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Abstract

We consider the task of network exploration by a mobile

agent (robot) with small memory. The agent has to traverse

all nodes and edges of a network (represented as an undi-

rected connected graph), and return to the starting node.

Nodes of the network are unlabeled and edge ports are lo-

cally labeled at each node. The agent has no a priori knowl-

edge of the topology of the network or of its size, and cannot

mark nodes in any way. Under such weak assumptions, cy-

cles in the network may prevent feasibility of exploration,

hence we restrict attention to trees. We present an algo-

rithm to accomplish tree exploration (with return) using

O(log n)-bit memory for all n-node trees. This strength-

ens the result from [15], where O(log2 n)-bit memory was

used for tree exploration, and matches the lower bound on

memory size proved there.

1 Introduction

We consider the task of network exploration with return,
by a mobile entity with small memory. The mobile
entity has to traverse all nodes and edges of a network
(represented as an undirected connected graph), and
return to the starting node. The mobile entity may be
a piece of software traveling throughout the network, in
the case when the graph represents a computer network,
or a mobile robot, if the graph represents an unknown
terrain, e.g., a labyrinth. For brevity we will call this
mobile entity an agent. (automaton).

The task of visiting all nodes of a network is
fundamental in searching for data stored at unknown
nodes, and traversing all edges is often required in
network maintenance and when looking for defective
components. If nodes and edges have unique labels,
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this can be easily done by depth-first search. However,
in some navigation problems in unknown environments,
such unique labeling may not be available, or may be
hidden due to security reasons. In other situations,
limited sensory capabilities of the agent may prevent
it from perceiving such labels. Hence it is important
to be able to program the agent to explore anonymous
graphs, i.e., graphs without unique labeling of nodes
or edges. Unfortunately, arbitrary graphs cannot be
explored under such weak assumptions, as witnessed by
the case of a ring: without any labels of nodes and
without the possibility of marking them, it is clearly
impossible to explore a ring of unknown size and stop.
If marking of nodes (e.g., by dropping and removing
pebbles) is available, then the problem can be solved
even in directed graphs (cf. [7]). Otherwise, attention
has to be restricted to a class of graphs that can be
explored without marking. An important class of such
graphs are connected graphs without cycles, i.e., trees,
cf. [15].

In this paper we study the problem of graph ex-
ploration under very weak assumptions: we do not as-
sume any labels of nodes, do not assume any a priori
knowledge about the topology of the graph, its diam-
eter, size, etc., and do not allow marking of nodes in
any way. Hence we restrict attention to exploration of
trees. Clearly the agent has to be able to locally dis-
tinguish ports at a node: otherwise it is impossible to
explore even the star with 3 leaves (after visiting the sec-
ond leaf, the agent cannot distinguish the port leading
to the first visited leaf from that leading to the unvis-
ited one). Hence we make a natural assumption that
all ports at a node are locally labeled. No coherence
between those local labels is assumed.

In many applications, mobile agents are meant to
be simple, often small, and inexpensive devices. This
limits the amount of memory with which they can
be equipped. Thus it is important to investigate the
minimum size of the memory of an agent capable of
exploring networks of some class. The size of memory
required for network exploration under various scenarios
has been studied in [12, 15, 17, 18, 19].

Our results. The main result of this paper is an
algorithm to accomplish anonymous tree exploration



(with return), using O(log n)-bit memory for all trees
of size at most n. An agent executing this algorithm
and starting in any node of an arbitrary tree T , decides
if T is of size at most n, and if so, traverses all edges
of T and returns to the starting node. This strengthens
the result from [15], where O(log2 n)-bit memory was
used for anonymous tree exploration, and matches the
lower bound Ω(log n)-bit on memory size proved there.

Related work. Graph exploration by mobile agents
(robots) has recently attracted growing attention. The
unknown environment in which the agent operates is
often modeled as a graph, assuming that the agent may
only move along its edges. The graph setting is specified
in two different ways. In [1, 7, 8, 14, 17], the agent
explores strongly connected directed graphs and it can
move only in the direction from tail to head of an edge,
not vice-versa. In [4, 9, 12, 16, 18, 19, 27], the explored
graph is undirected and the agent can traverse edges in
both directions. It is sometimes required that, apart
from completing exploration, the agent draw a map of
the graph, i.e., output an isomorphic copy of it.

Two alternative efficiency measures are adopted in
most papers dealing with exploration of graphs: the
time of completing this task, measured by the number
of edge traversals by the agent [1, 4, 7, 8, 9, 14, 16],
or the number of bits of memory available to the agent
[12, 15, 17, 18, 19].

Graph exploration scenarios considered in the liter-
ature differ in an important way: it is either assumed
that nodes of the graph have unique labels which the
agent can recognize, or it is assumed that nodes are
anonymous. Exploration of directed graphs assuming
the existence of labels was investigated in [1, 14]. In
this case no restrictions on the agent moves were im-
posed, other than by directions of edges, and fast ex-
ploration and mapping algorithms were sought. Explo-
ration of undirected labeled graphs was considered in
[4, 9, 16, 27]. Since in this case a simple exploration
based on depth-first search can be completed in time
2e, where e is the number of edges, investigations con-
centrated either on further reducing time for an unre-
stricted agent, or on studying efficient exploration when
moves of the agent are restricted in some way. The first
approach was adopted in [27], where an exploration al-
gorithm working in time e + O(n), with n being the
number of nodes, was proposed. Restricted agents were
investigated in [4, 9, 16]. It was assumed that the agent
is a robot with either a restricted tank [4, 9], forcing it
to periodically return to the base for refueling, or that
it is a tethered robot, i.e., attached to the base by a
rope or cable of restricted length [16]. It was proved in
[16] that exploration and mapping can be done in time

O(e) under both scenarios.
Exploration of anonymous graphs presents a differ-

ent type of challenges. In this case, it is impossible to
explore arbitrary graphs, if no marking of nodes is al-
lowed. Hence the scenario adopted in [7, 8] was to allow
pebbles which the agent can drop on nodes to recognize
already visited ones, and then remove them and drop
in other places. The authors concentrated attention on
the minimum number of pebbles allowing efficient explo-
ration and mapping of arbitrary directed n-node graphs.
(In the case of undirected graphs, one pebble suffices for
efficient exploration.) In [8], the authors compared ex-
ploration power of one agent to that of two cooperating
agents with a constant number of pebbles. In [7], it was
shown that one pebble is enough, if the agent knows an
upper bound on the size of the graph, and Θ(log log n)
pebbles are necessary and sufficient otherwise.

In [12, 15, 17, 18, 19], the adopted measure of
efficiency was the memory size of the agent exploring
anonymous graphs. In [17, 19], the agent was allowed to
mark nodes by pebbles, or even by writing messages on
whiteboards with which nodes were equipped. In [12],
the authors studied special schemes of labeling nodes,
which facilitate exploration with small memory. In [18],
attention was focused on lower bounds on memory size
of an agent capable of exploring all graphs of given
diameter and given maximum degree.

An even weaker scenario was considered in [15]:
nodes do not have labels, no a priori knowledge of
the graph is assumed, and no node marking is allowed.
Since under such weak assumptions the presence of even
one cycle may preclude exploration with stop (in fact,
such exploration is impossible even in a ring of unknown
size), the authors restricted attention to the class of
(undirected) graphs in which this task is possible: the
class of trees. They considered two related exploration
tasks: exploration with stop, in which the robot has
to stop in some (unspecified) node after traversing all
edges, and exploration with return, in which the robot
has to return to the starting node after completing
exploration. They proved that Ω(log log log n) bits of
memory are needed for exploration with stop of all trees
of size at most n, and that Ω(log n) bits are necessary
for exploration with return. Moreover, they constructed
an algorithm of exploration with return for all trees of
size at most n, using O(log2 n) bits of memory. Our
present scenario is identical as in [15] and our algorithm
lowers required memory to the asymptotically optimal
size of O(log n) bits.

We finally mention a vast body of literature more
loosely connected to our topic. In the framework of
derandomized random walks, the objective is to produce
an explicit universal traversal sequence (UTS), i.e., a



sequence p1, . . . , pk of port labels, such that the path
guided by this sequence visits all edges of any graph of
a given size. It is known that, with high probability,
a sequence of length O(n3d2 log n), chosen uniformly
at random, guides a walk in any d-regular (connected)
graph of n nodes [2]. Explicit UTS are known for 2-
regular graphs (cf. [6, 10, 11, 22, 24]), for 3-regular
graphs (cf. [5, 21, 26]), for cliques (cf. [3, 23]), and
for expanders (cf. [20]). Some of these sequences can
be constructed in log-space, and hence can produce
perpetual exploration (i.e., exploration without the stop
requirement) using compact memory. However, without
the a priori knowledge of n, none of these constructions
allows the agent to return to its original position, or even
to stop. Kouckỳ [25] introduced the notion of a universal
exploration sequence (UXS), i.e., a sequence q1, . . . , qk

such that the agent leaves the current node x via port
p + qi at the ith step, where p is the label of the port
through which the agent entered node x. This notion
allows to construct shorter sequences. For instance, 1n

is a UXS for cycles of order n, and (10)n is a UXS for
cliques of order n. Reingold [28] has recently showed
that a UXS for general graphs is log-space constructible.
However, the knowledge of n is required to allow the
agent to stop in the cycle (in the clique, n = d−1). Our
objective differs in that we want the agent to return to
the starting node after exploration, in the absence of
any a priori knowledge of the size of the network.

2 Terminology and preliminaries

A tree T with locally labeled ports is an undirected tree
whose nodes are unlabeled and edges incident to a node
v have distinct labels assigned to them. Thus every edge
{u, v} has two labels, the label of the port at u and the
label of the port at v. The labeling is local: there is no
relation between labels given to an edge {u, v} at u and
at v. The labels are drawn from the set {0, 1, . . . , D−1},
and the set of the labels of the edges at a node v is
denoted by labels(v). We assume that D = O(n), where
n is the number of nodes in the tree. The i-th label at v
is the i-th label in the increasing order of labels(v). The
next label after the i-th label is the (i + 1)-st label, or
the first label, if the i-th label is the last one. The i-th
edge adjacent to v is the edge with the i-th label at v.

An agent begins at a starting node r, and moves
along the edges of the tree according to a provided
algorithm. When the agent traverses an edge e and
enters a node w, it reads into its memory the port
label l of edge e at w, the index i of this label at
w, and the degree d of w. The algorithm determines
then the index j of an edge adjacent to w which should
be followed next, or tells the agent to terminate. An
algorithm performs exploration with return in a tree,

if the agent executing this algorithm from any starting
node r, traverses all edges of the tree and terminates at
node r.

From now on we assume that the port labeling is
symmetric: for any edge {u, v}, its labels at u and at v
are the same. Symmetric port labelings are equivalent
to labeling all edges of the tree in such a way that labels
of edges incident to the same node are different. The
case of arbitrary port labeling can be reduced to that of
symmetric labeling as follows. Every edge {u, v} with
port labels lu and lv is subdivided by a (virtual) node
w and replaced by two edges {u,w} and {w, v} with
(symmetric) labels lu and lv. An exploration of the
subdivided tree yields an exploration of the original tree.

A walk in T of length q is a sequence of nodes
(v0, v1, . . . , vq) in T such that for i = 1, . . . , q, nodes
vi−1 and vi are adjacent. A walk may contain (or “may
pass through”) the same node and the same edge more
than once. The term walk will also mean the sequence
of the directed edges ((v0, v1), (v1, v2), . . . , (vq−1, vq)),
and the sequence (l1, l2, . . . , lq) of the labels of these
edges, depending on the context. If a walk contains two
occurrences of the same directed edge (v, w), then it
must contain edge (w, v) somewhere in between.

An Euler tour of T is a walk in T which traverses
each (undirected) edge of T exactly twice. We say that
such a walk visits both sides of each edge. The length
of an n node tree T is the length of its Euler tour, that
is, 2(n − 1). Any fragment f of an Euler tour in T
defines uniquely some shape of the subtree T ′ of T ;
see Figure 1. The fragment f may form a complete
Euler tour of some subtree T ′ in T , if each edge in T ′ is
visited in each direction exactly once and no other edge
is visited. Otherwise, the fragment f defines a subtree
T ′′ with an open path p, i.e., the (simple) non-empty
path consisting of the edges visited only once (that is,
the edges with only one side visited); see Figure 1. The
term the open path of f will mean both the open path
of T ′′ and the sequence of labels of the edges on this
path, depending on the context. The open path always
begins at the node where f starts.

The following simple algorithm performs perpetual
exploration of a tree (without stopping requirement),
cf. [15, 25], by repeatedly walking along the following
Euler tour: the agent leaves the starting node r by the
first port. After entering any node by the i-th port, the
agent leaves it by the (i+1)-st port, or by the 1-st port,
if the i-th port is the last one. This way of traversing the
tree will be called the basic (perpetual) walk. A similar
way of traversing the tree is the inverse basic walk : after
entering any node by the i-th port, the agent leaves it
by the (i−1)-st port, or by the last port, if the i-th port
is the first one.



By performing the basic walk, the agent traverses
the whole n-node tree in 2(n − 1) steps. Hence ex-
ploration with return can be easily accomplished with
small memory, if some additional information about the
tree is available. One such situation arises when an up-
per bound N on the number of nodes in the tree is
known. Then the agent can perform the basic walk for
2(N−1) steps, return using the inverse basic walk again
for 2(N − 1) steps, and stop. Counting steps requires
O(log N)-bit memory. Thus we have a simple algorithm
which uses O(log N)-bit memory and enables the agent
to explore with return an arbitrary tree T of size at
most N starting from an arbitrary node. This should
be contrasted with our result: we construct an algo-
rithm which also uses only O(log N)-bit memory, but
enables the agent to decide whether T is of size at most
N , and if so, to explore T with return. The whole diffi-
culty is not in exploring all sufficiently small trees, but
in recognizing when the tree is too large for its capacity
of exploration.

The basic walk tv,l[1..s] is the initial segment of
length s of the basic perpetual walk starting from node
v by the port with label l. It contains s edge occurrences
and s+1 node occurrences, and is called a complete basic
walk of T , if it is an Euler tour of T . We use both terms
“edge (node)” and “edge (node) occurrence” when we
refer to a walk, choosing the latter, if we want to stress
that we refer to a walk rather than a tree. An incomplete
basic walk is a proper initial segment of a complete basic
walk. For the simplicity of presentation we may omit
the subscripts v and l if v is the starting node r and the
subscript l is the first (lowest) port label at v.

Let α = (a0, . . . ak−1) be a string of integers. The
string rotate(α, x) = (b0, . . . bk−1) is said to be the
xth cyclic rotation of string α, for x = 0, . . . , k − 1,
if bi = a(i+x) mod k, for all i = 0, . . . , k − 1. The
concatenation of strings α and β is denoted by α ◦β, or
simply αβ. We also use notation αk for concatenation
of k copies of α, αR for the string reversed to α, and
length(α) for the length of α. A string α is periodic,
if α = wk for some w and k ≥ 2, or equivalently, if
α = rotate(α, x) for some 0 < x < length(α).

3 Properties of basic walks

Our algorithm keeps increasing an index q and considers
those values of q for which the basic walk t[1..q] keeps
repeating itself. More concretely, the algorithm checks
whether t[1..3q] = (t[1..q])3, and if so, then it considers
the possibility that the basic walk t[1..3q] has already
traversed the whole tree. If t[1..3q] = (t[1..q])3, then
one obvious case is that t[1..q] is the complete walk
of the tree. Unfortunately there are other cases as
well, and t[1..q] may be only a small initial part of the

complete walk. Therefore we need some additional tests
to establish if the walk t[1..3q] has already traversed the
whole tree and the algorithm may terminate, or it has
not and the algorithm has to consider further, larger
values of q. The following theorem characterizes the
cases which may occur when t[1..kq] = (t[1..q])k, for
some k ≥ 3.

Theorem 3.1. Let T be a tree of length at least q ≥ 1
with the starting node r. Assume that t[1..q] is not
periodic and t[1..kq] = (t[1..q])k for some k ≥ 3. Then
one of the following three cases must hold.

1. The length of T is q (that is, t[1..q] is the complete
basic walk of T ).

2. The length of T is 2q, and the open path (as a
sequence of edge labels) defined by t[1..q] is an odd-
length palindrome.

3. The length of T is greater than kq, and there are
two possibly empty strings w and α and two distinct
symbols x 6= y such that for i = 1, 2, . . . k, the open
path defined by t[1..iq] is equal to w(xαy)iwR.

Proof. Assume that Case 1 does not hold. Thus the
length of T is greater than q and the basic walk t[1..q]
is incomplete. Moreover, t[1..q] is not a complete walk
of a subtree of T , because if it were, then t[q + 1] 6= t[1]
and t[1..kq] 6= (t[1..q])k. This means that t[1..q] defines
a (non-empty) open path p. Path p cannot be an even
length palindrome, because if it were, then there would
be two adjacent edges with the same label (the two
middle edges on p). Hence p is either an odd length
palindrome or it is not a palindrome.

Consider first the case when path p is an odd length
palindrome, that is, p = wfwR for some possibly empty
string w = (l1, l2, . . . , lj), j ≥ 0, and a symbol f . In this
case, illustrated in Figure 2, we verify that the basic
walk t[1..2q] = (t[1..q])2 returns back to the root. The
walk t[1..q] starts at node r, may traverse some subtrees
T1, . . . , Ta rooted at r. Then it leaves r along the first
edge of the open path, labeled l1, and enters a node v.
Then it may traverse some subtrees Ta+1, . . . , Tb rooted
at v before making another step along the open path,
and so on. The walk ends at a node r′ after possibly
traversing some subtrees rooted at r′. See Figure 2.b.

The second part of the walk, t[q + 1..2q] follows
exactly the same edge labels as the first part since
t[q+1..2q] = t[1..q], but starting at node r′. That is, the
second part of the walk first traverses subtrees rooted at
r′ which are isomorphic to subtrees T1, . . . , Ta. Then it
leaves node r′ along the edge with label l1, which is the
last edge of the open path, and enters a node v′. Then it
traverses subtrees rooted at v′ which are isomorphic to
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subtrees Ta+1, . . . , Tb, and makes another step back on
the open path, and so on. The walk eventually returns
to the starting node r. See Figure 2.a.

When the walk t[1..2q] returns back to r, all edges
adjacent to node r have been already visited, because
t[2q +1] = t[1]. This means that t[1..2q] is the complete
basic walk of T , and Case 2 of the theorem holds.

Consider now the case when the open path p is not
a palindrome, that is, p = wxαywR for some possibly
empty strings w and α and two symbols x 6= y. In this
case (t[1..q])2 is still an incomplete basic walk of T , and
it defines a subtree of T with the open path w(xαy)2wR;
see Figure 3.a. Generally, considering the subsequent
repetitions of t[1..q] on the basic walk (t[1..q])k, one can
show that for i = 1, 2, . . . , k, (t[1..q])i is an incomplete
basic walk of T , and it defines a subtree of T with the
open path w(xαy)iwR. See Figure 3.b. Thus the length
of T is greater than kq and Case 3 of the theorem holds.

If Case 2 of Theorem 3.1 holds, that is, if (t[1..q])2

is the complete basic walk of T , then T is called a
symmetric tree. If Case 3 holds, then the sequence of
edges corresponding to the (xαy)i part of the open path
defined by t[1..iq] is called the backbone of the open path.
In the remaining part of this section we consider an
index q ≥ 1, and we assume that the length of tree T is
at least q, t[1..3q] = (t[1..q])3 and t[1..q] is not periodic.
The correctness of our algorithm is based on its ability
to distinguish, under these assumptions, which of the
three cases of Theorem 3.1 occurs. We do not consider

the case when the basic walk t[1..q] is periodic, that is,
the case when t[1..q] = t[1..q′]j for some non-periodic
t[1..q′] and j ≥ 2, because our algorithm handles such a
case when it checks the index q′ < q. In what follows,
“Case i” means “Case i of Theorem 3.1.”

For each node occurrence v on the basic walk and
each label l ∈ labels(v) of an edge adjacent to the tree
node v, let 0 ≤ sv

l ≤ q − 1 be such that tv,l[1..q] =
rotate(t[1..q], sv

l ), which is equal to t[sv
l + 1..sv

l + q]. If
tv,l[1..q] is not a cyclic rotation of t[1..q], then sv

l is
not defined. If tv,l[1..q] is a cyclic rotation of t[1..q],
then sv

l is uniquely defined, or otherwise t[1..q] would
have to be periodic (if tv,l[1..q] = rotate(t[1..q], x′) =
rotate(t[1..q], x′′) for some 0 ≤ x′ < x′′ < q, then
t[1..q] = rotate(t[1..q], x′′ − x′), so t[1..q] is periodic).
If sv

l is defined for each l ∈ labels(v), then the sequence
〈sv

l 〉l∈labels(v) is called the signature of node v.
It is not difficult to see that if t[1..q] is the complete

basic walk, then each node of T , and each node occur-
rence on t[1..q], has a well defined signature. One can
also show that if t[1..2q] is the complete basic walk (tree
T is symmetric), then each node of T , and each node
occurrence on t[1..q], has a well defined signature.

Lemma 3.1. In Cases 1 and 2, the signature of every
node on the basic walk t[1..q] is well defined.

Our algorithm checks if every node encountered
on the basic walk t[1, ..q] has a well defined signature.
However, even if this test passes, we may still have Case
3, so further tests are needed.
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We say that two distinct edge occurrences (v, w)
and (w′, v′) on the basic walk t[1..q] match, if they have
the same labels, node occurrences v and v′ have the
same defined signatures, and node occurrences w and
w′ have the same defined signatures.

Lemma 3.2. Each edge on the basic walk t[1..q] may
have at most one matching edge.

Proof. If the i-th edge and the j-th edge on t[1..q], for
some 1 ≤ i < j ≤ q, were both matching edges for the
same edge (v, w), then t[1..q] = rotate(t[1..q], j − i), so
t[1..q] would be periodic.

Lemma 3.3. In Case 1, each edge in the basic walk
t[1..q] has a matching edge. In Case 2, the middle edge
of the open path defined by t[1..q] is the only edge on
t[1..q] without a matching edge.

Proof. In Case 1, for each edge {v, w} in T , the two
occurrences (v, w) and (w, v) of this edge in t[1..q]
match.

In Case 2, if an edge (v, w) on the basic walk t[1..q] is
not on the open path, then there must be an edge (w, v)
on t[1..q], and these two edges match. We consider
now the edges on the open path. The open path is
a palindrome in terms of edge labels. One can check
that the open path is also a palindrome in terms of the
node signatures. The first node on the open path has
the same signature as the last node, the second node
has the same signature as the last but one node, and so

on. This implies that an edge (v′, w′) on the open path
on one side of the middle edge matches the symmetrical
edge (w′′, v′′) on the other side, while the middle edge
does not have the matching edge.

In the further analysis of Case 3, we will use the
following Lemma.

Lemma 3.4. Consider Case 3 of Theorem 3.1 and as-
sume that each node occurrence on the basic walk t[1..q]
has a well defined signature. If (a, b) and (b′, a′) are
matching edges on t[1..q], then either both or none of
them belong to the backbone of the open path.

Proof. The following claim implies this lemma. If v and
u are two node occurrences on t[1..q] such that v belongs
to the open path but u does not, then these nodes must
have different signatures. To show that this claim is
true, consider the labels g and h of the two edges on the
backbone of the open path adjacent to v. No prefix of
the basic walk tv,g[1..q] is a complete walk of a subtree
of T , and similarly no prefix of the basic walk tv,h[1..q]
is a complete walk of a subtree of T . On the other hand,
since each but one subtree of u has length less than q,
for each but one label l adjacent to u, tu,l[1..q] has a
prefix which is a complete walk of a subtree of T . Thus,
if there are two edges with labels g and h adjacent to u,
then tv,g[1..q] 6= tu,g[1..q] or tv,g[1..q] 6= tu,g[1..q]. Hence
v and u must have different signatures.

We say that the edge matching relationship satisfies
the nesting property, if the following condition holds.



For every two pairs of indices 1 ≤ i < i′ ≤ q and
1 ≤ j < j′ ≤ q, if the edges at positions i and i′ in
t[1..q] match, the edges at positions j and j′ match,
and i < j, then either i < j < j′ < i′ or i < i′ < j < j′.
In Cases 1 and 2 of Theorem 3.1, the edge matching
relationship satisfies the nesting property. The final
point in our analysis of Case 3 is that if all node
occurrences on the basic walk t[1..q] have well defined
signatures and the edge matching relationship satisfies
the nesting property, then t[1..q] must contain at least
two unmatched edges. Figure 4 shows an example of a
Case-3 tree with indicated unmatched edges.

Lemma 3.5. In Cases 1 and 2 of Theorem 3.1, the
matching relationship has the nesting property.

Proof. The proof in trees of length q is straightforward.
In trees of length 2q the only problem may appear on
edges belonging to the open path defined by t[1...q].
However since we know that the open path is a palin-
drome with symmetrically matched edges, the nesting
property is also satisfied for those edges.

Lemma 3.6. In Case 3 of Theorem 3.1, if each node on
the basic walk t[1..q] has a well defined signature, and
the matching relationship has the nesting property, then
t[1..q] has at least two unmatched edges.

Proof. Let wxαywR be the sequence of labels on the
open path defined by the basic walk t[1..q], as given in
Theorem 3.1. The sequence of labels on the open path
defined by t[1..3q] is w(xαy)3wR. Let (a, b) and (c, d)
be the first edge and the last edge of the backbone of
the open path in t[1..q]. The labels of these edges are x
and y, respectively.

If edge (a, b) has a matching edge (b′, a′), then
the definition of matching edges and Lemma 3.4 imply
that (b′, a′) must belong to the open path and must be
different than edge (c, d) (edge (b′, a′) has label x while
edge (c, d) has label y). Moreover, Lemma 3.4 and the
nesting property imply that for any edge (v, u) on the
open path between edges (a, b) and (b′, a′), if this edge
has the matching edge (u′, v′), then (u′, v′) must be on
the open path between edges (a, b) and (b′, a′). Thus
there must be an unmatched edge (a′′, b′′) on the open
path between edges (a, b) and (b′, a′), since if all edges
between (a, b) and (b′, a′) were matched, then a pair of
inner-most matched edges would be a pair of adjacent
edges with the same label (while adjacent edges must
have different labels).

If (c, d) has a matching edge (d′, c′), then (d′, c′)
must be on the open path and, because of the nesting
property, it must be between edges (b′, a′) and (c, d).
Similarly as above, we can conclude that there must be

an unmatched edge (c′′, d′′) between edges (d′, c′) and
(c, d). Thus there must be at least two unmatched edges
on t[1..q]: (a, b) or (a′′, b′′), and (c, d) or (c′′, d′′).

4 The algorithm

Our algorithm LogExploration(N) follows from the
analysis of the periodic basic walks presented in the
previous section. The algorithm keeps increasing index
q from 1 to N , where N is a given bound on the
length of trees which are to be explored successfully,
and checks for each q if Case 1 or 2 of Theorem 3.1
occurs. To check this, the algorithm tests (i) if all node
occurrences on the basic walk t[1..q] have well defined
signatures (procedure NodeSignatureOK), (ii) if the
matching relationship on the edges on t[1..q] has the
nesting property (procedure NestingOK), and (iii) if
the number of the unmatched edges on the basic walk
t[1..q] (counted by procedure UnmatchedEdges) is at
most 1.

Algorithm LogExploration(N):
q := 1;
while q ≤ N do
{ invariant: the length of the tree is at least q }
if t[1..q] is not periodic

and t[1..3q] = (t[1..q])3

and NodeSignatureOK
and NestingOK
and UnmatchedEdges ≤ 1

then terminate; { the tree is explored }
else q := q + 1;

end while

All tests performed by algorithm LogExplo-
ration can be implemented on the basis of the proce-
dure getSymb(i, k, z) with the following specification.
It returns the label of the z-th edge on the basic walk
which begins from node i on t[1..q] leaving this node via
the k-th port. The agent is at the starting node r at the
beginning of this procedure, and returns to r at the end
of the procedure. Observe that getSymb(0, 1, z) re-
turns the label of the z-th edge of the basic walk t[1..q].

Procedure GetSymb(i, k, z):
{ the agent is at the starting node r }
i steps of basic walk starting via the first port;
z steps of basic walk starting via the k-th port;
l := the label of the last edge;
reverse all steps;
{ the agent is back at the starting node r }
return l;



Procedure NodeSignatureOK uses procedure
SignOK(i) which checks if node i on t[1..q] has a well
defined signature, 0 ≤ i ≤ q. Procedure Deg(i) re-
turns the degree of node i by following the basic walk
from the start node r for i steps, recording the de-
gree of the current node, and reversing the steps to
return to r. Procedure IsSignature(i, k, x) checks if
the k-th coordinate of the signature of node i is equal
to x. That is, denoting by lk the k-th label at node
i, it checks if ti,lk [1..q] = t[x + 1..x + q]. Procedure
FindSignature(i, k) returns the k-th coordinate of the
signature of node i, or −1, if not defined.

Procedure NodeSignatureOK:
for i := 0 to q do

if not SignOK(i) then return false;
return true;

Procedure SignOK(i):
d := Deg(i);
for k := 1 to d do

if FindSignature(i, k) = −1 then return false;
return true;

Procedure FindSignature(i, k):
for x := 0 to q − 1 do

if IsSignature(i, k, x) then return x;
return −1;

Procedure IsSignature(i, k, x):
for z = 1 to q do

if GetSymb(0, 1, x + z) 6= GetSymb(i, k, z)
then return false;

return true;

Procedures NestingOK and UnmatchedEdges
use procedure MatchingEdge(i), which for edge i on
t[1..q], finds its matching edge. It returns −1, if edge i
does not have the matching edge.

Procedure NestingOK:
for left := 1 to q do

right := MatchingEdge(left);
if right > left

for i = left + 1 to right− 1 do
if MatchingEdge(i)

/∈ {left + 1, . . . , right− 1) ∪ {−1}
then return false;

return true;

Procedure UnmatchedEdges:
unmatched := 0;
for i := 1 to q do

if MatchingEdge(i) = −1 then unmatched++;
return(unmatched);

Procedure MatchingEdge uses procedure
SignatureEq(i, j), which checks if nodes i and j on
the basic walk t[1..q] have the same signatures and is
based on procedure FindSignature.

Procedure MatchingEdge(i):
l := GetSymb(0, 1, i); { i-th edge label on t[1..q] }
for j := 1 to q do

if j 6= i and GetSymb(0, 1, j) = l
and SignatureEq(i− 1, j)
and SignatureEq(i, j − 1)

then return j;
return(−1);

Procedure SignatureEq(i, j):
deg := Deg(i);
if deg 6= Deg(j) then return false;
for k := 1 to deg do

if FindSignature(i, k) 6= FindSignature(j, k)
then return false;

return(true);

Checking if t[1..q] is periodic and if t[1..3q] =
(t[1..q])3 can be easily implemented using procedure
GetSymbol.

The correctness of algorithm LogExploration
(properties 1 and 2 in the theorem below) follows from
the analysis given in Section 3. The whole algorithm can
be viewed as a fixed number of nested loops. The index
q of the outermost loop changes from 1 to N , while the
ranges of the inner loops are from 1 to O(q). Thus the
algorithm can be implemented using a fixed number of
O(log N)-bit counters plus a fixed number of additional
O(log D)-bit variables for storing the labels and indices
of edges.

Theorem 4.1. Algorithm LogExploration(N), exe-
cuted in an arbitrary tree starting at an arbitrary node,
has the following properties.

1. When the algorithm terminates with q ≤ N , then
the whole tree has been explored.

2. If the tree has length L ≤ N , then the algorithm
terminates in the iteration when q = L/2, if the
tree is symmetric, or when q = L, if the tree is not
symmetric.

3. The algorithm uses O(log N) memory bits.
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