
Control structures in Scala

CS Scala course 2012

Overview: control structures

• if
• while
• for
• match
• try
• Function calls

+ Exercise

Main ideas

• Few built-in control structures
– Others could be find in libraries

• They work much like imperative counterparts
– But they also have values (most of them)

Main ideas (2)

• In Java:
– Expressions have values
– Statements carries out an action

• In Scala:
– In Scala, almost ALL constructs have values

if

Can be written in Java style:

if (n > 0) {
 r = r * n;
 n -= 1;
}

if (2)

var s = 0
if (x > 0) s = 1 else s = -1

 val s = if (x > 0) 1 else -1

• Better because of val

• Semicolon optional

But if returns a value!

if (3)

if statements must have some value =>
omitted else returns Unit (≈ Java void)

 if (x > 0) 1

 equivalent to

if (x > 0) 1 else ()

Unit

while

Loops can be written in Java style

while (n > 0) {
 r = r * n;
 n -= 1;
}

There is also the do ... while loop

while (2)

There is no:
• break
• continue

Loops do NOT return a value =>
not used as often in Scala as in Java.

for

Scala has no direct analog of the Java for
 for (initialize; test; update)

for (i <- 1 to n)

the to method
returns a Range
(also: until)

for (i <- expr) <- to traverse
all values of the
right expression

for (2)

guard: an if inside the for

Example:
Filter out all numbers larger than 5

for (i <- expr; if i > 5)

for (3)

for (...) yield
• Creates a new collection of the same type as

the original
• Contains the expressions after the yield, one

for each iteration of the loop.

Example:
Double all elements larger than 5

val doubles = for (i <- expr; if i > 5) yield 2 * i

match

• Similar to switch statements
• Returns a value
• _ is used for default

val output = x match {
 case 1 => "one"
 case 2 => "two"
 case _ => "many"
}

try

• Exceptions work as in Java
– But you don’t need to declare that a function might

throw an exception

try {
 process(new FileReader(filename))
} catch {
 case _: FileNotFoundException => println(filename + " not
found")
 case ex: IOException => ex.printStackTrace()
} finally { … }

finally

Summary

• An if expression has a value
• A block has a value—the value of its last
expression
• The Scala for loop is like an “enhanced” Java for
loop
• Semicolons are (mostly) optional
• The void type is Unit
• Avoid using return in a function
• Exceptions work just like in Java or C++, but you
use a “pattern matching” syntax for catch.

	Control structures in Scala
	Overview: control structures
	Main ideas
	Main ideas (2)
	if
	if (2)
	if (3)
	while
	while (2)
	for
	for (2)
	for (3)
	match
	try
	Summary

