
Type classes

Type classes and functional abstractions in Scala

A short and incomplete introduction

Jacek Malec

September 20, 2012

Jacek Malec 1(16)

Type classes

So: What are type classes?

Typeclasses are among the most powerful features in

Haskell. They allow you to de�ne generic interfaces that

provide a common feature set over a wide variety of types.

Typeclasses are at the heart of some basic language

features such as equality testing and numeric operators.

(from OSG)

Jacek Malec 2(16)

Type classes

A motivating example

case class MyModel(val data: Int)

trait Ord[T] {

def compare (x: T, y: T): Boolean

}

implicit object ordMyModel extends Ord[MyModel] {

def compare (m1: MyModel , m2: MyModel) =

m1.data <= m2.data

}

def choose[T](m1: T,m2: T)(implicit ordM: Ord[T]) =

if (ordM.compare (m1 ,m2)) m2 else m1

val m1 = new MyModel (3)

val m2 = new MyModel (5)

choose(m1 ,m2)

Jacek Malec 3(16)

Type classes

Type classes

They allow us to

introduce polymorphic functions, extensible (compositional)

after the original code has been written (or even compiled)

introduce generic functions in terms of the prototypes

assumed to exist

Note use of the implicit mechanism to pass constraints around.

Implicits are looked for in the local scope (contrary to Haskell).

Jacek Malec 4(16)

Type classes

On implicits

import java.io.PrintStream

implicit val out = System.out

def log (msg : String) (implicit o : PrintStream)

= o.println (msg)

log ("Does not compute!")

log ("Does not compute !!")(System.err)

def logTm (msg :String)(implicit o :PrintStream):Unit

= log ("[" + new java.util.Date () + "]" + msg)

Jacek Malec 5(16)

Type classes

More implicits?

def logPrefix (msg : String)

(implicit o :PrintStream , prefix :String) :Unit

= log ("["+prefix+"]"+msg)

//the look -up idiom

def?[T] (implicit w:T):T = w

//now we can say

logPrefix ("message") (?, "myprefix")

Jacek Malec 6(16)

Type classes

Scoping of implicits

trait Monoid [A] {

def binary_op (x:A,y:A):A

def identity :A

}

def acc[A] (l:List[A]) (implicit m:Monoid[A]):A =

l.foldLeft(m.identity)((x, y) => m.binary_op(x, y))

object A {

implicit object sumMonoid extends Monoid [Int] {

def binary_op (x:Int ,y:Int) = x+y

def identity = 0

}

def sum (l:List[Int]):Int = acc (l)

}

Jacek Malec 7(16)

Type classes

Scoping of implicits

object B {

implicit object prodMonoid extends Monoid [Int] {

def binary_op (x:Int ,y:Int) = x*y

def identity = 1

}

def product (l : List [Int]) : Int = acc (l)

}

val test:(Int ,Int ,Int)= {

import A._

import B._

val l = List (1,2,3,4,5)

(sum (l), product (l), acc (l) (prodMonoid))

}

Jacek Malec 8(16)

Type classes

The CONCEPT pattern

Let's compare again:

trait Ord [T] {

def compare (x:T,y:T) :Boolean

}

class Apple (x : Int) { }

object ordApple extends Ord [Apple] {

def compare (a1 :Apple ,a2 :Apple) = a1.x < a2.x

}

def pick[T] (a1 :T,a2 :T) (ordA :Ord[T])

= if (ordA.compare (a1,a2)) a2 else a1

val a1 = new Apple (3)

val a2 = new Apple (5)

val a3 = pick (a1 ,a2) (ordApple)

Jacek Malec 9(16)

Type classes

The CONCEPT pattern

Concepts are interfaces with generics.

or

Concepts describe a set of requirements for the type parameters

used by generic algorithms.

In our Apple example:

trait Ord[T] is a concept interface

T is the modeled type

Apple is a concrete modeled type

Actual objects implementing concept interfaces, such as

ordApple, are called models

Jacek Malec 10(16)

Type classes

The CONCEPT pattern

Concepts are interfaces with generics.

or

Concepts describe a set of requirements for the type parameters

used by generic algorithms.

In our Apple example:

trait Ord[T] is a concept interface

T is the modeled type

Apple is a concrete modeled type

Actual objects implementing concept interfaces, such as

ordApple, are called models

Jacek Malec 10(16)

Type classes

The CONCEPT pattern

The CONCEPT pattern can model n-ary, factory and consumer

methods just like typeclasses.

We can model multi-type concepts:

trait Coerce[A,B] {

def coerce (x :A) :B

}

zipWithN is another example (check the paper).

Bene�ts again:

retroactive modeling

multiple method implementations

binary (or n-ary) methods

factory methods

However: statically dispatched!

Jacek Malec 11(16)

Type classes

An alternative

Bounded polymorphism:

trait Ord[T] {

def compare (x:T) :Boolean

}

class Apple (x:Int) extends Ord[Apple] ...

compare becomes a real, dynamically dispatched method of Apple.

All the private info about apple objects is available for its de�nition.

However, modeled types (Apple) have to state explicitely which

concept interfaces they support: breaks retroactive modeling and

multiple method implementations.

Jacek Malec 12(16)

Type classes

Abstract data types

Consider:

trait Set[S] {

val empty : S

def insert (x:S, y:Int) :S

def contains (x:S,y:Int) :Boolean

def union (x:S,y:S) :S

}

It may be considered to be an algebraic signature of an ADT Set.

Jacek Malec 13(16)

Type classes

Functional idioms and design patterns

Immutable objects

Higher order functions

taking functions as arguments

returning functions as results

possibly with their environment (closures)

Lazy evaluation

encapsulated in objects

in�nite data structures

Clean separation of statefulness

Jacek Malec 14(16)

Type classes

Functional abstraction

Everything that uses foreach and filter (functionally better

known as map, flatMap and filter) is usually functional

and inherently monadic in nature.

Implicits are crucial.

Consider scalaz library, if you miss something you are used to.

Jacek Malec 15(16)

Type classes

Functional abstraction

Everything that uses foreach and filter (functionally better

known as map, flatMap and filter) is usually functional

and inherently monadic in nature.

Implicits are crucial.

Consider scalaz library, if you miss something you are used to.

Jacek Malec 15(16)

Type classes

Functional abstraction

Everything that uses foreach and filter (functionally better

known as map, flatMap and filter) is usually functional

and inherently monadic in nature.

Implicits are crucial.

Consider scalaz library, if you miss something you are used to.

Jacek Malec 15(16)

Type classes

Functional abstraction

Everything that uses foreach and filter (functionally better

known as map, flatMap and filter) is usually functional

and inherently monadic in nature.

Implicits are crucial.

Consider scalaz library, if you miss something you are used to.

Jacek Malec 15(16)

Type classes

References

Björn

The paper �Type classes as objects and implicits�,

Bruno C.d.S. Oliveira, Adriaan Moors and Martin Odersky,

OOPSLA 2010

(http://ropas.snu.ac.kr/�bruno/papers/TypeClasses.pdf)

A site (http://code.google.com/p/scalaz/)

The Scala textbook, 2nd ed.

(OSG) A Haskell textbook (Bryan O'Sullivan, Don Stewart, and

John Goerzen, http://book.realworldhaskell.org/)

A blog page

http://www.codecommit.com/blog/ruby/monads-

are-not-metaphors

by Daniel Spiewak.

Jacek Malec 16(16)

