Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

Learning Scala - Seminar 1

Bjorn Regnell, Christian Soderberg

Dept. of Computer Science
Lund University, Sweden

2012, April 27

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

v

v

v

v

v

About the course

Some highlights of Chapter 1-12
Mix interactive plenary explanations and exercises
Planning of coming seminars

Conclusion and homework

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

Objectives and qualifications

» The course is flexible and individualized, depending on
qualifications and ambitions.
» Main objectives
1. Tolearn (more about) Scala, including the combination of
object orientation + functional programming

2. To explore if, and if so, how Scala can be used in teaching
programming at undergraduate level

» Minimum qualifications: Object-oriented programming such
as Java, Simula, Object Pascal etc.

Course "philosophy"

Learning Scala

Seminar 1

About the
Course

» Heterogeneous ambitions and learning-goals combined.

Seminar plan

Quick Intro » No questions are stupid questions!

‘Hv‘d » We do it together; participants are teachers.

o » The seminars try to make parts of the PINS book come

o "alive" and to inspire your own experiments.

B » You are expected to study the PINS book between seminars.
Conclusion N

We reflect on how to teach the studied concepts and their
pros and cons in large-scale software development

Flexible Parts overview

Learning Scala

Seminar 1
Aot the » The course is individualized for each participant to contain
Course one or more of these 3 optional parts depending on the
e ambition (corresponding to 1.5 - 7.5 ECTS credits):
QHU‘:CM;O » Part 1: Scala basics, Chapters 1-12
S 1.5 credits, 3 seminars of 2-3 hours each
B » Part 2: Advancement in Scala, Chapters 13-23,
o 1.5 credits, 2 seminars of 3 hours each
e » Part 3: Project work, Selected portions from Chapters 24-35
R 2 - 4.5 credits
Conclusion Examination: presentation at a seminar, brief report

The project topic is selected freely depending on interest,
theoretical or practical studies on anything that is in some
way related to Scala.

Seminar planning

Learning Scala

Part Contents Date
Seminar 1 Seminar
P1Sem1 Overview April 27, 13:15-16:00
About the Chapters 1-12
CSD:'S: Exercise Optional group exercise May 4, E:2116, 13:15-
: 16:00
(i:"zii)::‘m P1Sem 2 Details (taught by course participants) May 29, 13:15-16:00
— Chapters 1-12
Enetons P1Sem3 Invited talks June 14, 13:15-15:00
;:““ Gorel: "The expression problem and Scala"
e Kris: "Building a Scala library for JaCoP"
Object Jorn: "Scala Actors and Akka"
Z‘H‘““ Jacek: "Functional programming in Scala"
Conclusion SUMMER
P2 Sem 4 Chapters 13-23 August 29, 13:15-16:00
taught by course participants
P2 Sem 5 Chapters 13-23 September 20, 13:15-
taught by course participants 16:00
P3 Sem 6 Chapters 24-35 TBD

Project presentation by course participants

Seminar 2: Example of topics

Learning Scala

Seminar 1 At seminar 2, participants will be assigned a time slot and topics to teach, for example:
About the 1. Method overloading, operators and implicit conversion
Ganie 2. Built-in control structures: if, while, for, exceptions
Seminar plan
_ 3. Control abstraction, currying, and by-name-parameters
Quick Intro
Hello, world! 4. Tail recursion optimization
val, var, type
o 5. Partially applied functions and special function call forms
:“5““‘ 6. Inheritance: extending, overriding and final
Case class 7. Classes: constructors, auxiliary constructors and access rules
Object
Values and objects 8. Objects: factory objects and method chaining by returning this
ollections .
o 9. Scala's class hierarchy and Predef
Conclusion) . L. . .
10. Traits: interfaces, mix-ins and stackable modifications
11. Pedagogical aspects of converting Java assignments to Scala
12.

Special topics can be negotiated with Bjorn.

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

Participants

. Eva Magnusson, cs larare

. Kim Weyns, cs post doc (*)

. Niklas Fors, cs doktorand

. Markus Borg, cs doktorand

. Emma Soderberg, cs doktorand
. Bjorn A. Johnsson, cs doktorand
. Maj Stenmark, cs doktorand (*)
. Anna Axelsson, cs larare

. Per Holm, cs larare

10. Roger Henriksson, cs larare
11. Lennart Andersson, cs larare
12. Jesper Pedersen, cs doktorand

O OoONOOUTD WNE

13.
14.
15.
16.
17.
18.

Flavius Gruian, cs larare

Sven Gestegard Robertz, cs forskare
Alfred Theorin, regler doktorand
Gorel Hedin, cs larare

Per Andersson, cs larare

Sardar Muhammad Sulaman, cs

doktorand

19.
20.
21.
22.
23.

Elizabeth Bjarnason, cs doktorand
Usman Mazhar Mirza, cs doktorand
Martin Host, cs larare

Mehmet Ali Arslan, cs doktorand (*)
Krzysztof Kuchcinski, cs larare (*)

24.Gustav Cedersjo, cs doktorand

25.

Mathias Haage, cs Larare

(*) Cannot come April 27 but will participate in the course

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

» Familiarize the participants with the basics of Scala.
» Bigideas:
» Simple programs.
» Objects, functions and values.
» Higher-order functions.
Introduction to some collection classes.
» Simple classes and case classes.

v

» If you have already written some Scala programs, you have
probably seen everything before.

Pair exercising

Ls ing Scal
carning Seata » The one that knows the least about Scala is in control of the keyboard!

seminar » The one that knows the most about Scala makes an effort to share his/her
About the knowledge in a pedagogical way!
Cso:rsem » If exercises are too easy for you, make them more challenging.
Quick Intro » If exercises are too difficult don't hesitate to ask.
H\Hw? > Move now so that you sit together, and tell each other about your scala

Functions

experiences so far.

Closure
Class
Case class

Object

R Eva Magnusson
Collections Niklas Fors
Emma Soderberg

Bjorn A. Johnsson

Anna Axelsson

Per Holm

Roger Henriksson

Sven Gestegard Robertz
Sardar Muhammad Sulaman
Mathias Haage

Gustav Cedersjo
Markus Borg

Alfred Theorin

Per Andersson
Flavius Gruian
Jesper Pedersen
Lennart Andersson
Usman Mazhar Mirza
Elizabeth Bjarnason
Martin Host

Conclusion

o o+ F o+ o+ +

Quick Intro: What is Scala?

Learning Scala

Seminar 1
e
;umlckln‘tm » Started in 2001 at EPFL by Martin Odersky
B » A better Java with cleaned up syntax and relaxed restrictions
e » Combines functional and object-oriented programming

v

Scalable from small scripts to large systems

alues and objects

v

Runs on the Java Virtual Machine

Collections

v

Static typing and type inference

Conclusion

How to run Scala

Learning Scala

Seminar 1
About the o . .
ol » Programs can be compiled using either scalac or fsc.
Seminar plan . .
, » Programs can be run as scripts using scala.
Quick Intro
e » Programs can be run interactively using Scala's
e Read-Evaluate-Print-Loop (REPL).
o » Programs can also be run interactively using tools such as

oo Kojo.

Values and objects

Collections

» Integrated Development Environments for Eclipse, NetBeans
and IntelliJ.

Conclusion

» Also modes for emacs (ensime), etc.

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

Run the “hello, world"-program:
» In the REPL.
» |n Kojo.

» As a compiled program.
» As a script.

First exercise: Hello, world!

Learning Scala

//file hello.scala

Sl 4 object helloWorld {
About the def main(args: Array[String]) {
Course println("Hello, world!")
Seminar plan }
Quick Intro }
Hello, world!
e Compile with > scalac hello.scala
;u:;“,:m Run with > scala helloworld
Class
Case class //file myapp.scala
\[,):f:a“dobm object helloArgs extends App {
o println("Hello args: " + args.mkString(", "))
Conclusion }

compile with > scalac myapp.scala
run with > scala helloArgs hejsan svejsan

In the REPL and in Kojo, no need for object-wrapping, just type:

println("Hello, world!")

The Scala REPL

Learning Scala
8 Command Prompt - scala
Seminar 1 C:\Users\bjornr>scala
(Welcome to Scala version 2.9.1.final (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_€2).
Type in expressions to have them evaluated.

About the Type :help for more information.

Course

Seminar plan scala> :help
|A11 commands can be abbreviated, e.g. :he instead of :help.

Quick Intro Those marked with a * have more detailed help, e.g. :help imports.

Hello, world!

:cp <path> add a jar or directory to the classpath
thelp [command] print this summary or command-specific help
:history [num] show the history (optional num is commands to show)
th? <string> search the history
mports [name name ...] show import history, identifying sources of names
mplicits [-v] show the implicits in scope
javap <path|class> disassemble a file or class name
show how ctrl-[A-Z] and other keys are bound
load and interpret a Scala file
Conclusion enter paste mode: all input up to ctrl-D compiled together
enable power user mode
exit the interpreter
reset execution and replay all previous commands
:sh <command line> run a shell command (result is implicitly => List[String])
:silent disable/enable automatic printing of results
:type <expr> display the type of an expression without evaluating it

tions

scala> I

The Kojo IDE for Scala

Learning Scala

Seminar 1 Arkiv Redigera Visa Kallkod Eonster Exempel Berattelser (Stories) Sprak (Language) Hjalp
2 [# Redigeraren (Script Editor) - ring2.kojo [IE (=] [Ritfonster (Drawing Canvas) | HEE
iPeXamw 2@
About the 2| 1 def slump = slumptal(256) =
Course 2 2
2
Seminar plan *
3 sudda()
Quick Intro 4 sakta(100)
Hello, world! 5 bakgrund2(svart,vit)
val,var, type 6 bredd(6)
Functions 7
Closure 8 upprepa (100) { 3
S“I 9 farg(Color(slump,10,slump,100))
—— 10 f_r?am(Se)
st 11 vanster(180)
Collections 12 upprepa (110) {
Conclusion 13 firangay
14 vanster(3) ———
Utdatafonster (Output Pane) |
ili5 = 7
16 héger(35)
17| }
18
e — o v
Mouse Position: (184, 214) B | 13116 |INS

Expressions, values, variables & types

Learning Scala

Seminar 1
About the
CS":’SQ‘ (1800-90*9.8)/5 + 4 //expression
ek e val x = 42 //x cannot be changed
pe var y = 41.9 //y can be changed
e def z = x + y //z is evaluated each call
coss lazy val v = z.round //evaluation delayed
o y = 42.9 //var is updated
e println(v) //v is evaluated
Conclusion var w: Double = 42.1 //explicit type declaration

var w: Int = 42.1 //error: type mismatch!

What is a function?

Learning Scala

seminar 1 function
About the
o A function can be invoked with a list of arguments to produce a
Quick Intro result. A function has a parameter list, a body, and a result type.
B Functions that are members of a class, trait, or singleton object
e are called methods. Functions defined inside other functions are
o called local functions. Functions with the result type of Unit are
B called procedures. Anonymous functions in source code are

Collections

called function literals. At run time, function literals are
instantiated into objects called function values.

Conclusion

[PINS Glossary, page 801]

A simple function

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro

Hello, world!

val, v, type def add(a:Int, b:Int) = a + b
Functions

Closure

Class

—— add(3,4)

Object

Values and objects

Collections

Conclusion

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro

Case class

Object
Values and objects

Collections

Conclusion

Scala function definition syntax

“def” starts a function definition
function name

parameter list in parentheses

function’s result type
/ \ \ ¢equals sign

def max(x: Int, y: Int): Int = {

if (x > vy)
X

else \ function body
y in curly braces

[PINS Fig 2.1, page 28]

Scala function litteral syntax

Learning Scala

Seminar 1
About the function
Course
e parameters
S in parentheses

Functions.
Closure
Class

Case class

Collections

Conclusion

right function
arrow body

N

(x: Int, yv: Int) => x + v

[PINS Fig 2.2, page 34]

A simple, anonymous function

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world (a:Int, b:Int) => a + b
val, var, type

Functions.

o val f = (a:Int, b:Int) => a + b

Object

Values and objects -F (3 R 4)

Collections

Conclusion

What is a closure?

Learning Scala

Seminar 1
About the
etz A closure is a function that refers to non-local names that are in
Seminar plan
T scope at the point of declaration, and where the binding to actual
il mit) values are made at the point of evaluation.
val, var, type
Closure var a = 43
Class
def f(x:Int) = x + a //acces to non-local name
B println(f(-1)) //f is closed over a bound to 43

Collections

a = 41
println(f(1)) //f is closed over a bound to 41

Conclusion

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

class Point(initX:Double, initY:Double) {
var x = initX

var y = inity

override def toString = "Point("+x+","+y+")"

val p = new Point(0,0)

println(p)

p.x = 10 // OK, p is a val, but p.x is a var
p.y = 20

println(p)

//p.initX = 3 //not allowed!!

Case class

Learning Scala

Seminar 1
houe A case class is a class that has several things ready-made,
Seminar plan including a nice toString and a factory object so that we do not
S need to write "new". Case classes are powerful tools for
S pattern-matching.
Closure
Class case class Point(x:Double, y:Double)
Case class
val p = Point(10,20)
Values and objects
Collectons println(p)
Conclusion

//p.x = 3 //not allowed, x is a vall!!

Singleton object

Learning Scala

Seminar 1
About the
Course .
—— If you only need one instance you do not need to declare and
Quick Intro instantiate a class, you can make a singleton object directly:
Hello, world!
val, var, type
B object myObject {
o val myAttribute = 42
}

Values and objects

Collections

Conclusion println(myObject.myAttribute)

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class.

Case class

Object

Values and objects

Collections

Conclusion

Values are objects,

operations are methods

1+ 2

Values are objects, operations are methods

Learning Scala

Seminar 1

About the
Course 1+ 2

Seminar plan

T » Every value is an object -- we don't have to differentiate
Hello, ol between primitive types and reference types.

val, var, type

Closure

Class

.

Values and objects

Collections

Conclusion

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro

Hello, world!

/alues and objects

Collections

Conclusion

Values are objects, operations are methods

1+ 2

» Every value is an object -- we don't have to differentiate
between primitive types and reference types.

» Every operation is a method call, the expression 1 + 2 is just
shorthand for 1.+(2)

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro

Hello, world!

/alues and objects

Collections

Conclusion

Values are objects, operations are methods

1+ 2
» Every value is an object -- we don't have to differentiate
between primitive types and reference types.
» Every operation is a method call, the expression 1 + 2 is just
shorthand for 1.+(2)

» The syntax rules allows us to skip dots, parentheses and

semicolons in many places. We can also sometimes chose
between using {} and ().

Values are objects, operations are methods

Learning Scala

Seminar 1

About the

Course 1 + 2
(;uwl‘ck\r‘ltro » Every value is an object -- we don't have to differentiate
B between primitive types and reference types.

- » Every operation is a method call, the expression 1 + 2 is just
shorthand for 1.+(2)

R » The syntax rules allows us to skip dots, parentheses and
o semicolons in many places. We can also sometimes chose
between using {} and ().

Conclusion

» The ==-operator checks values (using equals), not references.

Int-values and for

Learning Scala

» Scala has a class Int, with lots of methods, such as:
Seminar 1
About the val indianaPi = math.Pi.tolnt
Csourse‘ val blggest = a max b
fune The values are compiled into the same 32-bit signed

AT int-values that Java has.
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

Int-values and for

Learning Scala

» Scala has a class Int, with lots of methods, such as:
Seminar 1
. val indianaPi = math.Pi.tolnt
?””‘ val biggest = a max b
Q“‘jc“”‘:"’ The values are compiled into the same 32-bit signed
val, v, type int-values that Java has.
co » One noteworthy metod on Int:s is to:

Case class
Object val scale = @ to 11

Values and objects

Collections
o It returns a Range-object, which is a kind of collection whose
values are generated 'on demand'.

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

Int-values and for

» Scala has a class Int, with lots of methods, such as:

val indianaPi = math.Pi.tolnt
val biggest = a max b

The values are compiled into the same 32-bit signed
int-values that Java has.

» One noteworthy metod on Int:s is to:

val scale = @ to 11

It returns a Range-object, which is a kind of collection whose
values are generated 'on demand'.
» We can use a for-statement to loop through a Range:

for (k <- 1 to 10)
println(k)

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class.

Case class

Object

Values and objects

Collections

Conclusion

Values are all around

» The if-statement has a value:

val smallest

if (a < b) a else b

Values are all around

Learning Scala

Seminar 1 » The if-statement has a value:

Atz val smallest = if (a < b) a else b
Course

Seminar plan

Quick Intro » Blocks have values (their last calculated value):

Hello, world!

val, var, type

val gauss = {

Functions
Closure

var sum = @

Class.

Case class for (term <- 1 to 100)
Object
Values and objects sum += term
Collections
sum
Conclusion

Values are all around

Learning Scala

Seminar 1 » The if-statement has a value:

Atz val smallest = if (a < b) a else b
Course

Seminar plan

Quick Intro » Blocks have values (their last calculated value):

Hello, world!

val, var, type

val gauss = {

Functions
Closure

var sum = @

Class

Case class for (term <- 1 to 100)
Object
Values and objects sum += term
Collections
sum
Conclusion

» The Scala counterpart to Java's void is called unit, and its

only value is (). A block with a closing unit-statement (such
as println) has the value ().

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class.

Case class

Object

Values and objects

Collections

Conclusion

» In Scala we can return several values from a function, using a
tuple.

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

» In Scala we can return several values from a function, using a
tuple.

» Tuples can be of any arity up to 22 -- we can write a tuple
with one Int, one Boolean, and one String as:

(42, true,

"hello, world")

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

» In Scala we can return several values from a function, using a
tuple.

» Tuples can be of any arity up to 22 -- we can write a tuple
with one Int, one Boolean, and one String as:

(42, true, "hello, world")

Write a function wich takes three integers, and returns a 3-tuple
with the values in ascending order.

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class.

Case class

Object

Values and objects

Collections

Conclusion

Solution

object MinMidMax extends App {

def minmidmax(a: Int, b: Int, c: Int) = {

val smallest = a min b min ¢
val biggest = a max b max c
(smallest,
a+b + c - smallest - biggest,
biggest)
}
val (a, b, c) = minmidmax(5, 2, 4)
println("%d, %d, %d".format(a, b, c))

Functions are values

Learning Scala

seminar » Functions are actually objects with an apply-method.
About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

Functions are values

Learning Scala

seminar 1 » Functions are actually objects with an apply-method.
About the H 3 H H
oo » Using some syntactic sugaring, the compiler allows us to
Seminar plan write
Quick Intro
el il square(a) + square(b)
val, var, type
e instead of
Class
. square.apply(a).+(square.apply(b))

Values and objects

Collections

Conclusion

Functions are values

Learning Scala

seminar 1 » Functions are actually objects with an apply-method.
About the H 3 H H
oo » Using some syntactic sugaring, the compiler allows us to
Seminar plan write
Quick Intro
el il square(a) + square(b)
val, var, type
e instead of
Class
. square.apply(a).+(square.apply(b))

Values and objects

Collections

» Scala converts methods into functions when needed, so we
can use them almost interchangeably.

Conclusion

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

Functions are values

» Functions are actually objects with an apply-method.

» Using some syntactic sugaring, the compiler allows us to
write

square(a) + square(b)
instead of
square.apply(a).+(square.apply(b))

» Scala converts methods into functions when needed, so we
can use them almost interchangeably.

» Since they're values, we can send functions/methods as
parameters to other functions.

Functions are values

Learning Scala

Seminar 1

» Functions are actually objects with an apply-method.

About the H 3 H H

oo » Using some syntactic sugaring, the compiler allows us to
Seminar plan write

Quick Intro

el il square(a) + square(b)

val, var, type

e instead of

Class

. square.apply(a).+(square.apply(b))

Values and objects

Collections

» Scala converts methods into functions when needed, so we
can use them almost interchangeably.

Conclusion

» Since they're values, we can send functions/methods as
parameters to other functions.

» We can also return a function as a value from a function.

Example

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type

Functions

o Write a function which tabulates another function in a given inter-

Class
— val.

Object

Values and objects

Collections

Conclusion

Solution

Learning Scala

object Tabulate extends App {

Seminar 1
def tabulate(f: Double => Double,

houe min: Double,
S max: Double) =
Quick Intro .
el o (min to max by ©.1).foreach {
o X => println("%10.4f %10.4f".format(x, f(x)))
losure
}
e def square(x: Double) = x * x
Object
Values and objects println("Table for the square function:")
Collections
Conclusion tabulate(square, 0, 1)

println("Table for the cube function:")
tabulate(x => x * x * x, 0, 1)

println("Table for the square root function:")
tabulate(math.sqrt, o, 1)

Scala's collections

Learning Scala

Seminar 1

» Scala's standard collections come in three flavors:

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class.

Case class

Object

Values and objects

Collections

Conclusion

Scala's collections

Learning Scala

Seminar 1

» Scala's standard collections come in three flavors:
About the » immutable (default)

Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class.

Case class

Object

Values and objects

Collections

Conclusion

Scala's collections

Learning Scala

Seminar 1

» Scala's standard collections come in three flavors:
About the » immutable (default)
course » mutable

Seminar plan
Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class.

Case class

Object

Values and objects

Collections

Conclusion

Scala's collections

Learning Scala

Seminar 1

» Scala's standard collections come in three flavors:
About the » immutable (default)

course » mutable

» parallell

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class.

Case class

Object

Values and objects

Collections

Conclusion

Scala's collections

Learning Scala

Seminar 1 » Scala's standard collections come in three flavors:
About the » immutable (default)
course » mutable
Seminar plan
Quick Intro g para”e”
B » Each flavor has sets, sequences, and maps -- and sequences
B are divided into indexed sequences and linear sequences.
Class

Case class
Object
Values and objects

Collections

Conclusion

Scala's collections

Learning Scala

Seminar 1 » Scala's standard collections come in three flavors:
About the » immutable (default)
course » mutable
Seminar plan
Quick Intro g para”e”

Hello, world!

v

val, var, type

Each flavor has sets, sequences, and maps -- and sequences

Functions

o are divided into indexed sequences and linear sequences.
Class . .

» Instead of looping through our collections, we often send
Object .

T functions ('closures') as parameters to methods on the
e collections.

Conclusion

Scala's collections

Learning Scala

Seminar 1 » Scala's standard collections come in three flavors:
About the » immutable (default)
course » mutable
Seminar plan
» parallell

Quick Intro

Hello, world!

v

val, var, type

Each flavor has sets, sequences, and maps -- and sequences

Functions

o are divided into indexed sequences and linear sequences.
Class . .

» Instead of looping through our collections, we often send
Object .

T functions ('closures') as parameters to methods on the
e collections.

Conclusion

v

These collection-methods can be seen as control structures
(and they often replace while and for).

Scala's collections

Learning Scala

Seminar 1

v

Scala's standard collections come in three flavors:

About the » immutable (default)

Course » mutable

Seminar plan

Quick Intro i’ para”e“

o » Each flavor has sets, sequences, and maps -- and sequences
o are divided into indexed sequences and linear sequences.
Class . .

» Instead of looping through our collections, we often send
Object .

N functions ('closures') as parameters to methods on the
e collections.

Conclusion

» These collection-methods can be seen as control structures
(and they often replace while and for).

» By using collections and higher order functions we can solve
many problems suprisingly easily.

scala.collection.immutable

Learning Scala

Seminar 1

About the
Iterable
Course

Seminar plan /// \

i &~

Quick Intro ”
a

Hello, world!

val, var, type

Functions

Closure SorledSet

P

HashMap
Class

Case class
Object

Values and objects TreeSet

TreeMap

Collections

Conclusion

~.

IndexedSeq

‘ﬁ' e

scala.collection.mutable

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro

Hello, world!

val, var, type
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Inds xedSeq

Conclusion

ObserableBufer

Synchronizedueue

Collections and higher-order-functions

Learning Scala

cominor » To print every value in a sequence of numbers, we can call
eminar

the foreach-method on the sequence, and as a parameter
houe send a function which prints a value:
Seminar plan
T . (1 to 10).foreach((p: Int) => println(p))

Hello, world!

val, var, type
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

Collections and higher-order-functions

Learning Scala

cominor » To print every value in a sequence of numbers, we can call
eminar

the foreach-method on the sequence, and as a parameter
houe send a function which prints a value:
T . (1 to 10).foreach((p: Int) => println(p))
o » The type of p can be inferred by the compiler:
B (1 to 10).foreach(p => println(p))

Object
Values and objects

Collections

Conclusion

Collections and higher-order-functions

Learning Scala

seminar1 » To print every value in a sequence of numbers, we can call
the foreach-method on the sequence, and as a parameter

e send a function which prints a value:
Qumo (1 to 10).foreach((p: Int) => println(p))
B » The type of p can be inferred by the compiler:
E%:h (1 to 10).foreach(p => println(p))
:‘"m“ » We can replace the occurence of one parameter with _, as
Conclusion in:

(1 to 10).foreach(println(_))

Collections and higher-order-functions

Learning Scala

» To print every value in a sequence of numbers, we can call
the foreach-method on the sequence, and as a parameter

Seminar 1

About the

o send a function which prints a value:
QiekIntre (1 to 10).foreach((p: Int) => println(p))
o » The type of p can be inferred by the compiler:

B (1 to 10).foreach(p => println(p))

Values and objects >

o We can replace the occurence of one parameter with _, as

Conclusion n:

(1 to 10).foreach(println(_))

v

This can be simplified even further, into:

(1 to 10).foreach(println)

Collections and closures

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro

e Calculate 1 + 2 + ... + 100 using foreach and a closure.

val, var, type

Functions
Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

Collections and closures

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro

e Calculate 1 + 2 + ... + 100 using foreach and a closure.

val, var, type

Functions
Closure
Class
Case class

Object

Values and objects

Collections

Assuming all command line arguments are integers, print those
which are bigger than 42.

Conclusion

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class.

Case class

Object

Values and objects

Collections

Conclusion

Solution

object Sum extends App {
var sum = 0

(1 to 100).map(k => k * k).foreach(sum += _)
println(sum)

object BigNumbers extends App {

val bigEnough = args.map(_.toInt).filter(_ >= 42).reve
println(bigEnough.mkString(", "))

Some methods on a Seq[A]

Learning Scala

seminor 1 » foreach(f: A => Unit): Unit -- applies f to every value in
the sequence (returning nothing).

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class.

Case class

Object

Values and objects

Collections

Conclusion

Some methods on a Seq[A]

Learning Scala

seminor 1 » foreach(f: A => Unit): Unit -- applies f to every value in
the sequence (returning nothing).

About the
Course

» map[B](f: A => B): Seq[B] -- takes a sequence a1, as,
Quick Intro and returnsf(al)7f(az)7"‘

Hello, world!

val, var, type
Functions

Closure

Class.

Case class

Object

Values and objects

Collections

Conclusion

Some methods on a Seq[A]

Learning Scala

seminor 1 » foreach(f: A => Unit): Unit -- applies f to every value in
the sequence (returning nothing).

About the

ST » map[B](f: A => B): Seq[B] -- takes a sequence a1, as,
Seminar plan

Quick Intro and returnsf(al)7f(az)7 ctt

Hello, world! . . _
e » filter(p: A => Boolean): Seq[A] -- gives a sequence with
e those values in the original sequence for which p returns

Class -t rue.
Case class

Object

Values and objects

Collections

Conclusion

Some methods on a Seq[A]

Learning Scala
seminor 1 foreach(f: A => Unit): Unit -- applies f to every value in
the sequence (returning nothing).

v

About the

Course » map[B](f: A => B): Seq[B] -- takes a sequence a1, ay,......
Seminar plan

. and returns f(a1),f(az),. ..

Hello, world! s . _ . — O] i
e » filter(p: A => Boolean): Seq[A] -- gives a sequence with
e those values in the original sequence for which p returns

Class true.

Object . . i i

S » take(n: Int): Seq[A] -- gives the first n values of the

Collections Sequence.

Conclusion

Some methods on a Seq[A]

Learning Scala

v

foreach(f: A => Unit): Unit -- applies f to every value in
the sequence (returning nothing).

Seminar 1

About the

Course » map[B](f: A => B): Seq[B] -- takes a sequence a1, ay,......
Seminar plan

. and returns f(a1),f(az),. ..

Hello, world! s . _ . — O] i
e » filter(p: A => Boolean): Seq[A] -- gives a sequence with
e those values in the original sequence for which p returns

Class true.

Object . . i i

S » take(n: Int): Seq[A] -- gives the first n values of the

Collections Sequence.

Conclusion

» sortWith(1lt: (A, A)): Seq[A] -- gives a sorted sequence,
where the elements are compared using the function 1t.

Some methods on a Seq[A]

Learning Scala
» foreach(f: A => Unit): Unit -- applies f to every value in
the sequence (returning nothing).

Seminar 1

About the

Course » map[B](f: A => B): Seq[B] -- takes a sequence a1, 03,
e and returns f(a1),f(az),. ..
B » filter(p: A => Boolean): Seq[A] -- gives a sequence with

Functions

. those values in the original sequence for which p returns
Class true.

Case class
Object

o » take(n: Int): Seq[A] -- gives the first n values of the
Collections sequence.

Conclusion

» sortWith(1lt: (A, A)): Seq[A] -- gives a sorted sequence,
where the elements are compared using the function 1t.

» sum: A--gives the sum of all the values of the sequence
(works only for types which can be converted to numeric
values).

Strings and implicit conversions

Learning Scala

Seminar 1

» Scala has its own classes for Int, Double, etc, but it uses
one Java's string-class.

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

Strings and implicit conversions

Learning Scala

Seminar 1 . .
» Scala has its own classes for Int, Double, etc, but it uses
houe Java's string-class.
S » So when we write s.charAt(k) we are calling the
Quick Intro . .
Hell,workds charAt-method defined in the java.lang.string-class.
val, var, type

Functions

Closure

Class

Case class

Object

Values and objects

Collections

Conclusion

Strings and implicit conversions

Learning Scala

Seminar 1 . .
» Scala has its own classes for Int, Double, etc, but it uses

houe Java's string-class.
e » So when we write s.charat(k) we are calling the
Quick Intro . .
Hell,workds charAt-method defined in the java.lang.string-class.
val, var, type
» Scala also define a class stringops, with additional methods,
Closure
s among those all seq-methods (a string is, after all, a
e sequence of Char:s).

Values and objects

Collections

Conclusion

Strings and implicit conversions

Learning Scala

Seminar 1

» Scala has its own classes for Int, Double, etc, but it uses

About the

oo Java's string-class.

e » So when we write s.charat(k) we are calling the

Quick Intro . .

Hell,workds charAt-method defined in the java.lang.string-class.
val, var, type

» Scala also define a class stringops, with additional methods,
Closure

s among those all seq-methods (a string is, after all, a
e sequence of Char:s).

Values and objects

Calectons » If we try to call a seq-method, such as reverse, on a

Conclusion

string-value, Scala will automagically wrap the string in a
StringOps-object.

Strings and implicit conversions

Learning Scala

Seminar 1

v

Scala has its own classes for Int, Double, etc, but it uses

About the

oo Java's string-class.

e » So when we write s.charat(k) we are calling the

Quick Intro

Hell,workds charAt-method defined in the java.lang.string-class.
val, var, type

» Scala also define a class stringops, with additional methods,
Closure

s among those all seq-methods (a string is, after all, a
e sequence of Char:s).

Values and objects

Calectons » If we try to call a seq-method, such as reverse, on a

Conclusion

string-value, Scala will automagically wrap the string in a
StringOps-object.

» This technique is called implicit conversion, and it's used
extensively in Scala's standard library.

Example

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro

Hello, world!

val, var, type
Functions

e Write a program which prints, in alphabetical order, all palin-

Class

S dromes given on the command line.

Object

Values and objects

Collections

Conclusion

Learning Scala

Seminar 1

About the
Course

Seminar plan

Quick Intro
Hello, world!

val, var, type
Functions

Closure

Class.

Case class

Object

Values and objects

Collections

Conclusion

Solution

object Palindromes extends App {
def isPalindrome(s: String) = s.reverse == s
args
.filter(isPalindrome)
.sortWith(_ < _)
.foreach(println)

Conclusion & Homework

Learning Scala

Seminar 1
About the
B » Skim the PINS book Chapters 1-12
QuicklInro » Check out ->Resources on the course web page:
H\wa http://cs.lth.se/english/course/learning_scala/
;o“:u“r:m » Familiarize yourself with ScalaDoc
o » Do selected ->Exercises on the course web page
e » You will be assigned a time slot and an area from Chapters
Conclusion 1-12 that you will teach at Seminar 2.

» Swaps of areas among participants ok if mutually agreed.

http://cs.lth.se/english/course/learning_scala/

	About the Course
	Seminar plan

	Quick Intro
	Hello, world!
	val, var, type
	Functions
	Closure
	Class
	Case class
	Object
	Values and objects
	Collections

	Conclusion

