
Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Learning Scala - Seminar 1

Björn Regnell, ChrisƟan Söderberg

Dept. of Computer Science
Lund University, Sweden

2012, April 27

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Agenda

▸ About the course
▸ Some highlights of Chapter 1-12
▸ Mix interacƟve plenary explanaƟons and exercises
▸ Planning of coming seminars
▸ Conclusion and homework

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

ObjecƟves and qualificaƟons

▸ The course is flexible and individualized, depending on
qualificaƟons and ambiƟons.

▸ Main objecƟves
1. To learn (more about) Scala, including the combinaƟon of

object orientaƟon + funcƟonal programming
2. To explore if, and if so, how Scala can be used in teaching

programming at undergraduate level

▸ Minimum qualificaƟons: Object-oriented programming such
as Java, Simula, Object Pascal etc.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Course "philosophy"

▸ Heterogeneous ambiƟons and learning-goals combined.
▸ No quesƟons are stupid quesƟons!
▸ We do it together; parƟcipants are teachers.
▸ The seminars try to make parts of the PINS book come
"alive" and to inspire your own experiments.

▸ You are expected to study the PINS book between seminars.
▸ We reflect on how to teach the studied concepts and their
pros and cons in large-scale soŌware development

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Flexible Parts overview

▸ The course is individualized for each parƟcipant to contain
one or more of these 3 opƟonal parts depending on the
ambiƟon (corresponding to 1.5 - 7.5 ECTS credits):

▸ Part 1: Scala basics, Chapters 1-12
1.5 credits, 3 seminars of 2-3 hours each

▸ Part 2: Advancement in Scala, Chapters 13-23,
1.5 credits, 2 seminars of 3 hours each

▸ Part 3: Project work, Selected porƟons from Chapters 24-35
2 - 4.5 credits
ExaminaƟon: presentaƟon at a seminar, brief report
The project topic is selected freely depending on interest,
theoreƟcal or pracƟcal studies on anything that is in some
way related to Scala.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Seminar planning

Part
Seminar

Contents Date

P1 Sem 1 Overview
Chapters 1-12

April 27, 13:15-16:00

Exercise OpƟonal group exercise May 4, E:2116, 13:15-
16:00

P1 Sem 2 Details (taught by course parƟcipants)
Chapters 1-12

May 29, 13:15-16:00

P1 Sem 3 Invited talks
Görel: "The expression problem and Scala"
Kris: "Building a Scala library for JaCoP"
Jörn: "Scala Actors and Akka"
Jacek: "FuncƟonal programming in Scala"

June 14, 13:15-15:00

S U MM E R
P2 Sem 4 Chapters 13-23

taught by course parƟcipants
August 29, 13:15-16:00

P2 Sem 5 Chapters 13-23
taught by course parƟcipants

September 20, 13:15-
16:00

P3 Sem 6 Chapters 24-35
Project presentaƟon by course parƟcipants

TBD

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Seminar 2: Example of topics

At seminar 2, parƟcipants will be assigned a Ɵme slot and topics to teach, for example:
1. Method overloading, operators and implicit conversion
2. Built-in control structures: if, while, for, excepƟons
3. Control abstracƟon, currying, and by-name-parameters
4. Tail recursion opƟmizaƟon
5. ParƟally applied funcƟons and special funcƟon call forms
6. Inheritance: extending, overriding and final
7. Classes: constructors, auxiliary constructors and access rules
8. Objects: factory objects and method chaining by returning this
9. Scala's class hierarchy and Predef

10. Traits: interfaces, mix-ins and stackable modificaƟons
11. Pedagogical aspects of converƟng Java assignments to Scala
12. …

Special topics can be negoƟated with Björn.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

ParƟcipants

1. Eva Magnusson, cs lärare
2. Kim Weyns, cs post doc (*)
3. Niklas Fors, cs doktorand
4. Markus Borg, cs doktorand
5. Emma Söderberg, cs doktorand
6. Björn A. Johnsson, cs doktorand
7. Maj Stenmark, cs doktorand (*)
8. Anna Axelsson, cs lärare
9. Per Holm, cs lärare
10. Roger Henriksson, cs lärare
11. Lennart Andersson, cs lärare
12. Jesper Pedersen, cs doktorand

13. Flavius Gruian, cs lärare
14. Sven Gestegard Robertz, cs forskare
15. Alfred Theorin, regler doktorand
16. Görel Hedin, cs lärare
17. Per Andersson, cs lärare
18. Sardar Muhammad Sulaman, cs
doktorand
19. Elizabeth Bjarnason, cs doktorand
20. Usman Mazhar Mirza, cs doktorand
21. MarƟn Höst, cs lärare
22. Mehmet Ali Arslan, cs doktorand (*)
23. Krzysztof Kuchcinski, cs lärare (*)
24.Gustav Cedersjö, cs doktorand
25. Mathias Haage, cs Lärare

(*) Cannot come April 27 but will parƟcipate in the course

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Today

▸ Familiarize the parƟcipants with the basics of Scala.
▸ Big ideas:

▸ Simple programs.
▸ Objects, funcƟons and values.
▸ Higher-order funcƟons.
▸ IntroducƟon to some collecƟon classes.
▸ Simple classes and case classes.

▸ If you have already wriƩen some Scala programs, you have
probably seen everything before.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Pair exercising

▸ The one that knows the least about Scala is in control of the keyboard!
▸ The one that knows the most about Scala makes an effort to share his/her

knowledge in a pedagogical way!
▸ If exercises are too easy for you, make them more challenging.
▸ If exercises are too difficult don't hesitate to ask.
▸ Move now so that you sit together, and tell each other about your scala

experiences so far.

Eva Magnusson + Gustav Cedersjö
Niklas Fors + Markus Borg

Emma Söderberg + Alfred Theorin
Björn A. Johnsson + Per Andersson

Anna Axelsson + Flavius Gruian
Per Holm + Jesper Pedersen

Roger Henriksson + Lennart Andersson
Sven Gestegard Robertz + Usman Mazhar Mirza

Sardar Muhammad Sulaman + Elizabeth Bjarnason
Mathias Haage + MarƟn Höst

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Quick Intro: What is Scala?

▸ Started in 2001 at EPFL by MarƟn Odersky
▸ A beƩer Java with cleaned up syntax and relaxed restricƟons
▸ Combines funcƟonal and object-oriented programming
▸ Scalable from small scripts to large systems
▸ Runs on the Java Virtual Machine
▸ StaƟc typing and type inference

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

How to run Scala

▸ Programs can be compiled using either scalac or fsc.
▸ Programs can be run as scripts using scala.
▸ Programs can be run interacƟvely using Scala's
Read-Evaluate-Print-Loop (REPL).

▸ Programs can also be run interacƟvely using tools such as
Kojo.

▸ Integrated Development Environments for Eclipse, NetBeans
and IntelliJ.

▸ Also modes for emacs (ensime), etc.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Example

.
Example..

......

Run the ``hello, world''-program:
▸ In the REPL.
▸ In Kojo.
▸ As a compiled program.
▸ As a script.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

First exercise: Hello, world!

// f i l e hello . scala
object helloWorld {

def main(args: Array[String]) {
println("Hello, world!")

}
}

Compile with > scalac hello.scala
Run with > scala helloWorld

// f i l e myapp. scala
object helloArgs extends App {

println("Hello args: " + args.mkString(", "))
}

compile with > scalac myapp.scala
run with > scala helloArgs hejsan svejsan

In the REPL and in Kojo, no need for object-wrapping, just type:

println("Hello, world!")

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

The Scala REPL

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

The Kojo IDE for Scala

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Expressions, values, variables & types

(1000-90*9.0)/5 + 4 //expression
val x = 42 //x cannot be changed
var y = 41.9 //y can be changed
def z = x + y //z i s evaluated each cal l
lazy val v = z.round //evaluation delayed
y = 42.9 //var i s updated
println(v) //v i s evaluated
var w: Double = 42.1 // exp l i c i t type declaration
var w: Int = 42.1 //error : type mismatch!

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

What is a funcƟon?

funcƟon

A funcƟon can be invoked with a list of arguments to produce a
result. A funcƟon has a parameter list, a body, and a result type.
FuncƟons that are members of a class, trait, or singleton object
are calledmethods. FuncƟons defined inside other funcƟons are
called local funcƟons. FuncƟons with the result type of Unit are
called procedures. Anonymous funcƟons in source code are
called funcƟon literals. At run Ɵme, funcƟon literals are
instanƟated into objects called funcƟon values.

[PINS Glossary, page 801]

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

A simple funcƟon

def add(a:Int, b:Int) = a + b

add(3,4)

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Scala funcƟon definiƟon syntax

[PINS Fig 2.1, page 28]

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Scala funcƟon liƩeral syntax

[PINS Fig 2.2, page 34]

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

A simple, anonymous funcƟon

(a:Int, b:Int) => a + b

val f = (a:Int, b:Int) => a + b

f(3,4)

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

What is a closure?

A closure is a funcƟon that refers to non-local names that are in
scope at the point of declaraƟon, and where the binding to actual
values are made at the point of evaluaƟon.

var a = 43
def f(x:Int) = x + a //acces to non−local name
println(f(-1)) // f i s closed over a bound to 43
a = 41
println(f(1)) // f i s closed over a bound to 41

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Class

class Point(initX:Double, initY:Double) {
var x = initX
var y = initY
override def toString = "Point("+x+","+y+")"

}

val p = new Point(0,0)
println(p)
p.x = 10 // OK, p i s a val , but p. x i s a var
p.y = 20
println(p)

//p. in itX = 3 //not allowed!!

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Case class

A case class is a class that has several things ready-made,
including a nice toString and a factory object so that we do not
need to write "new". Case classes are powerful tools for
paƩern-matching.

case class Point(x:Double, y:Double)
val p = Point(10,20)
println(p)

//p. x = 3 //not allowed , x i s a val ! !

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Singleton object

If you only need one instance you do not need to declare and
instanƟate a class, you can make a singleton object directly:

object myObject {
val myAttribute = 42

}

println(myObject.myAttribute)

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Values are objects, operaƟons are methods

1 + 2

▸ Every value is an object -- we don't have to differenƟate
between primiƟve types and reference types.

▸ Every operaƟon is a method call, the expression 1 + 2 is just
shorthand for 1.+(2)

▸ The syntax rules allows us to skip dots, parentheses and
semicolons in many places. We can also someƟmes chose
between using {} and ().

▸ The ==-operator checks values (using equals), not references.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Values are objects, operaƟons are methods

1 + 2

▸ Every value is an object -- we don't have to differenƟate
between primiƟve types and reference types.

▸ Every operaƟon is a method call, the expression 1 + 2 is just
shorthand for 1.+(2)

▸ The syntax rules allows us to skip dots, parentheses and
semicolons in many places. We can also someƟmes chose
between using {} and ().

▸ The ==-operator checks values (using equals), not references.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Values are objects, operaƟons are methods

1 + 2

▸ Every value is an object -- we don't have to differenƟate
between primiƟve types and reference types.

▸ Every operaƟon is a method call, the expression 1 + 2 is just
shorthand for 1.+(2)

▸ The syntax rules allows us to skip dots, parentheses and
semicolons in many places. We can also someƟmes chose
between using {} and ().

▸ The ==-operator checks values (using equals), not references.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Values are objects, operaƟons are methods

1 + 2

▸ Every value is an object -- we don't have to differenƟate
between primiƟve types and reference types.

▸ Every operaƟon is a method call, the expression 1 + 2 is just
shorthand for 1.+(2)

▸ The syntax rules allows us to skip dots, parentheses and
semicolons in many places. We can also someƟmes chose
between using {} and ().

▸ The ==-operator checks values (using equals), not references.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Values are objects, operaƟons are methods

1 + 2

▸ Every value is an object -- we don't have to differenƟate
between primiƟve types and reference types.

▸ Every operaƟon is a method call, the expression 1 + 2 is just
shorthand for 1.+(2)

▸ The syntax rules allows us to skip dots, parentheses and
semicolons in many places. We can also someƟmes chose
between using {} and ().

▸ The ==-operator checks values (using equals), not references.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Int-values and for

▸ Scala has a class Int, with lots of methods, such as:

val indianaPi = math.Pi.toInt
val biggest = a max b

The values are compiled into the same 32-bit signed
int-values that Java has.

▸ One noteworthy metod on Int:s is to:

val scale = 0 to 11

It returns a Range-object, which is a kind of collecƟon whose
values are generated 'on demand'.

▸ We can use a for-statement to loop through a Range:

for (k <- 1 to 10)
println(k)

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Int-values and for

▸ Scala has a class Int, with lots of methods, such as:

val indianaPi = math.Pi.toInt
val biggest = a max b

The values are compiled into the same 32-bit signed
int-values that Java has.

▸ One noteworthy metod on Int:s is to:

val scale = 0 to 11

It returns a Range-object, which is a kind of collecƟon whose
values are generated 'on demand'.

▸ We can use a for-statement to loop through a Range:

for (k <- 1 to 10)
println(k)

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Int-values and for

▸ Scala has a class Int, with lots of methods, such as:

val indianaPi = math.Pi.toInt
val biggest = a max b

The values are compiled into the same 32-bit signed
int-values that Java has.

▸ One noteworthy metod on Int:s is to:

val scale = 0 to 11

It returns a Range-object, which is a kind of collecƟon whose
values are generated 'on demand'.

▸ We can use a for-statement to loop through a Range:

for (k <- 1 to 10)
println(k)

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Values are all around

▸ The if-statement has a value:

val smallest = if (a < b) a else b

▸ Blocks have values (their last calculated value):

val gauss = {
var sum = 0
for (term <- 1 to 100)

sum += term
sum

}

▸ The Scala counterpart to Java's void is called Unit, and its
only value is (). A block with a closing Unit-statement (such
as println) has the value ().

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Values are all around

▸ The if-statement has a value:

val smallest = if (a < b) a else b

▸ Blocks have values (their last calculated value):

val gauss = {
var sum = 0
for (term <- 1 to 100)

sum += term
sum

}

▸ The Scala counterpart to Java's void is called Unit, and its
only value is (). A block with a closing Unit-statement (such
as println) has the value ().

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Values are all around

▸ The if-statement has a value:

val smallest = if (a < b) a else b

▸ Blocks have values (their last calculated value):

val gauss = {
var sum = 0
for (term <- 1 to 100)

sum += term
sum

}

▸ The Scala counterpart to Java's void is called Unit, and its
only value is (). A block with a closing Unit-statement (such
as println) has the value ().

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Tuples

▸ In Scala we can return several values from a funcƟon, using a
tuple.

▸ Tuples can be of any arity up to 22 -- we can write a tuple
with one Int, one Boolean, and one String as:

(42, true, "hello, world")

.
Example..

......
Write a funcƟon wich takes three integers, and returns a 3-tuple
with the values in ascending order.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Tuples

▸▸ In Scala we can return several values from a funcƟon, using a
tuple.

▸ Tuples can be of any arity up to 22 -- we can write a tuple
with one Int, one Boolean, and one String as:

(42, true, "hello, world")

.
Example..

......
Write a funcƟon wich takes three integers, and returns a 3-tuple
with the values in ascending order.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Tuples

▸▸ In Scala we can return several values from a funcƟon, using a
tuple.

▸ Tuples can be of any arity up to 22 -- we can write a tuple
with one Int, one Boolean, and one String as:

(42, true, "hello, world")

.
Example..

......
Write a funcƟon wich takes three integers, and returns a 3-tuple
with the values in ascending order.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

SoluƟon

object MinMidMax extends App {
def minmidmax(a: Int, b: Int, c: Int) = {

val smallest = a min b min c
val biggest = a max b max c
(smallest,
a + b + c - smallest - biggest,
biggest)

}
val (a, b, c) = minmidmax(5, 2, 4)
println("%d, %d, %d".format(a, b, c))

}

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

FuncƟons are values

▸▸ FuncƟons are actually objects with an apply-method.

▸ Using some syntacƟc sugaring, the compiler allows us to
write

square(a) + square(b)

instead of

square.apply(a).+(square.apply(b))

▸ Scala converts methods into funcƟons when needed, so we
can use them almost interchangeably.

▸ Since they're values, we can send funcƟons/methods as
parameters to other funcƟons.

▸ We can also return a funcƟon as a value from a funcƟon.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

FuncƟons are values

▸ FuncƟons are actually objects with an apply-method.
▸ Using some syntacƟc sugaring, the compiler allows us to
write

square(a) + square(b)

instead of

square.apply(a).+(square.apply(b))

▸ Scala converts methods into funcƟons when needed, so we
can use them almost interchangeably.

▸ Since they're values, we can send funcƟons/methods as
parameters to other funcƟons.

▸ We can also return a funcƟon as a value from a funcƟon.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

FuncƟons are values

▸ FuncƟons are actually objects with an apply-method.
▸ Using some syntacƟc sugaring, the compiler allows us to
write

square(a) + square(b)

instead of

square.apply(a).+(square.apply(b))

▸ Scala converts methods into funcƟons when needed, so we
can use them almost interchangeably.

▸ Since they're values, we can send funcƟons/methods as
parameters to other funcƟons.

▸ We can also return a funcƟon as a value from a funcƟon.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

FuncƟons are values

▸ FuncƟons are actually objects with an apply-method.
▸ Using some syntacƟc sugaring, the compiler allows us to
write

square(a) + square(b)

instead of

square.apply(a).+(square.apply(b))

▸ Scala converts methods into funcƟons when needed, so we
can use them almost interchangeably.

▸ Since they're values, we can send funcƟons/methods as
parameters to other funcƟons.

▸ We can also return a funcƟon as a value from a funcƟon.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

FuncƟons are values

▸ FuncƟons are actually objects with an apply-method.
▸ Using some syntacƟc sugaring, the compiler allows us to
write

square(a) + square(b)

instead of

square.apply(a).+(square.apply(b))

▸ Scala converts methods into funcƟons when needed, so we
can use them almost interchangeably.

▸ Since they're values, we can send funcƟons/methods as
parameters to other funcƟons.

▸ We can also return a funcƟon as a value from a funcƟon.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Example

.
Example..

......
Write a funcƟon which tabulates another funcƟon in a given inter-
val.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

SoluƟon

object Tabulate extends App {
def tabulate(f: Double => Double,

min: Double,
max: Double) =

(min to max by 0.1).foreach {
x => println("%10.4f %10.4f".format(x, f(x)))

}
def square(x: Double) = x * x
println("Table for the square function:")
tabulate(square, 0, 1)
println("Table for the cube function:")
tabulate(x => x * x * x, 0, 1)
println("Table for the square root function:")
tabulate(math.sqrt, 0, 1)

}

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Scala's collecƟons

▸ Scala's standard collecƟons come in three flavors:

▸ immutable (default)
▸ mutable
▸ parallell

▸ Each flavor has sets, sequences, and maps -- and sequences
are divided into indexed sequences and linear sequences.

▸ Instead of looping through our collecƟons, we oŌen send
funcƟons ('closures') as parameters to methods on the
collecƟons.

▸ These collecƟon-methods can be seen as control structures
(and they oŌen replace while and for).

▸ By using collecƟons and higher order funcƟons we can solve
many problems suprisingly easily.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Scala's collecƟons

▸ Scala's standard collecƟons come in three flavors:
▸ immutable (default)

▸ mutable
▸ parallell

▸ Each flavor has sets, sequences, and maps -- and sequences
are divided into indexed sequences and linear sequences.

▸ Instead of looping through our collecƟons, we oŌen send
funcƟons ('closures') as parameters to methods on the
collecƟons.

▸ These collecƟon-methods can be seen as control structures
(and they oŌen replace while and for).

▸ By using collecƟons and higher order funcƟons we can solve
many problems suprisingly easily.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Scala's collecƟons

▸ Scala's standard collecƟons come in three flavors:
▸ immutable (default)
▸ mutable

▸ parallell

▸ Each flavor has sets, sequences, and maps -- and sequences
are divided into indexed sequences and linear sequences.

▸ Instead of looping through our collecƟons, we oŌen send
funcƟons ('closures') as parameters to methods on the
collecƟons.

▸ These collecƟon-methods can be seen as control structures
(and they oŌen replace while and for).

▸ By using collecƟons and higher order funcƟons we can solve
many problems suprisingly easily.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Scala's collecƟons

▸ Scala's standard collecƟons come in three flavors:
▸ immutable (default)
▸ mutable
▸ parallell

▸ Each flavor has sets, sequences, and maps -- and sequences
are divided into indexed sequences and linear sequences.

▸ Instead of looping through our collecƟons, we oŌen send
funcƟons ('closures') as parameters to methods on the
collecƟons.

▸ These collecƟon-methods can be seen as control structures
(and they oŌen replace while and for).

▸ By using collecƟons and higher order funcƟons we can solve
many problems suprisingly easily.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Scala's collecƟons

▸ Scala's standard collecƟons come in three flavors:
▸ immutable (default)
▸ mutable
▸ parallell

▸ Each flavor has sets, sequences, and maps -- and sequences
are divided into indexed sequences and linear sequences.

▸ Instead of looping through our collecƟons, we oŌen send
funcƟons ('closures') as parameters to methods on the
collecƟons.

▸ These collecƟon-methods can be seen as control structures
(and they oŌen replace while and for).

▸ By using collecƟons and higher order funcƟons we can solve
many problems suprisingly easily.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Scala's collecƟons

▸ Scala's standard collecƟons come in three flavors:
▸ immutable (default)
▸ mutable
▸ parallell

▸ Each flavor has sets, sequences, and maps -- and sequences
are divided into indexed sequences and linear sequences.

▸ Instead of looping through our collecƟons, we oŌen send
funcƟons ('closures') as parameters to methods on the
collecƟons.

▸ These collecƟon-methods can be seen as control structures
(and they oŌen replace while and for).

▸ By using collecƟons and higher order funcƟons we can solve
many problems suprisingly easily.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Scala's collecƟons

▸ Scala's standard collecƟons come in three flavors:
▸ immutable (default)
▸ mutable
▸ parallell

▸ Each flavor has sets, sequences, and maps -- and sequences
are divided into indexed sequences and linear sequences.

▸ Instead of looping through our collecƟons, we oŌen send
funcƟons ('closures') as parameters to methods on the
collecƟons.

▸ These collecƟon-methods can be seen as control structures
(and they oŌen replace while and for).

▸ By using collecƟons and higher order funcƟons we can solve
many problems suprisingly easily.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Scala's collecƟons

▸ Scala's standard collecƟons come in three flavors:
▸ immutable (default)
▸ mutable
▸ parallell

▸ Each flavor has sets, sequences, and maps -- and sequences
are divided into indexed sequences and linear sequences.

▸ Instead of looping through our collecƟons, we oŌen send
funcƟons ('closures') as parameters to methods on the
collecƟons.

▸ These collecƟon-methods can be seen as control structures
(and they oŌen replace while and for).

▸ By using collecƟons and higher order funcƟons we can solve
many problems suprisingly easily.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

scala.collection.immutable

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

scala.collection.mutable

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

CollecƟons and higher-order-funcƟons

▸ To print every value in a sequence of numbers, we can call
the foreach-method on the sequence, and as a parameter
send a funcƟon which prints a value:

(1 to 10).foreach((p: Int) => println(p))

▸ The type of p can be inferred by the compiler:

(1 to 10).foreach(p => println(p))

▸ We can replace the occurence of one parameter with _, as
in:

(1 to 10).foreach(println(_))

▸ This can be simplified even further, into:

(1 to 10).foreach(println)

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

CollecƟons and higher-order-funcƟons

▸ To print every value in a sequence of numbers, we can call
the foreach-method on the sequence, and as a parameter
send a funcƟon which prints a value:

(1 to 10).foreach((p: Int) => println(p))

▸ The type of p can be inferred by the compiler:

(1 to 10).foreach(p => println(p))

▸ We can replace the occurence of one parameter with _, as
in:

(1 to 10).foreach(println(_))

▸ This can be simplified even further, into:

(1 to 10).foreach(println)

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

CollecƟons and higher-order-funcƟons

▸ To print every value in a sequence of numbers, we can call
the foreach-method on the sequence, and as a parameter
send a funcƟon which prints a value:

(1 to 10).foreach((p: Int) => println(p))

▸ The type of p can be inferred by the compiler:

(1 to 10).foreach(p => println(p))

▸ We can replace the occurence of one parameter with _, as
in:

(1 to 10).foreach(println(_))

▸ This can be simplified even further, into:

(1 to 10).foreach(println)

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

CollecƟons and higher-order-funcƟons

▸ To print every value in a sequence of numbers, we can call
the foreach-method on the sequence, and as a parameter
send a funcƟon which prints a value:

(1 to 10).foreach((p: Int) => println(p))

▸ The type of p can be inferred by the compiler:

(1 to 10).foreach(p => println(p))

▸ We can replace the occurence of one parameter with _, as
in:

(1 to 10).foreach(println(_))

▸ This can be simplified even further, into:

(1 to 10).foreach(println)

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

CollecƟons and closures

.
Example..
......Calculate 1 + 2 + . . . + 100 using foreach and a closure.

.
Example..

......
Assuming all command line arguments are integers, print those
which are bigger than 42.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

CollecƟons and closures

.
Example..
......Calculate 1 + 2 + . . . + 100 using foreach and a closure.

.
Example..

......
Assuming all command line arguments are integers, print those
which are bigger than 42.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

SoluƟon

object Sum extends App {
var sum = 0
(1 to 100).map(k => k * k).foreach(sum += _)
println(sum)

}

object BigNumbers extends App {
val bigEnough = args.map(_.toInt).filter(_ >= 42).reverse
println(bigEnough.mkString(", "))

}

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Some methods on a Seq[A]

▸ foreach(f: A => Unit): Unit -- applies f to every value in
the sequence (returning nothing).

▸ map[B](f: A => B): Seq[B] -- takes a sequence a1,a2,
and returns f(a1), f(a2), . . .

▸ filter(p: A => Boolean): Seq[A] -- gives a sequence with
those values in the original sequence for which p returns
true.

▸ take(n: Int): Seq[A] -- gives the first n values of the
sequence.

▸ sortWith(lt: (A, A)): Seq[A] -- gives a sorted sequence,
where the elements are compared using the funcƟon lt.

▸ sum: A -- gives the sum of all the values of the sequence
(works only for types which can be converted to numeric
values).

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Some methods on a Seq[A]

▸ foreach(f: A => Unit): Unit -- applies f to every value in
the sequence (returning nothing).

▸ map[B](f: A => B): Seq[B] -- takes a sequence a1,a2,
and returns f(a1), f(a2), . . .

▸ filter(p: A => Boolean): Seq[A] -- gives a sequence with
those values in the original sequence for which p returns
true.

▸ take(n: Int): Seq[A] -- gives the first n values of the
sequence.

▸ sortWith(lt: (A, A)): Seq[A] -- gives a sorted sequence,
where the elements are compared using the funcƟon lt.

▸ sum: A -- gives the sum of all the values of the sequence
(works only for types which can be converted to numeric
values).

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Some methods on a Seq[A]

▸ foreach(f: A => Unit): Unit -- applies f to every value in
the sequence (returning nothing).

▸ map[B](f: A => B): Seq[B] -- takes a sequence a1,a2,
and returns f(a1), f(a2), . . .

▸ filter(p: A => Boolean): Seq[A] -- gives a sequence with
those values in the original sequence for which p returns
true.

▸ take(n: Int): Seq[A] -- gives the first n values of the
sequence.

▸ sortWith(lt: (A, A)): Seq[A] -- gives a sorted sequence,
where the elements are compared using the funcƟon lt.

▸ sum: A -- gives the sum of all the values of the sequence
(works only for types which can be converted to numeric
values).

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Some methods on a Seq[A]

▸ foreach(f: A => Unit): Unit -- applies f to every value in
the sequence (returning nothing).

▸ map[B](f: A => B): Seq[B] -- takes a sequence a1,a2,
and returns f(a1), f(a2), . . .

▸ filter(p: A => Boolean): Seq[A] -- gives a sequence with
those values in the original sequence for which p returns
true.

▸ take(n: Int): Seq[A] -- gives the first n values of the
sequence.

▸ sortWith(lt: (A, A)): Seq[A] -- gives a sorted sequence,
where the elements are compared using the funcƟon lt.

▸ sum: A -- gives the sum of all the values of the sequence
(works only for types which can be converted to numeric
values).

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Some methods on a Seq[A]

▸ foreach(f: A => Unit): Unit -- applies f to every value in
the sequence (returning nothing).

▸ map[B](f: A => B): Seq[B] -- takes a sequence a1,a2,
and returns f(a1), f(a2), . . .

▸ filter(p: A => Boolean): Seq[A] -- gives a sequence with
those values in the original sequence for which p returns
true.

▸ take(n: Int): Seq[A] -- gives the first n values of the
sequence.

▸ sortWith(lt: (A, A)): Seq[A] -- gives a sorted sequence,
where the elements are compared using the funcƟon lt.

▸ sum: A -- gives the sum of all the values of the sequence
(works only for types which can be converted to numeric
values).

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Some methods on a Seq[A]

▸ foreach(f: A => Unit): Unit -- applies f to every value in
the sequence (returning nothing).

▸ map[B](f: A => B): Seq[B] -- takes a sequence a1,a2,
and returns f(a1), f(a2), . . .

▸ filter(p: A => Boolean): Seq[A] -- gives a sequence with
those values in the original sequence for which p returns
true.

▸ take(n: Int): Seq[A] -- gives the first n values of the
sequence.

▸ sortWith(lt: (A, A)): Seq[A] -- gives a sorted sequence,
where the elements are compared using the funcƟon lt.

▸ sum: A -- gives the sum of all the values of the sequence
(works only for types which can be converted to numeric
values).

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Strings and implicit conversions

▸ Scala has its own classes for Int, Double, etc, but it uses
Java's String-class.

▸ So when we write s.charAt(k) we are calling the
charAt-method defined in the java.lang.String-class.

▸ Scala also define a class StringOps, with addiƟonal methods,
among those all Seq-methods (a string is, aŌer all, a
sequence of Char:s).

▸ If we try to call a Seq-method, such as reverse, on a
String-value, Scala will automagically wrap the string in a
StringOps-object.

▸ This technique is called implicit conversion, and it's used
extensively in Scala's standard library.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Strings and implicit conversions

▸ Scala has its own classes for Int, Double, etc, but it uses
Java's String-class.

▸ So when we write s.charAt(k) we are calling the
charAt-method defined in the java.lang.String-class.

▸ Scala also define a class StringOps, with addiƟonal methods,
among those all Seq-methods (a string is, aŌer all, a
sequence of Char:s).

▸ If we try to call a Seq-method, such as reverse, on a
String-value, Scala will automagically wrap the string in a
StringOps-object.

▸ This technique is called implicit conversion, and it's used
extensively in Scala's standard library.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Strings and implicit conversions

▸ Scala has its own classes for Int, Double, etc, but it uses
Java's String-class.

▸ So when we write s.charAt(k) we are calling the
charAt-method defined in the java.lang.String-class.

▸ Scala also define a class StringOps, with addiƟonal methods,
among those all Seq-methods (a string is, aŌer all, a
sequence of Char:s).

▸ If we try to call a Seq-method, such as reverse, on a
String-value, Scala will automagically wrap the string in a
StringOps-object.

▸ This technique is called implicit conversion, and it's used
extensively in Scala's standard library.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Strings and implicit conversions

▸ Scala has its own classes for Int, Double, etc, but it uses
Java's String-class.

▸ So when we write s.charAt(k) we are calling the
charAt-method defined in the java.lang.String-class.

▸ Scala also define a class StringOps, with addiƟonal methods,
among those all Seq-methods (a string is, aŌer all, a
sequence of Char:s).

▸ If we try to call a Seq-method, such as reverse, on a
String-value, Scala will automagically wrap the string in a
StringOps-object.

▸ This technique is called implicit conversion, and it's used
extensively in Scala's standard library.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Strings and implicit conversions

▸ Scala has its own classes for Int, Double, etc, but it uses
Java's String-class.

▸ So when we write s.charAt(k) we are calling the
charAt-method defined in the java.lang.String-class.

▸ Scala also define a class StringOps, with addiƟonal methods,
among those all Seq-methods (a string is, aŌer all, a
sequence of Char:s).

▸ If we try to call a Seq-method, such as reverse, on a
String-value, Scala will automagically wrap the string in a
StringOps-object.

▸ This technique is called implicit conversion, and it's used
extensively in Scala's standard library.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Example

.
Example..

......
Write a program which prints, in alphabeƟcal order, all palin-
dromes given on the command line.

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

SoluƟon

object Palindromes extends App {
def isPalindrome(s: String) = s.reverse == s
args

.filter(isPalindrome)

.sortWith(_ < _)

.foreach(println)
}

Learning Scala

Seminar 1

About the
Course
Seminar plan

Quick Intro
Hello, world!

val, var, type

FuncƟons

Closure

Class

Case class

Object

Values and objects

CollecƟons

Conclusion

Conclusion & Homework

▸ Skim the PINS book Chapters 1-12
▸ Check out ->Resources on the course web page:

http://cs.lth.se/english/course/learning_scala/

▸ Familiarize yourself with ScalaDoc
▸ Do selected ->Exercises on the course web page
▸ You will be assigned a Ɵme slot and an area from Chapters
1-12 that you will teach at Seminar 2.

▸ Swaps of areas among parƟcipants ok if mutually agreed.

http://cs.lth.se/english/course/learning_scala/

	About the Course
	Seminar plan

	Quick Intro
	Hello, world!
	val, var, type
	Functions
	Closure
	Class
	Case class
	Object
	Values and objects
	Collections

	Conclusion

