
Operators,
Method overloading and

Implicit conversions

Niklas Fors

May 28, 2012

Introduction to operators

Operators are ordinary methods.

1 + 2

1.+(2)

But they have different precedence and associativity.

Different types of operators

Prefix operators: +, -, ! and ˜
!false ⇒ false.unary !
Postfix operators: Arbitrary identifier (e op ⇒ e.op)
1 toString ⇒ 1.toString
Infix operators: Arbitrary identifier (e1 op e2 ⇒ e1.op(e2))
2.0 + 3.0 ⇒ 2.0.+(3.0)

Infix operators, precedence
Rule: Precedence is determined by the first character.
For instance,
2 + 3 * 5 ⇒ 2 + (3 * 5)

2 +*** 3 *+++ 5 ⇒ 2 +*** (3 *+++ 5)

2 max 1 + 2 ⇒ 2 max (1 + 2)

i += 3 * 5 ⇒ i += (3 * 5)

(all other special characters)

* / %

+ -

:

= !

< >

&

^

|

(all letters)

(all assignment operators, eg += -= etc.)

Infix operators, associativity

Rule: Associativity is determined by the last character.
: is right associative (and is invoked on its right operand!)
all other are left associative
For instance,
1 + 2 + 3 ⇒
(1 + 2) + 3

a ::: b ⇒
b.:::(a)

Method overloading (1/2)

class C {

def m(x: Int): Int = x

def m(x: Int, xs: List[Int]): List[Int] = x :: xs

def m(y: Int): Double = y.toDouble

}

val c = new C()

c.m(1)

c.m(1, List(2,3))

Method overloading (2/2)

class A

class B extends A

def f(a: A) { println("A") }

def f(b: B) { println("B") }

var r = new A()

f(r)

r = new B()

f(r)

Operators

class Rational(val n: Int, val d: Int) {

def *(r: Rational)

= new Rational(n * r.n, d * r.d)

def *(i: Int) = new Rational(n * i, d)

}

val r1 = new Rational(1, 2)

val r2 = new Rational(1, 4)

r1 * r2

r1.*(r2)

r1 * 2

2 * r1

Implicit conversions (1/2)

val r = new Rational(2)

2 * r

implicit def intToRational(i: Int) = new Rational(i, 1)

2 * r =>

intToRational(2) * r <=>

intToRational(2).*(r)

Implicit conversions (2/2)

Other examples:

1 to 5 (1 is converted to RichInt)

1 max 2 (1 is converted to RichInt)

-2.5 abs (-2.5 is converted to RichDouble)

Map(

1 -> "a" (1 is converted to ArrowAssoc[Int])

)

RichInt, RichDouble, ..., are called rich wrappers

Summary

I Operators - ordinary methods

I Method overloading - similar to Java

I Implicit conversions

