
Topic 4: Inheritance
Extending, Overriding and Final

Jesper Pedersen Notander

Department of Computer Science
Lund University Faculty of Engineering

Learning Scala
Seminar 2

Contents Topics Summary

Contents

I Abstract and concrete classes
I Simple inheritance
I Overriding members
I Polymorphism and dynamic binding
I Keywords: abstract, extends, override and final

Dept. of Computer Science/Learning Scala/Seminar 2/Topic 4/ Inheritance

Contents Topics Summary

Abstract and Concrete Classes Inheritance Overriding Polymorphism and Dynamic Binding

Abstract and Concrete Classes

I Concrete classes, "normal classes"
I Defines members, e.g. val x: Int = 0;
I Can be instantiated
I Must define inherited abstract members.

I Abstract classes
I Defines members
I Cannot be instantiated
I Declares abstract members, e.g. val x: Int;

I Abstract classes are implemented by adding the keyword
abstract to the class declaration, e.g.
abstract class MyAbstractClass

Dept. of Computer Science/Learning Scala/Seminar 2/Topic 4/ Inheritance

Contents Topics Summary

Abstract and Concrete Classes Inheritance Overriding Polymorphism and Dynamic Binding

Abstract Members and Declarations

abstract class C(val p1: Int, private var p2: Int) {
protected var f1: Int

private def m1(a: Int): Int
def m2: Int

}

I Fields and methods are declared in the body or the parameter list of the
class.

I Methods can be declared without brackets if they have no arguments.
Thus, def m2: Int <=> val m2: Int, when accessing point of
view.

I The access modifier defines the visibility of the declaration:
public Visible where the class is accessible, default (no modifier)

protected Visible in the class and its subclasses
private Visible in the class

Dept. of Computer Science/Learning Scala/Seminar 2/Topic 4/ Inheritance

Contents Topics Summary

Abstract and Concrete Classes Inheritance Overriding Polymorphism and Dynamic Binding

Extending a Class

I To inherit from a class place the keyword extends after the
class name in the declaration of a class, followed by the
name of the class to inherit from, e.g.
class B(x: Int)extends A(x)...

Terminology: class B inherits class A, type B is a subtype of type A, class A is a

superclass of class B and class B is a subclass of class A

I All members of the superclass become members of the
subclass except:

I Private members
I Members with the same name as a member in the

subclass.

Dept. of Computer Science/Learning Scala/Seminar 2/Topic 4/ Inheritance

Contents Topics Summary

Abstract and Concrete Classes Inheritance Overriding Polymorphism and Dynamic Binding

Overriding Members

I When a subclass defines a member declared in a
superclass the subclass is said to override the member.

I Methods and fields share the same namespace and it is
allowed to override a field with a method and vice versa.

I The modifier override is required when overriding a
concrete member, e.g.
override def myfun(x: Int)= 0

Dept. of Computer Science/Learning Scala/Seminar 2/Topic 4/ Inheritance

Contents Topics Summary

Abstract and Concrete Classes Inheritance Overriding Polymorphism and Dynamic Binding

Example Overriding

abstract class A {
def attr: Int
def fun: Int = 1

}

class B extends A {
def attr = 0 // concrete definition of A.attr
override def fun = 2 // override of abstract A.fun

}

// override of abstract method A.attr with the field attr
class C(val attr: Int) extends A

scala> (new B).attr
res13: Int = 0
scala> (new B).fun
res14: Int = 2
scala> (new C(10)).fun
res16: Int = 1
scala> (new C(10)).attr
res17: Int = 10

Dept. of Computer Science/Learning Scala/Seminar 2/Topic 4/ Inheritance

Contents Topics Summary

Abstract and Concrete Classes Inheritance Overriding Polymorphism and Dynamic Binding

Preventing Overrides

I Members can be prevented from being overridden by
subclasses by adding the final modifier.

class A { // subclasses of A cannot override x
final def x = 1
def y = 2

}

I A class can be prevented from being subclassed by
placing final in its declaration.

final class B { //class B cannot be subclassed
def x = 1
def y = 2

}

Dept. of Computer Science/Learning Scala/Seminar 2/Topic 4/ Inheritance

Contents Topics Summary

Abstract and Concrete Classes Inheritance Overriding Polymorphism and Dynamic Binding

Subtyping Polymorphism

class A {
def f = 1

}

class B extends A {
pverride def f = 2

}

val a: A = new A()
val b: A = new B() // polymorphism

I Polymorphism in this presentation refers to subtyping
polymorphism, which is the ability of a language to define
subtypes and refer to values of them using a reference with
a supertype-

Dept. of Computer Science/Learning Scala/Seminar 2/Topic 4/ Inheritance

Contents Topics Summary

Abstract and Concrete Classes Inheritance Overriding Polymorphism and Dynamic Binding

Dynamic Binding

I The other part of polymorphism is dynamic binding, which
means that the method that is actually invoked when
access is determined by the runtime object of the object,
e.g. a.f =>1 whereas b.f =>2 although both a and b are
of type A.

Dept. of Computer Science/Learning Scala/Seminar 2/Topic 4/ Inheritance

Contents Topics Summary

Summary

I Abstract classes are declared with the keyword abstract and can
contain abstract members.

I Abstract members are fields or methods that are declared but not
defined in the class, e.g. def fun: Int;

I Inheritance is done by placing the keyword extends after the name in
a class declaration, followed by the name of the super class, e.g.
class B(args...)extends A(args...)

I A member overriding an inherited member must be declared with the
override modifier, except if the inherited member is abstract.

I To prevent a method or a class to be overridden or subclassed the
modifier final can be placed in the declaration, e.g.
final class C or final def fun = 0

I Subtyping polymorphism is the ability to create subtypes and refer to
them with their super type. Method calls are bound dynamically to the
method in the runtime type of an object.

Dept. of Computer Science/Learning Scala/Seminar 2/Topic 4/ Inheritance

	Contents
	Topics
	Abstract and Concrete Classes
	Inheritance
	Overriding
	Polymorphism and Dynamic Binding

	Summary

