Selection Iteration Sequence

Y i v
~[: 1 - v

Control structures in Scala

CS Scala course 2012

Overview: control structures

o if

e while
e for

* match

* try
e Function calls

+ Exercise

Main ideas

e Few built-in control structures

— Others could be find in libraries

e They work much like imperative counterparts

— But they also have values (most of them)

Main ideas (2)

* |n Java: .c.—__.(,)
. gt
— Expressions have values e

— Statements carries out an action Java

* |n Scala:

— In Scala, almost ALL constructs have values

ZEScala

if

Can be written in Java style:

if (n>0){
r=r*n;
n-=1;

}

if (2)

But if returns a value!

vars=0
if(x>0)s=1elses=-1

val s=if (x>0) 1 else -1

e Better because of val

 Semicolon optional

if (3)

if statements must have some value =>
omitted else returns Unit (= Java void)

if (x>0)1
equivalent to
if (x>0) 1else ()

Unit

while

Loops can be written in Java style

while (n > 0) {
r=r*n;
n-=1;

}

There is also the do ... while loop

while (2)

There is no:
e break

e continue

Loops do NOT return a value =>
not used as often in Scala as in Java.

for

Scala has no direct analog of the Java for

for (initialize; test; update)

for (i <- expr)

for (i <- 1 to n)

<- to traverse
all values of the
right expression

the to method
returns a Range
(also: until)

SALE

for (2)

guard: an if inside the for

Example:

Filter out all numbers larger than 5

for (i <- expr; ifi>5)

SALE

L Y F 61{
for (3) 'SALE

for (...) yield

* Creates a new collection of the same type as
the original

e Contains the expressions after the yield, one
for each iteration of the loop.

Example:
Double all elements larger than 5

val doubles = for (i <- expr; ifi >5) yield 2 * i

match

e Similar to switch statements
e Returns a value
e jisused for default

val output = x match {
case 1 =>"one"
case 2 => "two"
case _ =>"many"

}

try

* Exceptions work as in Java

— But you don’t need to declare that a function might
throw an exception

try {
process(new FileReader(filename))

} catch {

case _: FileNotFoundException => printIn(filename + " not
found")

case ex: IOException => ex.printStackTrace()
}finally {... }

finally

Summary

e An if expression has a value

e A block has a value—the value of its last
expression

e The Scala for loop is like an “enhanced” Java for
loop

e Semicolons are (mostly) optional
e The void type is Unit
e Avoid using return in a function

e Exceptions work just like in Java or C++, but you
use a “pattern matching” syntax for catch.

	Control structures in Scala
	Overview: control structures
	Main ideas
	Main ideas (2)
	if
	if (2)
	if (3)
	while
	while (2)
	for
	for (2)
	for (3)
	match
	try
	Summary

