty, to a sharp rise where an increase in quality
has a high cost penalty.

The roadmap view (see Section 4.2) positions the breakpoints and cost barriers
on the same scale, which enables a visualization of breakpoints and cost barriers
in relation to a product’s current quality level and the competing products’ quality
(reference levels). To support release planning, the roadmap view incorporates
targets for coming releases.

The QUPER model generally aims to avoid making complete predictions of the
inherently difficult relations between a product’s benefit, cost, and quality. Instead,
QUPER aims to simplify the problem by finding reasonably good predictions of a
limited set of breakpoints and cost barriers.

For a complete and detailed description of the QUPER model, we refer to [5],
[19], [21].

2.2 Related Work

Several approaches and strategies have been proposed to resolve issues related to
release planning. In this section, a selection of release planning methods and tools
is presented: EVOLVE [12], EVOLVE* [25], F-EVOLVE [14], Release Planner
Prototype [6], and a method for software release planning using optimization of
what-if analysis [1]. All of these methods use linear programming and/or generic
algorithms to resolve the optimization aspect of release planning. Input data such
as requirements value, requirements cost, resources, stakeholder importance, and
budget constraints are used to come up with an optimal or near-optimal selection
of features with respect to trade-offs between aspects such as cost, value and re-
source allocation. In addition, analysis of requirements dependencies is present in
these methods. However, none of the methods address quality constraints and the
support of communication and estimation of desired quality levels. According to
Svahnberg et al., only two strategic release planning methods address quality con-
straints [27]. The quantitative Win-Win [24] addresses effort and time constraints,
but not the quality level of quality requirements. The only method to address qual-
ity and cost constraints of QR is the QUPER model. For a more comprehensive
analysis of 24 strategic release planning methods, we refer to Svahnberg et al. [27].

3 Case Company Description 235

ReleasePlannerTM [23] is a release planning tool that goes beyond the prioriti-
zation of features. ReleasePlannerTM takes a comprehensive approach of release
planning by including optimization and considering available resources.

According to Ruhe, traditional release planning favors delivery of functional
requirements, while the view of quality aspects, such as performance and relia-
bility, is missing in the released products [23]. One approach to include quality
aspects in release planning is to use EVOLVE II and generate alternatives for cost
devoted to functional versus quality requirements [23]. The first alternative de-
votes, e.g., 100% of the resources to functionality, the second 90% to functionality
and 10% to quality, while the fifth alternative equally divides the resources be-
tween functionality and quality. Although this approach includes the cost for QR
in release planning, what level of quality the next release should have on a continu-
ous quality scale for specific quality aspects is not considered. There are potential
strategies for combining QUPER with EVOLVE II, e.g., by using QUPER in the
decision process of needed level of quality and use this as an input to EVOVLE II
for resource allocation. Such combinations are out of scope of the presented study
and may be objects of further studies.

Prioritization of requirements is often conducted prior, or as a part of the re-
lease planning process. Several prioritization techniques and cost-benefit mod-
els are introduced in the literature, for example Planguage [10]. Planguage has
roadmap related concepts such as past, record, and trend in templates for QR.
QUPER could be used together with the planguage method to express breakpoints,
barriers, and targets related to, for example, express competing products in differ-
ent market segments.

Finally, there are a number of tools that are not focusing on the problem of
release planning, but focus on QR. For example, NFR-assistant [28] and SA3 [26]
that are based on the NFR Framework [7] using a goal-oriented approach for link-
ing customers’ wishes to solutions and rationales, while Cleland-Huang et al. de-
scribes a technique for automating the detection and classification of QR scattered
across both structured and unstructured documents [8]. However, these approaches
do not address the decision-making on setting quality targets for future software
releases, which is a major goal of QUPER.

3 Case Company Description

The QUPER prototype tool presented subsequently has been developed in close
cooperation with a case company that develops software and hardware for the
mobile handset market. The case company has more than 5,000 employees and
develops their products for a global, competitive market using a product line ap-
proach [18]. The company’s requirements database consists of more than 20,000
requirements where approximately 25% of the requirements are quality require-
ments [15]. The company has several consecutive releases of a platform (a com-

236 A Prototype Tool for QUPER to Support Release Planning of Quality . . .

mon code base of the product line) where each of them is the basis for one or more
products that reuse the platform’s functionality and qualities. The case company
has two types of platform releases, a major and a minor release. A major release
has a lead-time between two and three years from start to launch, and the focus is
on functionality growth and quality improvements of the product portfolio. Minor
platform releases usually focus on the platform’s adaptations to different products.
The company uses a stage-gate model with several increments, where milestones
are used for controlling and monitoring the project progress. There are four mile-
stones for requirements management and design before the implementation starts,
and three milestones for the implementation and maintenance phase.

4 QUPER Prototype Tool

The QUPER prototype tool is designed for supporting release planning of QR.
The tool is operated through a Graphical User Interface (GUI) that consists of
three parts, (1) a menu, (2) a hierarchical tree structure to the left (see Figure 3),
and (3) an activity window to the right (see Figure 3). The menu and hierarchical
the tree structure is always visible for the user through out the work flow, while
the activity window displays different information depending on the action of the
users.

The purpose of the QUPER prototype tool is to provide practitioners, mainly
product and project managers, with support for the usage of the QUPER model in
an industrial environment.

4.1 Development of QUPER prototype tool

The development of the first version of the QUPER prototype tool, as presented in
Section 4.2, was carried out in close cooperation between academia and industry.
The first version is developed with the basic functionalities that allow a practi-
tioner, e.g., product managers, to work with the basic concepts of the QUPER
model (as presented in Section 2.1). The development of the QUPER prototype
tool consists of the following two steps.

Step 1 - Requirements Elicitation: The requirements elicitation step used
interviewing [13] as the elicitation technique. Eleven subjects from the case com-
pany were chosen to give a rich picture of the domain. One interviewee and one in-
terviewer attended all interviews, which varied between 40 and 60 minutes. Tran-
scripts of all interviews were made in order to facilitate and improve the elicitation
process.

The main findings, and input to the development of the QUPER prototype
tool from the elicitation interviews were the following high-level quality goals and
priorities:

4 QUPER Prototype Tool 237

Table 1: Results from close-ended questions

strongly disagree <->
Questions strongly agree
1. The tool is easy to understand 1 0 1 0 1 2 0
2. The guide took too much time to use 0 0 3 1 0 1 0
3. The guide provides enough information 1 0 1 1 1 0 1
4. The quality form took too much time 2 2 1 0 0 0 0
5. The manual and guide are difficult to find 2 0 1 2 0 0 0

• Usability: comprehensive screens, i.e., being able to manage all input data
without having to jump between several windows.

• Usability: flexible workflow, i.e. not being forced to add all information; it
should be possible to generate a roadmap view without the prerequisite to
first add, e.g., the cost barriers.

• Interoperability: export to standard picture file formats for inclusion in pre-
sentations to other managers and staff using other applications.

• Interoperability: interchange with spreadsheet programs, i.e., an import and
export function of spreadsheets were considered important since many sub-
jects already have requirements stored in spreadsheets.

• Prioritization: focus on the roadmap view, the subjects considered the road-
map view to be the most important view of the QUPER model to have in the
tool.

Step 2 - Academic Evaluation: Once a beta version of the QUPER prototype
tool had been developed, usability tests [13] were performed in academia. The
main goal of the usability tests was to achieve an understanding of the usability
and the workflow of the QUPER prototype tool. In addition, finding bugs and
inconsistencies was an important part of the tests. Five subjects, four PhD students
in Software Engineering, and one business administration staff at Lund University
participated in the usability tests, which lasted for about 30 minutes.

Each subject was provided with a set of instructions, including data about two
quality requirements. In addition, a questionnaire with both close-ended and open-
ended questions was provided to the subjects. The close-ended questions used
a seven-point Likert scale, representing levels of agreement from ”strongly dis-
agree” to ”strongly agree”. The result from the close-ended questions is illustrated
in Table 1.

The main feedback from the open-ended questions include:

238 A Prototype Tool for QUPER to Support Release Planning of Quality . . .

Table 2: QUPER prototype tool features

ID Feature
1 A detailed guide to help users to use the tool for the first time
2 A form for experienced users to add and edit quality requirements
3 Generation of roadmap for each quality requirement
4 Data management of features and quality requirements
5 Version control of quality requirements
6 Data serialization
7 Spreadsheet interoperability
8 Manual about the QUPER model and the prototype tool

• Inconsistencies between the inputs fields and the guide and manual.

• Presentation of roadmap view, overlapping text in the roadmap view.

• Bugs and missing features in the tool, e.g. the QUPER prototype tool crashed
in several situations.

The usability tests provided valuable feedback, which was an important in-
put to the finalization of the first version of the QUPER prototype tool, which is
described in the following section.

4.2 Functionality of QUPER prototype tool

We have identified eight main features of the QUPER prototype tool, which are
listed in Table 2. In Figures 2, and 3, we indicate the GUI location of access to
these features. Each feature is briefly described below.

Detailed guide. The tool provides a detailed step-by-step guide (see number
1 in Figure 3), which is based on [5], for, e.g., users that are new to QUPER and
its concepts. Through a series of steps, explanations, and an example, the user is
guided through the steps of the QUPER model while entering relevant data about
a QR in the fields at the same time. While some of the steps are mandatory, others
are optional, e.g., entering information about cost barriers is optional, which is
illustrated in Figure 1.

Form for adding QR. The prototype tool has two forms for adding and editing
information for features and QR. The feature part is primarily used to link QR to
a particular feature. The QR form, which is illustrated in Figure 2, see number
2, contains fields for all of QUPER’s concepts (see Section 2.1). The fields have
been divided into seven small forms.

First, the top left form is for basic information, id, definition, and state about
the QR. To the right of the basic form is a field for information about what scale

4 QUPER Prototype Tool 239

Identify
candidate QR

Decision

Define scale
and unit

Identify
reference

levels

Elicit quality
breakpoints

Estimate cost
barriers

Set candidate
requirements

Decision
[OK]

[Not OK]

[Use QUPER][Not use QUPER]

Decision [Need to][Not needed]

Figure 1: Overview of the QUPER prototype tool workflow

240 A Prototype Tool for QUPER to Support Release Planning of Quality . . .

of the quality level should be used. For example, if a performance requirement is
added, should the quality level be measured in milliseconds or seconds? Besides
the unit of scale, the user can chose if a higher value means better or worse quality.
For example, if the QR ”time delay” is added, lower value means higher quality,
while for a QR such as ”battery life”, higher value means higher quality. In the
generated roadmap view, the right side will always view higher quality, regardless
if it is a higher or lower value.

Four (identify reference levels, elicit breakpoints, estimate cost barriers, and
define targets) of the remaining five forms are related to the basic concepts of the
QUPER model, which can be added into the generated roadmap. The four forms
use a tabbed format to allow for several, e.g., reference levels and targets, without
taking extra space in the activity window.

The form for the breakpoints is fixed to three tabs, one for each breakpoint,
utility, differentiation and saturation. Each breakpoint tab has fields for a rationale
and option of three different estimation techniques (all forms with estimations have
the same choice).

Estimates can be given in three forms, depending on how the potential uncer-
tainty in the estimates should be captured:

• Point estimates including a single figure, e.g. 3 minutes.

• Interval estimates including a [min, max] interval, e.g. 3-4 minutes.

• Triangle distribution estimates including a three-tuple of [low bund, most
probable, high bound] figures that show the estimated probability distribu-
tion, e.g. low: 3 minutes, high: 5 minutes, probable: 4 minutes.

The user can choose which of the three estimation techniques to use. The
choice will activate and deactivate the three fields according to which ones are
relevant for the selected technique. The point estimate thus only has a ”most prob-
able” value, the interval estimate has a ”lower bound” and a ”top bound”, while
the triangle estimate has all three.

The forms for reference levels, barriers, and targets use tabs as well; however,
the user is allowed to create new tabs and delete old ones. For reference levels,
each tab contains a field for the product name and fields for estimations, while the
forms for barriers and targets contain fields for a short description, a rationale, and
estimations for the quality level.

The last form, at the bottom left corner in Figure 2, is for the scale for the cost
(for barriers). This form only contains a field for entering the unit of the cost, e.g.
3.0 weeks. When applicable, a roadmap will be generated and displayed on top
of the form (not shown in Figure 2 due to space related issues, but it is the same
roadmap as shown in Figure 3).

Finally, to help the user, in addition to the detailed guide and manual, each
form has a tooltip help area in terms of a question mark. When the mouse is
positioned over any of the question marks, short help text is shown.

4 QUPER Prototype Tool 241

2

Figure 2: User interface: editing QR information

Generation of roadmap. The most important feature of the QUPER prototype
tool is the automatic generation of the roadmap view. The roadmap view combines
the estimates of breakpoints, barriers, reference levels, and targets for a visual
representation on the same scale, which is illustrated in Figure 3, see number 3.

The breakpoints and barriers are separated from reference levels and targets
with different symbols, as defined in the QUPER model [21]. Each marker has the
estimated quality level displayed below. Above the marker, a description is shown.
In addition, the roadmap view shows the name of the QR as a title and the unit for

242 A Prototype Tool for QUPER to Support Release Planning of Quality . . .

5

3

4

1 876

Figure 3: QUPER prototype tool user interface and features

the scale as a subtitle. On the top left corner, a legend depicting the symbols for
the breakpoints and barriers is shown.

The roadmap views can be viewed in several places in the tool, when viewing
the version history of a QR (see Figure 3), when editing a previously created QR,
and after the last step in the detailed guide. At any time the roadmap view is dis-
played. Clicking on the roadmap gives the user the option to save the roadmap in
a Portable Network Graphics (png) format. This feature is important for managers
as the roadmap may be used in presentations when discussing what level of quality
a feature should have in the coming releases.

Data management. The prototype tool offers a set of options for managing
features and QR, which are accessed through the hierarchical tree on the left side
in the GUI. First, there is a root node called ”Features”, which is illustrated in
Figure 3, see number 4. The root node provides one action by right clicking on
”Features”, which is the option of creating new features. The next level in the tree
structure contains the added features in the QUPER prototype tool. These features
information can be viewed in the activity window by selecting them. The user
has the option of right clicking on a certain feature to create and add a QR for the
selected feature. Finally, by selecting a QR, the version history of the QR and the

5 Industrial Evaluation 243

latest roadmap view will be displayed in the activity window.
Version control. When selecting a QR in the tree structure, basic information

about all existing versions of the particular QR is displayed in the activity window
together with the roadmap view (if data for generation of roadmap view exists),
which is illustrated in Figure 3, see number 5. A new version of a QR is saved
in the database when the user click on the ”save changes” button in the form (see
Figure 3). When the user clicks on a particular version from the list, the form will
be opened and displays all the information about the QR.

Data serialization. The prototype tool has the functionality to save and load
the information in the internal database to a text file using an XML-like format,
which can be used to save the data between different session and for sharing with
practitioners, which is shown in Figure 3, see number 6. The XML like files may
also be used to separate data, e.g., for different products or market segments. The
QUPER prototype tool automatically saves the current database, and provides a
backup feature that saves the current database to a new unique file with a single
click.

Spreadsheet interoperability. The prototype tool is able to import features
and QR from spreadsheet files to provide the practitioners with flexibility. To be
able to import a spreadsheet file, the tool requires a certain format of the spread-
sheet file. The file must consist of two sheets, one in which features are entered
and one for QR. In the File menu (Figure 3, see number 7), the tool has a feature to
generate a spreadsheet file with the required format, including predefined columns.
To import features and QR to the prototype tool, this is done in the File menu.

Manual. The QUPER prototype tool has a manual that is accessible from the
help menu, see number 8 in Figure 3. The manual is divided into two major parts,
one about the QUPER model and one part specifically about the tool. The part
about the QUPER model contains the same information as the detailed guide for
adding QR.

5 Industrial Evaluation

In this section, we present the design of the industrial evaluation and the results.

5.1 Research design and data collection

The evaluation of the QUPER prototype tool was carried out in cooperation be-
tween academia and industry. The evaluation was carried out using an action re-
search approach. Action research involves the improvement of practice, the under-
standing of practitioners, and the situation in which the practice takes place [22].
In this evaluation, we are involved in improving the use of the manual approach
of the QUPER model at the case organization. In addition, we aim to improve the
understanding of how practitioners may use QUPER better and faster in its envi-

244 A Prototype Tool for QUPER to Support Release Planning of Quality . . .

ronment where the practice takes place. The general objectives of the research are
to evaluate:

• the QUPER prototype tool in an industrial setting,

• what value the QUPER prototype tool may bring to release planning, and

• how the QUPER prototype tool may improve the technology transfer from
academia to industry.

Five practitioners, three product managers, one project manager, and one test
manager participated in the tool evaluation. The evaluation consists of the follow-
ing four steps:

Planning: The first step involved a brainstorming and planning meeting to
plan the study and to identify different areas of interests for the evaluation. The
interview instrument was designed with respect to the different areas of interests.
To test the interview instrument, one pilot interview was carried out to adapt and
improve the instrument. A summary of the used interview instrument is presented
in Table 3. The sampling strategy used was a combination of maximum variation
sampling [16] and convenience sampling [16].

Using the tool in real projects: During the application of the QUPER pro-
totype tool on real requirements, the first author provided the practitioners with
a set of instructions of how to use the tool. The main goal is to achieve an un-
derstanding of how to use the QUPER prototype tool on real requirements. The
evaluations of the prototype tool were conducted between one and two weeks after
the tool and instructions were introduced to four of the practitioners at the case
company. The reason for the time delay was to provide the practitioners with time
to use the tool on real requirements. One of the practitioners did not have time to
evaluate the tool for a few weeks. Instead, the first and second authors performed
a live demonstration of the QUPER prototype tool, followed by an interview.

Data collection: The study uses a semi-structured interview strategy [22]. In
three interviews, one interviewee and one interviewer attended, while in two inter-
views one interviewee and two interviewers were present. During the interviews,
the purpose of the study was presented to the interviewee. Then, questions about
the different areas of interests in relation to the QUPER prototype tool were dis-
cussed in detail. For all interviews, varying in length from 30 to 50 minutes, we
took records in the form of written extensive notes in order to facilitate and im-
prove the analysis process.

Analysis: The content analysis [22] involved creating categories where inter-
esting parts from the extensive notes were added and discussed. The first author
examined the categories from different perspectives and search for explicitly stated
or concealed pros and cons in relation to the QUPER prototype tool to support re-
lease planning of QR. The results from the analysis are presented in the following
section.

5 Industrial Evaluation 245

Table 3: The interview instrument

General questions about the QUPER Prototype tool
What is your general view of using the tool?
What is helpful compared to working with QUPER manually?
Questions about the tool
Does the guide provide enough information to understand how to use QUPER?
What is your opinion about the forms of modeling QR in tool?
What is your view of the generated roadmap view?
How could the workflow be improved?
Would the tool be useful in industry?
Final questions
What are your biggest concerns about the tool?
Did you find any bugs?
Is there anything else you would like to add that we have not mentioned?

5.2 Results

In general, all subjects agreed that the QUPER prototype tool would help in the
important shift of focus from FR to QR by providing a clear and understandable
representation of the market (competing products) as a basis for QR. The impor-
tance of understanding the market is in line with the results in [3], [5].

In general, the subjects believed that the detailed guide is informative and the
example makes it easy to understand and to add the information about QR while
learning about QUPER and its concepts. However, one subject felt that the ex-
plaining text could be perceived as irritating while another subject believed it is
better to have too much information (while learning) than too little. One subject
explained, it is hard to complain about having too much information, instead, you
could decided not to use the detailed guide and use the form (see Table 2) for
experienced users when adding a QR.

The QUPER prototype tool provides the users with three different estimation
techniques (see Section 4.2). All subjects believed that point estimates is by far the
most important technique and will dominate the usage in practice, particular when
estimating reference levels and breakpoints. However, for estimating cost barriers,
the opinion among the subjects differs. Two subjects thought point estimates is
most useful, while three preferred to estimate the cost barriers by intervals. This
result is not in line with [5], where the results revealed the importance to incorpo-
rate support (e.g., interval estimates) for the uncertainty of cost estimates. When
setting the target for a QR for the next release, all subjects, except one (preferred
point estimates), expected interval estimates to be the dominant technique in prac-

246 A Prototype Tool for QUPER to Support Release Planning of Quality . . .

tice. Although, none of the subjects believed that the triangle estimates would be
used in practice, they did not see any reason to remove the option of using it.

Although the roadmap view may support release planning of QR, the case
company is rather immature when it comes to QR, stated one subject. Previous
attempts with models related to QR failed due to misunderstandings among the
staff of how to use the model. The QUPER prototype tool would help the practi-
tioners using QUPER in a consistent way, which was confirmed by one subject, ”a
tool [the QUPER prototype tool] would standardize the process of creating QR. It
would help in avoiding inconsistent usage of QUPER’s concepts”.

Supporting release planning of QR: All subjects confirmed that the QUPER
prototype tool would support and coordinate the early decision-making process,
e.g. release planning, of QR. One subject argued that the tool could help in setting
the right targets due to the visualization of the roadmap view, but also in the speci-
fication and quantification of QR. In addition, several subjects stated that the clear
overview of their own product’s and the competing products’ level of quality is
an important input in the decision-making process. The clear visualization of the
roadmap view may be good when arguing the importance of a QR, e.g., why do
we continuously have lower quality than our competitors? One subject explained,
”it is a good picture to display when arguing why a certain target has been set”.
Four subjects compared the use of spreadsheets and the roadmap view visualiza-
tion in such discussion. Two interviews explained that it is difficult to understand
information presented in the form of a spreadsheet, visualization is important in
these situations and the prototype tool provides you with a visual representation.
The importance of a rich understanding of the market as input to release planning
and early decision-making is in line with the results in [3], [5].

Improvement suggestions: When asked about how to prototype tool could
be improved, all subjects pointed out the importance of having the roadmap with
added information at each step in the detailed guide. One subject explained, ”the
purpose of the tool is to provide support in the process of setting targets, but when
we get the support, we have already set the target”. Several subjects preferred
to have a figure (similar to Figure 1) in the tool to illustrate the workflow of the
QUPER prototype tool, both to see where they currently are, as well as being able
to navigate between the different steps by clicking in the figure.

6 Conclusions and Future Work

This paper introduces the first version of the QUPER prototype tool and a valida-
tion of the tool in a case company to evaluate the tool’s usefulness in an industrial
setting. The QUPER prototype tool was developed in close cooperation between
academia and industry, and five industry professionals evaluated the QUPER pro-
totype tool using real requirements.

6 Conclusions and Future Work 247

First, the overall results indicate that the QUPER prototype tool’s automati-
cally generated roadmap provides a clear overview of a product’s and competing
products’ level of quality, and what level of quality to aim for in the coming re-
leases, which is an important input in the early decision-making process, e.g., in
release planning. The clear visualization of the roadmap may be good when argu-
ing the importance of a QR’s needed level of quality for coming releases. Second,
the QUPER prototype tool is viewed to be a help to the practitioners in release
planning of QR. Third, the QUPER prototype tool can help practitioners to use
the QUPER model in a standardized way to avoid inconsistent usage of QUPER’s
concepts, which may be the case in a manual usage of QUPER. One main im-
provement of the tool was identified, namely the importance of having a roadmap
that illustrates newly entered information, e.g., breakpoints and reference levels,
about a QR after each step in the detailed guide, instead of only generating the
roadmap once the user has walked through all steps.

We cannot make broad generalizations of these results as we undertook a small
study with only five practitioners at one case company. However, some of the con-
cepts and issues behind the development and evaluation behind the QUPER proto-
type tool could, to some extent be general for organizations providing products to
open markets competing with quality aspects.

Based on this study, the observed findings provides important feedback re-
garding the usability and usefulness of the QUPER prototype tool, while enabling
further improvements of the tool. In addition, the QUPER prototype tool needs
further evaluations in industry in different domains and by more practitioners us-
ing more than a few quality requirements to validate its feasibility and scalability.

Acknowledgment
This work was partly funded by VINNOVA (the Swedish Agency for Innovation
Systems) within the MARS project and by the Industrial Excellence Center EASE
- Embedded Applications Software Engineering, (http://ease.cs.lth.se). Further-
more, we would like to thank all of the participants and their companies who have
helped in making the data collection possible for this research.

248 A Prototype Tool for QUPER to Support Release Planning of Quality . . .

Bibliography

[1] M. van den Akker, S. Brinkkemper, G. Diepen, and J. Versendaal. Software
product release planning through optimization of what-if analysis. Informa-
tion and Software Technology, 50(1–2):101–111, 2008.

[2] S. Barney, A. Aurum, and C. Wohlin. A product management challenge:
Creating software product value through requirements selection. Journal of
Systems Architecture, 54(6):576–593, 2008.

[3] R. Berntsson Svensson, T. Olsson, and B. Regnell. Introducing support for
release planning of quality requirements - an industrial evaluation of the
quper model. In Proceedings of the Second International Workshop on Soft-
ware Product Management, 2008.

[4] R. Berntsson Svensson, B. Regnell, and A. Aurum. Towards modeling guide-
lines for capturing the cost of improving software product quality in release
planning. In Second proceeding: Short papers, Doctoral Symposium and
Workshops of the 11th international conference on product focused software
process improvements, pages 24–27, 2010.

[5] R. Berntsson Svensson, Y. Sprockel, B. Regnell, and S. Brinkkemper. Cost
and benefit analysis of quality requirements in competetive software prod-
uct management. In Proceedings of the Fourth International Workshop on
Software Product Management, pages 40–48, 2010.

[6] P. Carlshamre and B. Regnell. Requirements lifecycle management and re-
lease planning in market-driven requirements engineering processes. In Pro-
ceedings 11th International Workshop on Database and Expert Systems Ap-
plications, pages 961–965, 2000.

[7] L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Require-
ments in Software Engineering. Kluwer Academic Publishers, 2000.

[8] J. Cleland-Huang, R. Settimi, X. Zou, and P. Sole. Automated classification
of non-functional requirements. Requirements Engineering, 12(2):103–120,
2007.

[9] L.M. Cysneiros and J.C.S.P. Leite. Nonfunctional requirements: From elic-
itation to conceptual models. IEEE Transactions on Software Engineering,
30(5):328–349, 2004.

[10] T. Gilb. Competitive Engineering. Elsevier Butterworth-Heinemann, 2005.

[11] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. A model for technology
transfer in practice. IEEE Software, 23(6):88–95, 2006.

Bibliography 249

[12] D. Greer and G. Ruhe. Software release planning: an evolutionary and itera-
tive approach. Information and software technology, 46(4):243–253, 2004.

[13] S. Lauesen. Software Requirements - Styles and Techniques. Addison-
Wesley, 2002.

[14] S. Maurice, G. Ruhe, O. Saliu, and A. Ngo-The. Value-Based Software Engi-
neering, chapter Decision Support for Value-Based Software Release Plan-
ning, pages 247–261. Springer, 2006.

[15] T. Olsson, R. Berntsson Svensson, and B. Regnell. Non-functional require-
ments metrics in practice - an empirical document analysis. In Workshop on
Measuring Requirements for Project and Product Success, 2007.

[16] M.Q. Patton. Qualitative Research and Evaluation Methods. Sage Publica-
tions, 2002.

[17] S.L. Pfleeger. Understanding and improving technology transfer in software
engineering. Journal of Systems and Software, 47(2):111–124, 1999.

[18] C. Pohl, G.Böckle, and F.J. van der Linden. Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer-Verlag, 2005.

[19] B. Regnell, R. Berntsson Svensson, and T. Olsson. Supporting roadmapping
of quality requirements. IEEE Software, 25(2):42–47, 2008.

[20] B. Regnell and S. Brinkkemper. Engineering and Managing Software Re-
quirements, chapter Market-Driven Requirements Engineering for Software
Products, pages 287–308. Springer, 2005.

[21] B. Regnell, M. Höst, and R. Berntsson Svensson. A quality performance
model for cost-benefit analysis of non-functional requirement applied to the
mobile handset domain. In Proceedings of the 13th working conference on
requirements engineering: foundation for software quality, pages 277–291,
2007.

[22] C. Robson. Real World Research. Blackwell, 2002.

[23] G. Ruhe. Product release Planning - Methods, Tools and Applications. CRC
Press, 2010.

[24] G. Ruhe, A. Eberlein, and D. Pfahl. Trade-off analysis for requirements
selection. International journal of software engineering and knowledge en-
gineering, 13(4):345–366, 2003.

[25] G. Ruhe and A. Ngo-The. Hybrid intelligence in software release planning.
International Journal of Hybrid Intelligent Systems, 1(2):99–110, 2004.

250 A Prototype Tool for QUPER to Support Release Planning of Quality . . .

[26] N. Subramanian and L. Chung. Sa3 - a tool for supporting adaptable soft-
ware architecture generation for embedded systems. Computer Standards
and Interfaces, 25(3):283–290, 2003.

[27] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, and S.B. Saleem. A system-
atic review on strategic release planning models. Information and Software
Technology, 52(3):237–248, 2010.

[28] Q. Tran and L. Chung. Nfr-assistant: Tool support for achieving quality.
In Proceedings of the IEEE Symposium on Application-Specific Systems and
Software Engineering and Technology, pages 284–289, 1999.

[29] M.I. Ullah and G. Ruhe. Towards comprehensive release planning for soft-
ware product lines. In Proceedings of the First International Workshop on
Software Product Management, pages 51–55, 2006.

