LUND

UNIVERSITY

Topic 13: Packages and Imports
Exercise

Jesper Pedersen Notander

Department of Computer Science
Lund University Faculty of Engineering

Learning Scala
Seminar 3



Instructions

Instructions

» Study the package structure of the code on the next slide.

» Revwrite the code using nested packages and imports so
that the classes can be referenced with a simple name.
The package structure should be kept intact.

Dept. of Computer Science/Learning Scala/Seminar 3/Topic 13: Packages and Imports



Code

Code

package manufacturers {
class Property(val name: String)
abstract class Car(val properties: List[Property]) {

def compareProperties(other: Car): List[Property] = List[Property] ()
}

package manufacturers.framking {
class EcoCar (properties: List[manufacturers.Property]) extends

manufacturers.Car (properties)

package manufacturers.allvelo {
class EcoCar (properties: List[manufacturers.Property]) extends
manufacturers.Car (properties)

class Retailer {
def printComparison(carl: manufacturers.Car, car2: manufacturers.Car) {

carl.compareProperties (car2).foreach((x) => println("" + x))

}

object RetailerTest extends App {

val carl = new manufacturers.framking.EcoCar (Nil)
val car2 = new manufacturers.allvelo.EcoCar (Nil);
(new Retailer()) .printComparison(carl, car2);

}
Dept. of Computer Science/Learning Scala/Seminar 3/Topic 13: Packages and Imports




Solution

Solution

package manufacturers {
case class Property(name: String)
abstract class Car(val properties: List[Property]) {

def compareProperties(other: Car): List[Property] = List[Property] ()

}
package framking {
class EcoCar (properties: List[Property]) extends Car (properties
}
package allvelo {
class EcoCar (properties: List[Property]) extends Car (properties

}

class Retailer {
import manufacturers.Car
def printComparison(carl: Car, car2: Car) {
carl.compareProperties (car2).foreach((x) => println("" + x))

}

object RetailerTest extends App {
import manufacturers.framking.{EcoCar=>FramKingCar}
import manufacturers.allvelo.{EcoCar=>AllveloCar}

val carl = new FramKingCar (Nil);
val car2 = new AllveloCar (Nil);
(new Retailer()) .printComparison(carl, car2);

}

Dept. of Computer Science/Learning Scala/Seminar 3/Topic 13: Packages and Imports




Exercise: Assertions

The “Triangle Program” is a classic testing exercise. It was first
published in Glenford Meyer’s The Art of Software Testing in 1979,
intended for punchcards rather than Scala.

The program should accept input as three sides of a triangle and give
output on what type of triangle it is, i.e. “Scalene” (no sides are same),

“Isosceles” (any two sides are same) or “Equilateral” (All the three
sides are same).

Implement the Triangle Program in Scala. Add assertions to make sure

no input results in invalid triangles. Enable assertions and see what
happens for:

(i) negative values
(ii) impossible combinations of side lengths



Topic 15 - Case Classes and Pattern Matching

Alfred Theorin

2012-08-26

Expression Evaluation

Write a function that evaluates expressions using pattern matching, given the
following class hierarchy. It should at least support the binary operations addi-
tion, subtraction, and multiplication and unary minus.

sealed abstract class Expr

case
case
case
case

class
class
class
class

Var (name: String) extends Expr

Num(num: Double) extends Expr

UnOp(op: String, expr: Expr) extends Expr
BinOp(op: String, 1: Expr, r:Expr) extends Expr

The signature of the function could be:

def evaluate(expr: Expr, vars: Map[String, Double]): Double

For example evaluate (BinOp ("+", Num(1), Var("x")), Map("x"->2)) should
return 3.

Hint: Use a nested match for the variable lookup.



Exercise



Create an integer list containing 10
elements and sort it in ascending order
without using sort method.



Exercise- Collections

Create a simple (sorted!) phone book with a
few of your friends and their numbers.

Create a function drunkenbDial that
returns a random friend and his or her

phone number.



Exercises for chapter 18
Stateful Objects



Exercise 18.1: Age as property

 Make a class “Person” that has a private
field for keeping track of a person’s age,
providing a setter and getter for the
property “age” that never can be less than
0

 What happens if you only provide a setter
but no getter?



Exercise 18.2: Caching factorial values

e Make an object that is purely functional on
the outside called SmartFactorial that keeps
track of already computed factorial in an
internal state variable “cache” of type
collection.immutable.Map[int, Bigint]



Exercise 18.3: Stateful Scheduler

trait CanSchedule[T] {
import scala.collection.immutable.Queue
def workItem: T
type Work = T =>» Unit
var agenda = Queue.empty[Work]

Explain what the
CanSchedule trait does.

How can this trait be

used on the client side? def schedule(w:Work) = agenda :+= w

loop {
How is the state of if (l!agenda.isEmpty) {
instances of this trait

changed over time? 1 agenda = agendaMinusFirst
11 firsthiork(workItem)

(¥ s o B I s L T 0 T O TR o N

val (firsthork, agendaMinusFirst) = agenda.degueue

L]

Assume that
loop{block} 14

1 h
executes block
as an eternal loop in
another thread.



The following code will not compile, because A is
covariant and is used in a wrong way.

class Box[+A](private[this] var value: A) {
def get: A = value

def set(x: A) {
value = X

¥
¥

a) Compile the code and read the error message.
b) Construct an example where the use of this
could go wrong.



Exercise: Abstract members

Niklas Fors
August 27, 2012

Exercise

Rewrite the following code and use an abstract type instead of a type parameter.
You can run the code as a script ($ scala file.scala).

abstract class AbsItr[T] {
def hasNext: Boolean
def next: T
}
trait RichItr[T] extends AbsItr[T] {
def foreach(f: T => Unit) { while (hasNext) f(next) }
}
class StringItr(s: String) extends AbsItr[Char] {
private var i = 0
def hasNext = i < s.length()
def next = { val ch = s charAt i; i += 1; ch }
}

class Itr extends StringItr("hello world") with RichItr[Char]
val itr = new Itr
itr foreach println

(Solution: http://docs.scala-lang.org/tutorials /tour /mizin-class-composition.html)



* Assume that you had a gigantic project for handling personnel data so you
divided it to two parts and assigned it to two programmers.When you

merged the two parts, the result was this:

final class Personnel(n: String, i: Int){
val name: String = n
val id: Int = 1i
}
def summarize(p: Personnel) = p.name concat " " concat p.id

var p = new Personnel("Some Guy", 1)

print(summarize(p))

* Since it would hurt the feelings of the programmers if you would
change their source code, fix this code without changing any

existing code. (Lucky you, one line is enough)



for expressions revisited

The class Country is defined as follows:
case class Country(name: String, cities: String*)

The val countries is of type List[Country], and is initialized with
multiple instances of Country.

a) Write a for expression that finds all countries that start with the letter
‘S’.

b) Write a for expression that find all cities that have no more than 5 letters
in their name (duplicates OK).

c) Write a for expression that finds all cities that exist in 2 or more
countries (duplicates OK).

1z PTOTA (Z2 == 12 FT !{S9T3ITO°ZO -> 7Z !SST3TO"TD
-> 2 {Z0 =i IO 3T {S8TI3UNOD -> ZO {SS8TI3UNOO -> [O) I0F (O
z p1oTd (¢ => yzbusy*z FT {SST3TO*D -> Z {SSTIUNOD -> D) a0F (q
o prot& (,S, Y3TMS3Iels sweu*o 3T {saTI3unod -> o) xoF (e




Problem

Is this legal code, and if so, what will it print:

val hamlet =
”to be or not to be”.split(” )
val independence =
”we hold these truths to be self-evident”.split(” )
(0 until (hamlet.length max independence.length)).map {
hamlet orElse independence}.foreach(println)



	t13e
	Instructions
	Code
	Solution

	t14e
	t15e
	t16e
	t17e
	t18e
	t19e
	t20e
	t21e
	t23e
	t24e

