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Abstract

We study the complexity of the following problem that we call Max edge t-coloring : given
a multigraph G and a parameter t, color as many edges as possible using t colors, such that
no two adjacent edges are colored with the same color. (Equivalently, find the largest edge
induced subgraph of G that has chromatic index at most t). We show that for every fixed t ≥ 2
there is some ε > 0 such that it is NP-hard to approximate Max edge t-coloring within a ratio
better than 1 − ε. We design approximation algorithms for the problem with constant factor
approximation ratios. An interesting feature of our algorithms is that they allow us to estimate
the value of the optimum solution up to a multiplicative factor that tends to 1 as t grows. Our
study was motivated by call admittance issues in satellite based telecommunication networks.
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1 Introduction

A multigraph is a graph that may contain multiple edges between any two vertices, but can not
contain self loops. Given a multigraph G = (V,E), a edge t-coloring of the graph is an assignment
c : E 7→ [t], where adjacent edges are mapped to distinct colors. The smallest t for which there
exists an edge t-coloring, is called the chromatic index of the graph and is denoted as χ′(G). We
study a related problem:

Problem 1.1. Given a multigraph G and a number t, legally color as many edges as possible using
t colors. We call this problem Max edge t-coloring.

1.1 Motivation

Our motivation for investigating the Max edge t-coloring problem comes from questions which arise
when designing a large scale satellite based communication network. Such a network serves clients
spread sparsely over large distances. Clients are connected to the network via ground stations. A
ground station serves the clients that are geographically close to it. The satellite serves as a relay
for connection between ground stations. The traffic in the network is based on a Time Division
Multiplexing combined with Frequency Division Multiplexing. In this method the time is sliced into
t time slots which repeat in a cyclic manner, and the frequency spectrum is divided into f different
frequencies. Whenever a client wishes to establish a connection with a client from a different ground
station, one of the ground stations requests the satellite to establish a session between them. Then
the satellite allocates for this session a time slot-frequency pair. In order to avoid collisions each
session must have a unique pair of time slot and frequency. There may be parallel sessions running
simultaneously between two ground stations. We assume for simplicity that all ground stations are
identical and can handle at most one session per time slot. A ground station is allowed to use the
same frequency at two different time slots. This means that the satellite must first find a time slot
unused by both ground stations, and then match to it a frequency unused in this time slot. The
choices the satellite makes may affect the blocking of future session requests.

1.1.1 Modeling:

In this work we concentrate on the offline problem: we assume that all requests for sessions are
given in advance. Furthermore once a session is established it remains forever, in other words people
never ’hang up’. This offline problem can be translated into the following edge coloring problem:

Problem 1.2. Given a multigraph G and numbers f, t, legally color as many edges as possible
using t colors such that every color class contains at most f edges. This is called the Max edge
ft-coloring problem.

The interpretation is as follows: each node represents a ground station, and each edge represents
a request for a session. Multiple edges are allowed since there may be multiple session requests
between the same two ground stations. Each color class represents a time slot, and it may contain
at most f edges which correspond to the f available frequencies. Once the assignment of edges
to time slots is given, the f frequencies are assigned to the edges in a time slot arbitrarily. Edges
that are not colored represent requests that were not satisfied. Each session has a unique time slot-
frequency pair, and each ground station uses at most one frequency per time slot. The following
proposition shows that the offline versions of the Max edge ft-coloring problem and the Max edge
t-coloring problem are similar.
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Proposition 1.3. If there exists an efficient algorithm A which α approximates the Max edge t-
coloring problem then there exists an efficient algorithm A′ which α approximates the Max edge
ft-coloring problem.

Define a balanced edge t-coloring of a graph to be an edge t-coloring in which the cardinality of
any two color classes differ by at most one.

Lemma 1.4. For a multigraph G, let T be a t-edge coloring of G. Then there exists a balanced
t-edge coloring of G, denoted by T ′, that can be derived from T in polynomial time.

The proof of lemma 1.4 appears in appendix A. Proposition 1.3 follows quite easily from lemma
1.4. The proposition proof is also given in appendix A.

1.2 Online Max edge t-coloring

The online version of Max edge t-coloring is the one in which the edges of the graph are given to
the algorithm one by one. For each edge the algorithm must either color the edge with one of the t
colors, or reject it, before seeing the next edge. Once an edge has been colored the color cannot be
altered and a rejected edge cannot be colored later. The aim is to color as many edges as possible.
This problem was investigated in [FN00]. They showed that any algorithm for online Max edge
t-coloring is at most 4

7−competitive. Assume the t colors are numbered by {1 . . . t}. The First Fit
algorithm upon receiving an edge, colors it with the lowest ranking color available. It is shown that
First Fit is 0.48−competitive.

2 Our Results

The original motivation for our research leads to problem 1.2. However in view of proposition 1.3
our results concentrate on problem 1.1 which is the Max edge t-coloring problem.

1. Hardness results: we show that for every t ≥ 2 there exists an ε > 0 such that it is NP-hard
to approximate the Max edge t-coloring problem within a ratio better than 1− ε (section 4).

2. We observe that a simple greedy algorithm achieves an approximation ratio of 1 − (1 − 1
t )

t

(section 5). The bulk of our work is concerned with improving over this ratio.
3. For t = 2 we give an improved algorithm which uses an LP relaxation and has an approxi-

mation ratio of at least 10
13 ≈ 0.77 (section 6.2).

4. The main result of this paper appears in sections 7, 8, 9.
a. Denote by α the best approximation ratio for the chromatic index in multigraphs. We

show an algorithm for the Max edge t-coloring whose approximation ratio tends to 1
α as

t →∞.
b. We show an estimatation for optimum value of Max edge t-coloring (without actually

finding a coloring). The ratio between the estimation and the optimum tends to 1 as
t →∞.

3 Related Work
3.1 Edge-coloring

Max edge t-coloring is closely related to the problem of finding the chromatic index of a graph.
Approximating the chromatic index has received a large amount of attention.
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3.1.1 Lower Bounds on the Chromatic Index

Clearly the maximum degree of a multigraph which is denoted by ∆ is a lower bound. Another
lower bound is the odd density of a graph. Let S ⊆ V be a subset of the vertices of the graph.
Every color class in a legal edge coloring of the edges inside S forms a matching, thus it’s size is
bounded by b |S|2 c. It follows that the number of colors needed to color the subgraph induced by S is

at least
⌈
|E(S)|
b |S|

2
c

⌉
. This number can be bigger than ∆ if |S| is odd. The odd density of a multigraph

G is defined as: ρ(G)
4
= max S⊆V,

|S|=2k+1

⌈
|E(S)|

k

⌉
. We conclude that χ′(G) ≥ max{ρ(G),∆(G)}. In

general it is not known how to efficiently compute ρ(G), though the value of max{ρ(G),∆(G)} can
be computed in polynomial time.

The fractional chromatic index: the chromatic index can be viewed as the minimum number of
matchings required to cover the graph. A natural relaxation would be to assign fractional weights
to matchings such that each edge is covered by matchings with total weight of at least 1. The
fractional chromatic index is the minimum total weight of matchings required to cover the graph.
It is denoted by χ′∗(G). Clearly χ′∗(G) ≤ χ′(G). Edmonds proved that χ′∗(G) = max{∆(G), ρ(G)}
(see for example [LP86]). The value of χ′∗(G) together with a fractional coloring of G can be
computed efficiently (this is proved implicitly in section 6).

3.1.2 Upper Bounds for the Chromatic Index

The multiplicity of a multigraph is the maximum number of edges between any specified two
vertices.

Theorem 3.1 (Vizing [Viz64]). Let G be a multigraph with multiplicity d, then:

∆(G) ≤ χ′(G) ≤ ∆(G) + d

In particular for simple graphs, the chromatic index is at most ∆ + 1. Vizing’s proof is con-
structive and yields an efficient algorithm. The current best bound which also yields an efficient
algorithm is:

Theorem 3.2 (Nishizeki and Kashiwagi [NK90]). χ′(G) ≤ max{b1.1∆(G) + 0.8c, ρ(G)}
The additive factor was later improved to 0.7 by [CR98]. The term (1.1∆(G) + 0.7) is tight for

graphs such as the Petersen graph (see Figure 5) for which ∆(G) = ρ(G) = 3, but χ′(G) = 4. The
current state of affairs is that it is possible to approximate the chromatic index up to an additive
factor of 1 in simple graphs (which is a tight result), and some multiplicative factor in multigraphs.
It seems likely that a generalization of Vizing’s theorem to multigraphs should hold:

Conjecture 3.3. For any multigraph G, χ′(G) ≤ χ′∗(G) + 1.

This was proposed by Goldberg [Gol73], Anderson [And77] , and again by Seymour [Sey79]
in the stronger form: χ′(G) ≤ max{∆(G) + 1, ρ(G)}. While conjecture 3.3 remains unproven, an
”asymptotic” version of it was proven:

Theorem 3.4 (Kahn [Kah96]). For every ε > 0 there exists D(ε) so that for any multigraph G
with χ′∗(G) ≥ D(ε) we have χ′(G) ≤ (1 + ε)χ′∗(G).

Kahn’s proof is not constructive. It is unknown whether there is a (probabilistic) polynomial
time algorithm with performance guarantee that matches theorem 3.4.
For some families of graphs it is possible to compute the chromatic index exactly. These include
bipartite graphs for which the chromatic index always equals the maximum degree (see for instance
[Die96]) and simple planar graphs with maximal degree larger than 8. See [NZ99] for an overview.

3



3.2 Matchings and the Matching Polytope

As noted, when coloring the edges of a graph, each color class forms a matching. There is a known
efficient algorithm that finds a matching with maximum cardinality in a graph. See [Edm65b] and
[Edm65a]. Given a graph G with edge set E, any matching M can be associated with a point
x ∈ {0, 1}|E|, where xe = 1 iff e ∈ M . The matching polytope of G is the convex hull of all the
points in R|E| which represent a matching in G. This polytope can be described as an intersection
of half-spaces, each half space is represented by a constraint on the set of variables xe. For a set of
vertices S ⊆ V , we denote by X(S) the total sum of edge variables in the subgraph induced by S.

Theorem 3.5 (Edmonds [Edm65a]). The following linear constraints define the matching poly-
tope of a graph:

The matching LP

∀v ∈ V
∑
e|v∈e

xe ≤ 1 Degree constraint (1)

∀S ⊆ V, |S| is odd X(S) ≤
⌊
|S|
2

⌋
Blossom constraint (2)

∀e ∈ E 0 ≤ xe ≤ 1 Capacity constraint (3)

A few remarks:
1. If instead of the capacity constraint, we had demanded that xe ∈ {0, 1}, then constraint 1

would suffice to define the matching polytope. When the integrality constraint is relaxed to
a fractional one, the blossom constraints become necessary.

2. The number of blossom constraints is exponentially large in the number of variables. In order
to solve maximum weighted matching in an LP approach (using for instance the ellipsoid
method) one needs a separation oracle for the blossom constraints. Padberg and Rao in
[PR82] showed a polynomial time algorithm which finds a violated blossom constraint in the
special case that degree constraints are not violated. This suffices for the purpose of solving
the LP.

3.2.1 Maximum b-matching

In the maximum b-matching problem the input is a multigraph G, and a vector b ∈ N|V |. The goal
is to find the maximum (with respect to the number of edges) subgraph H, for which the degree
of a vertex v in H is at most bv. The name for this problem might be misleading: even if bv = t
for all v ∈ V this problem is different from the Max edge t-coloring problem (in which one has to
find a maximum edge subgraph which can be covered by t matchings). For example a triangle is a
graph with all degrees bounded by 2, however it can not be covered by 2 matchings. In the special
case that bv = 1 for all v ∈ V the b−matching problem is simply a maximum matching problem. A
more natural name for this problem can be the maximum degree constrained subgraph, however we
use the name b-matching for historical reasons. Edmonds and Johnson gave a generalization of the
blossom constraints (see appendix B.1 constraint 7) which together with degree constraints induce
a polytope with integer vertices; the vertices of this polytope are exactly all the edge subgraphs
of G which obey the degree constraints. A separation oracle for finding a violated constraint of
this LP appears at [PR82]. This implies a polynomial time algorithm for solving the b-matching
problem. More details can be found at [LP86] and [GLS88].
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4 Hardness of Max edge t-coloring

Theorem 4.1. For every t ≥ 2 there exists an εt such that it is NP-Hard to approximate Max edge
t-coloring within a factor better than 1− εt.

Holyer showed [Hol81] that deciding whether an input graph is 3 edge colorable is NP-hard.
A similar result for the problem of deciding whether an input multigraph is t edge colorable (for
every t > 3) was given by Leven and Galil [LG83]. This implies that for every t ≥ 3 the Max
edge t-coloring problem is NP-hard. The reductions used by Holyer, Leven and Galil are from
MAX 3 SAT. If the domain is limited to MAX 3SAT-3 instances (3SAT formulas in which every
variable appears in at most 3 clauses) then these reductions are in fact L reductions (in the terms
of [PY91]). Therefore the reduction preserves the inapproximability of MAX 3SAT-3. Details are
omitted from this manuscript. The case of Max edge 2-coloring is different since deciding whether
the chromatic index of a graph is 2 can be done in polynomial time. The proof of theorem 4.1 for
t = 2 uses a modified version of a reduction attributed to Papadimitriou in [CP80]. The details
appear in appendix C.

5 The Greedy Approach

A simple greedy algorithm is based on the online approach in which the edges are colored one after
the other (for instance First Fit). The following offline algorithm Greedy has a better performance
guarantee: in each iteration (out of t) a maximum matching is selected, colored and removed from
the graph.

The Max edge t-coloring problem is a special case of the maximum coverage problem. We
wish to cover the maximum number of edges of G with t sets, where each set is a matching. The
following theorem is well known (see for example [Hoc97] theorem 3.8):

Theorem 5.1. The greedy algorithm for the maximum coverage problem yields a 1 −
(
1− 1

t

)t

approximation.

It follows that Greedy has an approximation ratio of at least 1−
(
1− 1

t

)t. We could not design
for every value of t examples that show that the approximation ratio of Greedy is no better than
1−

(
1− 1

t

)t. However, a simple example shows that for every even t, the approximation ratio is no
better than 3

4 . Consider a line of four edges, each with multiplicity of t
2 . All edges can be colored

with t colors. However, Greedy might take the first t
2 matchings to consist of the first and fourth

edges, and then it will cover only 3
4 of the edges.

6 A Linear Program

An optimal solution to Max edge t-coloring has a maximum degree and odd density bounded by t.
Therefore a natural approach for solving Max edge t-coloring may be to solve the following problem
as an intermediate step:

Problem 6.1. Given a multigraph G and a parameter t, Find a largest (in edges) subgraph of G
whose degree and odd density are bounded by t. We call this problem Max Sparse t-Matching.

The following is an LP relaxation of Sparse t-Matching :
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max
∑

xe subject to∑
e|v∈e

xe ≤ t ∀v ∈ V (4)

X(S) ≤ t ·
⌊
|S|
2

⌋
∀S ⊆ V, |S|is odd (5)

0 ≤xe ≤ 1 ∀e ∈ E (6)

Since every feasible solution for Max edge t-coloring is also feasible for Sparse t-Matching, the
Sparse t-Matching LP is a relaxation also for Max edge t-coloring. We will show that fractional
solutions of Sparse t-Matching LP can be rounded to give a solutions of Max edge t-coloring, of
value at least a 1−

(
1− 1

t

)t fraction of the value of the LP. This is the same approximation ratio
that the greedy approach yields. It uses some ideas and intuition that will be useful later.
In order to solve the linear program using the ellipsoid method, we need an oracle for finding violated
constraints of the LP. Dividing all the constraints by t and multiplying the objective function by t
we get an equivalent LP. This linear program is similar (though not identical) to the matching LP
(see theorem 3.5), and can be solved using the same techniques (using the separation oracle given
by Padberg and Rao at [PR82]).

6.1 Rounding the Linear Program Solution

The vector 1
t ~x is valid for the matching LP and therefore according to theorem 3.5 is a convex

combination of a set of matchings. We will now describe how to find such a convex combination.
Let M denote the set of all matchings, and define a variable λM for each M ∈ M. Solve the
following LP:

∀e ∈ E
∑

M |e∈M

λM =
xe

t∑
M∈M

λM = 1

∀M ∈M λM ≥ 0

This LP has an exponential number of variables and a polynomial number of constraints. We
sketch how to solve it: the dual of this LP can be solved using the ellipsoid method. By doing so
we identify a polynomial number of constraints that are tight with respect to the solution. Moving
back to the primal results in an LP that has a polynomial number of variables thus can be solved
efficiently. See [Wie01] for more details. Now we sample t matchings. Each sample is done such
that matching M has probability of λM to be chosen. Note that only a polynomial number of
matchings have positive probability, therefore the sampling algorithm is efficient. We output as a
solution the union of those t matchings (denote it by S).

6.1.1 Analysis

Claim 6.2. Pr{ e ∈ S} ≥
(
1−

(
1− 1

t

)t
)
· xe

Proof: Each time a matching is sampled, edge e enters S with probability xe
t . Each sample is

independent from the rest. Therefore: Pr{e /∈ S} ≤
(
1− xe

t

)t

⇒ Pr{e ∈ S} ≥
(
1−

(
1− xe

t

)t
)
≥

(
1−

(
1− 1

t

)t
)
· xe.
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where the last inequality follows from the concavity of (1−
(
1− xe

t

)t) in [0, 1].
From linearity of expectation it follows that E(|S|) ≥ (1 −

(
1− 1

t

)t) · x∗. Since x∗ is an upper
bound on the optimum integral solution we conclude that the algorithm yields (on expectation) a
(1−

(
1− 1

t

)t) approximation.

6.2 The Case t=2

In an interesting special case we are to find the 2-edge colorable subgraph with a maximum number
of edges. In this case the greedy algorithm and the rounding procedure described in section 6.1
both yield an approximation ratio of 0.75. We present an algorithm that achieves an approximation
ratio of 10

13 ≈ 0.77. Denote by OPT the size of the optimal subgraph. Set a variable xe for each
edge. Solve the Sparse t-Matching LP presented previously with t = 2. Denote by x∗ it’s optimal
value. The idea of the algorithm is to choose between two different kinds of roundings. If a large
portion of the weight is in ’heavy’ variables, then a threshold rounding is used. Otherwise the
random rounding of section 6.1 is used.

Algorithm for t=2:

1. Solve the linear program presented above. Let x∗ denote it’s value.
2. If

∑
{xe | xe > 2

3} ≥
10
13x∗ then remove all edges e with xe ≤ 2

3 , remove one edge from every
odd cycle that remains, and output the remaining edges.
Otherwise perform the random rounding of section 6.1.

6.2.1 Analysis:

We will use the term ’light’ edge for an edge whose weight is at most 2
3 , otherwise the edge is

considered ’heavy’. Denote by α the fraction of weight (from x∗) of all the heavy edges; i.e.

α
4
=

∑
{xe | xe> 2

3
}

x∗ .

Lemma 6.3. There exists a 2-edge-colorable subgraph with at least αx∗ edges.

Proof: Let H denote the subgraph induced by all the heavy edges. Constraint 4 implies that
the maximum degree of H is 2. Therefore H consists of paths and cycles. We find a two edge
colorable subgraph, by omitting one edge from each odd cycle. It remains to show that the solution
built has at least αx∗ edges. Let C be a component of H. If C is a path or an even length cycle,
then the number of edges C has contributed to the solution is |C| while

∑
e∈C xe ≤ |C|. If C is

an odd length cycle, then the number of edges C has contributed to the solution is |C| − 1, while
constraint 5 implies that

∑
e∈C xe ≤ |C| − 1. We conclude that the cardinality of the solution is at

least
∑

e∈H xe ≥ αx∗.

Lemma 6.4. There exists a 2-edge-colorable subgraph with at least
(

5
6 −

α
12

)
x∗ edges.

Proof: Perform a random rounding as in section 6.1. The expected contribution of an edge e to
the solution is (1− (1− xe

2 )2) = xe(1− xe
4 ). As before let H be the subgraph induced by the heavy

edges, and let H denote the subgraph induced by the light edges. The expected contribution of
H to the solution is at least 3

4(α · x∗), and that of H is at least (1 − 2
3 ·

1
4)(1 − α)x∗. Linearity of

expectation implies that the expected cardinality of the solution is at least (5
6 −

α
12)x∗.

Corollary 6.5. The break even point between the two lemmas is α = 10
13 , therefore we have a 10

13
approximation for the problem.
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The LP approach as presented here can not yield an approximation better than 0.9 as some
graphs have an integrality ratio of 0.9 (see section B.1.1). David Hartvigsen [Har84] designed an
algorithm that given a simple graph, finds a maximum triangle free subgraph with degree bounded
by 2. This algorithm can be used to yield a 4

5 approximation for simple graphs in the following
way: apply the algorithm and delete from every odd cycle one edge. A 2-matching without odd
cycles can be decomposed into two disjoint matchings. Since the output of the algorithm is triangle
free, at most 1

5 of the edges are deleted.

7 The Sparse t-Matching Scheme

Conjecture 3.3 states that the chromatic index of a multigraph is very close to the fractional
chromatic index. This motivates us to try to deal with the Max Sparse t-Matching problem (problem
6.1) as an intermediate problem, using an approximation for it to approximate Max edge t-coloring.
In case t = 2 Max Sparse t-Matching is equivalent to Max edge t-coloring and therefore is known
to be NP-Hard and does not admit a PTAS. In case t ≥ 3 it is unknown whether the problem is
hard, yet we believe it is. An example for an integrality gap of the Sparse t-Matching LP can be
found at the appendix.
The general algorithmic scheme we will use in this section is as follows:

1. Find a large subgraph with degree and odd density bounded by t + o(t). Let H be the
subgraph returned.

2. Use an edge coloring algorithm to color H.
3. Output the t largest color classes.

Note that in stage 2 the edge coloring algorithm is used as a black box. We will analyze our
algorithm with respect to a general edge coloring algorithm, and then plug in the performance of
the known algorithms.

7.1 A Few Simple Cases:

In the two following examples we simplify step 1. The simplified step 1 is to find the maximum
(in edges) subgraph with maximum degree bounded by t. This can be done by invoking Edmond’s
b−matching algorithm with bv = t for all v ∈ V .

If a multigraph G has a multiplicity of d, then Max edge t-coloring can be approximated by a
polynomial time algorithm up to a factor of 1 − d

t+d . To see this let OPT denote the maximum
number of edges that can be colored by t colors and follow the algorithmic scheme presented above.
Clearly |E(H)| ≥ OPT . Vizing’s theorem states that H can be colored using t+d colors. Therefore
in step 3, we discard at most a d

t+d fraction of the edges, which yields the approximation ratio.
For bipartite multigraphs, it is possible to solve Max edge t-coloring in polynomial time. It

is well known that for bipartite multigraphs χ′(G) = ∆(G) (see for example [Die96]), therefore
replacing step 2 of the previous algorithm, by an algorithm that colors a bipartite graph H with
∆(H) colors (for example [COS01]) yields an exact solution.

8 Approximating the Sparse t-Matching Problem

We present an approximation algorithm for the Sparse t-Matching problem. Our approximation
however will not be in the usual sense. Given a multigraph G and a parameter t, let OPT denote
the number of edges in the optimal subgraph. Our algorithm will output a subgraph H such that
|E(H)| ≥ OPT , albeit ∆(H) ≤ t + 1 and ρ(H) ≤ t +

√
t + 1 + 2 (rather than ρ(h),∆(H) ≤ t).

The first stage of the algorithm for approximating the Sparse t-Matching problem is to solve the
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Sparse t-Matching LP from section 6.1. This can be done in polynomial time and gives a fractional
solution. The second stage is to round the fractional solution returned by the LP and is explained
in section 8.1. The integrality ratio of the Sparse t-Matching LP is at least 1−Ω(1

t ); details appear
in appendix B.

8.1 Rounding the Fractional Solution:

The rounding technique consists of three stages. We hold a subset of the solution that increasingly
grows as we proceed through the stages. Let H be the set of edges that represents the solution.
Initially H = φ. In each stage of the algorithm edges are added to H, until finally H is returned as
the rounded solution. For each node v define the variable dv. As we proceed through the algorithm,
dv will hold the number of edges adjacent to v that can be added to H. Initially dv = t. Every
edge (u, v) added to H decreases du and dv by one.
Stage 1: First we get rid of multiple edges. Let (u, v) be a pair of vertices that are connected
by multiple edges. If two parallel edges have positive fractional value, shift values between them
until one of the edges either reaches the value of 0 or the value of 1. If an edge reached the value
of 1 then add it to H and decrease du, dv by one. Continue until the edges which have a positive
fractional value form a simple graph. Denote this graph by G′. Clearly The edges of H satisfy
constraints (4), (5), (6).
Stage 2: We concentrate on G′ and get rid of even length cycles:

1. Find a cycle (not necessarily simple) in G′ with an even number of edges, and mark them
even, odd alternately. An algorithm to do so appears in appendix D.

2. Shift weights from the even edges to the odd edges until one of the two events happens:
• An odd edge reached the weight of 1. In this case discard the edge from G′, add it to H

and modify the d-values of it’s vertices.
• An even edge reached the weight of 0. In this case discard it from G′

3. If there are even length cycles left in the graph then return to step one.

When this stage is done, it is evident that the edges of H satisfy constraints (4), (6) though
not necessarily constraint (5). The proof of claim 8.1 can be found in appendix D.

Claim 8.1. Let G be a graph without even cycles. G has the following properties:
1. All odd cycles are simple cycles.
2. All odd cycles are disjoint in vertices.

From claim 8.1 we deduce that the graph at the end of stage (2) looks like a tree in which each
node might represent an odd cycle. We use this restricted topology to complete the rounding.
Stage 3: Now we round the values of the edges in the ’tree’ from the leaves up. A leaf of the
remaining graph may be a node or an odd cycle. First we deal with the case of an odd cycle.
Assume that the cycle C = (v1, v2, . . . , vl) is an odd length cycle which forms a leaf of the ’tree’.
Let the edge w = (u, v1) connect C to the rest of the graph. Until this stage all that was done is
value shifting, and the d-values were always updated correctly, so it holds that dvi ≥ 1 for every
node in the cycle. There are two cases:
case 1: There exists a node vi ∈ C for which dvi = 1. Add to H the edges of the cycle and

discard the edge w from the graph (figure 1). Since dvi = 1, it follows that the total value of
edges in the cycle is bounded by l − 1. If we add the value of the edge w the total value is
bounded by l. l edges of the cycle were entered to H so no value was lost.
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Figure 1: Case 1, vertex v has dv = 1, so the cycle is taken and w is discarded.
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Figure 2: Case 2, ∀v dv ≥ 2. The cycle and w are added to H and du is decreased.

case 2: For every node v ∈ C we have dv ≥ 2. Shift values from other edges that contain u into
w, add the cycle and w into H, and decrease du by 1. The value shift did not change the
degree of u, though the edges of u may reach the value of 0 and therefore be discarded from
the graph. See figure 2. Since all the l + 1 edges were taken, no value was lost in this case.

The case that a leaf of the tree is a node is simple and can be solved by a value shift downwards
towards the node, i.e. the same as case 2. We iterate through stage 3 traversing the tree bottom
up, until all edges are either discarded from the graph or added to H. Finally output H.

8.2 Analysis of the Sparse t-Matching Algorithm

Let OPT denote the maximum size of a subgraph with degree and odd density bounded by t. From
the description of the rounding it is clear that |H| ≥ OPT. The only place in the rounding that
the degree of a vertex v might exceed t, is in stage 3 when v belongs to a cycle. Note that when
dv = 1, at most two edges containing v were added, and when dv ≥ 2 at most 3 edges were added.
We conclude that ∆(H) ≤ t + 1. We show that the odd density of H does not exceed t by much.
Theorem 8.2. ρ(H) ≤ t +

√
t + 1 + 2

Proof:
Let S ⊆ V such that |S| = 2k +1 for some integer k. Each v ∈ S has degree at most t+1 in H.

The number of edges of S is at most (2k+1)·(t+1)
2 therefore:

ρH(S) ≤
⌈

(2k + 1)(t + 1)
2k

⌉
≤ t +

⌈
t + 1
2k

⌉
+ 1 ≤ t +

t + 1
2k

+ 2.

This bound is good for large sets as it tends to t + 2 when k tends to infinity. We will give another
bound which is good for small sets:
Let ~x denote the fractional solution. Constraint 5 implies that X(S) ≤ k · t. Some mass was left
for the manipulations of stage 2, thus at the beginning of stage 2 the number of edges in S that
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were added to H is at most k · t− 1. Since at stage 2 we deal with a simple graph, the number of
edges added to S in stage 2 is at most

(
2k+1

2

)
= (2k + 1)k. Therefore:

ρH(S) ≤
⌈

(2k + 1)k + k · t− 1
k

⌉
≤ t + 2k + 1.

The break even point between the two bounds is when k = 1
4 + 1

2

√
t + 5

4 . Setting k to this value
yields the desired result.

We remark here that the loss of 1 in ∆ which is caused by the rounding is unavoidable, if the
rounding procedure returns a solution with value at least as large as the value of the fractional
solution (see appendix B).

9 Analysis of the Max edge t-coloring Algorithm

In Stage 2 of the algorithmic scheme presented in section 7 we use an edge coloring algorithm as a
black box. Naturally the quality of the result depends heavily on the performance of the algorithm
used. Assume we have an efficient algorithm A for the chromatic index problem, which edge colors
a multigraph G with max{α∆(G) + β , ρ(G)} colors. The algorithm A can be used to color the
subgraph H found by the Sparse t-Matching algorithm with max{α · (t + 1) + β , t +

√
t + 1 + 2}

colors. Let L denote this maximum. Our algorithm yields then a t
L approximation. If t is large

enough then the maximum would be achieved by α · (t + 1) + β. Taking the largest t color classes
results in a ( t

α(t+1)+β )-approximation for the Max edge t-coloring problem. This value tends to α−1

as t →∞.
Currently the best approximation algorithm for the chromatic index problem is due to [NK90]
where α = 1.1. If conjecture 3.3 is true (with a suitable efficient algorithm), then there exists an
efficient edge coloring algorithm for which α = 1. This means that the larger t is, the better is the
approximation for the Max edge t-coloring. This phenomena combined with Kahn’s result [Kah96]
that χ′(G)

χ′∗(G) → 1 as χ′∗(G) →∞ implies the following:

Corollary 9.1. The value of the Sparse t-Matching LP is an estimation to the optimal value of
Max edge t-coloring, with an approximation ratio that tends to 1 as t →∞.
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A Max edge ft-coloring Reduces to Max edge t-coloring

Proof of lemma 1.4: Given T we show how to construct an appropriate T ′. Denote by m the
number of edges in G. If T is not a balanced coloring then there exists two colors x, y, for which
the cardinality of color class x is bigger than the cardinality of color class y by at least 2. Denote
by H(x, y) the subgraph induced by edges colored x or y. As in the proof of Vizing [Viz64] we note:

1. The degree of each vertex in H(x, y) is at most 2. Every connected component of H(x, y) is
either a path or an even length cycle.

2. Every connected component of H(x, y) is colored alternately by x and y. If for some compo-
nent we change the coloring by assigning x to edges that were colored y, and assigning y to
edges that were colored x, then the new coloring is a legal coloring of G.

Since more edges are colored x than are colored y, we must have in H(x, y) a path of odd length
in which the number of edges colored x is one more than those colored y. If we change the coloring
of that component by substituting x for y and y for x, we are left with a legal coloring in which x
colors one edge less and y colors one more. It takes at most m iterations of this process to bring the
cardinality of the color classes to their proper sizes (xm

t y, pm
t q). This yields the desired T ′.

Proof of proposition 1.3: Invoke A to get a subgraph H ⊆ G and a t-coloring T of H. Now use
lemma 1.4 to transform T into a balanced coloring T ′ of H. Let Si be the set of edges colored i.
Since T ′ is balanced ∀i, j |Si| − |Sj | ≤ 1. Let k = maxi{|Si|}. There are two cases:
k ≤ f : keep all edges and the claim follows.
k > f : remove edges from classes whose cardinality is bigger than f until ∀i |Si| = f . In this case

the solution is of size t · f , thus it is the optimum.

B The Sparse t-Matching Polytope

When dealing with an algorithm based on linear programming, a natural question one should ask
is how far can the integral and the fractional solutions of the LP be.

Fact B.1. There are instances for which the Sparse t-Matching LP has an integrality ratio of 3t−2
3t−1.5 .
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Figure 3 demonstrates such an integrality gap. We use [i] to denote the value given by the
LP solution to an edge. The graph in figure 3 meets constraints 4 to 6, and has a total weight of
3t− 1.5. The optimal integral solution however takes all the 3t− 3 edges going out of the triangle
and one triangle edge. So the optimal integral solution has the weight of 3t − 2. This yields an
integrality gap of at least 3t−2

3t−1.5 . For large t this ratio is about 1 − 1
6t . Our algorithm gives an

approximation ratio of about 1− 1√
t

(for large t). Notice that this example in fact demonstrates the
integrality gap for the b-matching problem if one uses an LP only with degree constraints (without
general blossom constraints). This is true since the fractional solution obeys the degree constraints,
however the largest edge subgraph with degree t contains only 3t − 2 edges. This example also
shows that if the rounding procedure returns a solution whose value is at least the value of the
fractional solution, then (in this case) it must violate the degree constraints. This explains why
our rounding procedure (section 8.1) returns a subgraph with ∆ ≤ t + 1 rather then ∆ ≤ t.

(t-1) neighbors
(t-1) neighbors

[0.5]

[0.5]

[0.5]

(t-1) neighbors

[1]

[1]

[1]

[1]

Figure 3: A graph for which there is an integrality gap.

B.1 A Strengthened LP Formulation for Sparse t-Matching

Edmonds and Johnson showed in [EJ70] a sufficient characterization of the b-matching polytope.
They did this by generalizing the matching blossom constraints for b-matching. We can try to
strengthen our LP formulation for Sparse t-Matching by further demanding that the solution be
inside the b−matching polytope where bv = t for all v. In other words we add the generalized
blossom constraints. First some notation: for S ⊆ V define X(S) to be the sum of values in the

subgraph induced by S. Similarly for T ⊆ E define X(T )
4
=

∑
e∈T xe. For S ⊆ V we denote by

δ(S) the cut induced by S, i.e. all the edges that have exactly one vertex in S. We also define b(S)
to be the sum of bounds on the degrees of the vertices of S. In our case b(S) = t · |S|. We now
state the generalized blossom constraint:

∀S ⊆ V, T ⊆ δ(S) such that b(S) + |T | is odd X(S) + X(T ) ≤ 1
2
(b(S) + |T | − 1) (7)

Note that if we choose T = φ and t = 1, this is the usual blossom constraint. Figure 3 shows that
adding the blossom constraints strengthens the LP. Indeed the largest edge subgraph has at most
3t− 2 edges, thus ruling out the fractional solution indicated in Figure 3.
Adding the general blossom constraints to the LP enabled us to come up with a rounding procedure
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(different from the one in section 8.1) which returns a subgraph with ∆ ≤ t and ρ ≤ t +
√

7t + 8.
Details omitted.

Fact B.2. There are instances for which the integrality ratio of the Sparse t-Matching LP with
blossom constraints is 3t+1

3t+1.5

We use (i) to denote i parallel edges. A construction for an integrality gap in the strengthened
LP can be seen in figure 4, where we assume t is even. (A similar example holds if t is odd). Let x
denote the value assignment depicted in figure 4. The total values of edges in the graph is 3t + 1.5.
The optimal solution takes t edges from each outer triangle and one edge from the inner triangle
adding up to 3t+1. It is easy to see that the values of the edges satisfy the odd density constraints.
It remains to show that the values satisfy the blossom constraints. Edmond’s theorem implies that
it is enough to show that the value assignment is a convex combination of t−matchings (the odd
density of these matchings is not necessarily bounded by t). This convex combination is as follows:
Let z be an assignment that gives the value 1 to all the edges of the outer triangles, and the value
0 to the edges of the inner triangle. Note that z is a t−matching because all degrees are bounded
by t, yet it’s odd density is t + 1. Let yi (i = {1, 2, . . . , t

2}) be an assignment that gives the value
of 1 to the inner triangle edges and to the outer edges of the outer triangles. Each edge going out
of the inner triangle has multiplicity of t

2 . The assignment yi gives the value 1 to all those edges
except the i’th edge. Note that yi is also a t−matching. Now it holds that

x =
1
2
z +

t
2∑

i=1

1
t
yi

Hence x is within the t−matching polytope and therefore satisfies the blossom constraints.

(1) (t/2) (t/2) (1)

(1)(1)

(1)

(t/2) (t/2)

(1) [1]

[0.5] [0.5]

[0.5]

[1] [1]

(t/2) (t/2) [(t-1)/t]

[(t-1)/t][(t-1)/t]

[(t-1)/t]

[(t-1)/t] [(t-1)/t]

Figure 4: A graph for which there is an integrality gap.

B.1.1 The Case t=2

In case t = 2 we show that the integrality gap is at most 0.9. Consider the Petersen graph in figure
5. The optimal solution for Sparse t-Matching is to take 9 edges. Yet if we assign the value of 2

3
to each edge then the sum of values is 10, and the assignment satisfies the degree, odd density and
blossom constraints. This construction does not seem to generalize to larger t’s.
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Figure 5: The Petersen graph. The bold edges depict a possible solution
for t = 2.

C Hardness Result for Max edge 2-coloring

A solution for the Max edge 2-coloring problem is two (edge) disjoint matchings, thus it is a
subgraph of G with bounded degree 2 and no odd cycles. This gives us another definition for the
Max edge 2-coloring problem:

Problem C.1. Given an input multigraph G, find a largest (in edges) subgraph of G with degree
bounded by 2 and no odd cycles.

Notice that the restriction of no odd cycles is equivalent to the restriction that the odd density
of the output subgraph is bounded by 2: odd length cycles have odd density of 3, but even length
cycles have odd density of 2. It follows that the problems Max edge 2-coloring and max sparse
2-matching are the same. This equivalence is unique for the parameter t = 2. A problem similar to
C.1 was proven by Papadimitriou to be NP-hard [CP80]. Before we introduce the problem, we have
to define the term 2-factor. Let G be a multigraph, a 2-factor of G is an edge induced subgraph
of G, in which every vertex v ∈ V (G) has degree of exactly 2. Papadimitriou showed that it is
NP-hard to decide whether an input graph has a 2-factor without cycles of length 5 or less. We
will use the basic ideas and some gadgets from Papadimitriou’s reduction.
The reduction will be from MAX 3 SAT-3. We will use the term good 2-factor to denote a 2-factor
without odd cycles. Given an instance with clauses C1, C2, ..., Cm and variables x1, x2, ..., xn we
build a graph which has a good 2-factor iff the instance is satisfiable. This will imply that Max
edge 2-coloring is NP-hard.

C.1 The Reduction

To each variable xl we associate a component γl (figure 6). Note that this component has exactly
two good 2-factors: one contains el0 and the other contains el1 . This corresponds to a true/false
assignment for xl. To each clause Ci we associate a component Γi (figure 7). The edges ji1 , ji2 , ji3

correspond to the literals yi1 , yi2 , yi3 of Ci. Intuitively the edge jik is chosen by a good 2-factor
iff literal yik is true in the corresponding assignment. The component Γi has the property that
every good 2-factor of it must contain a none empty subset of edges A ⊆ {ji1 , ji2 , ji3}. Moreover
for every such non empty A there exists a good 2-factor whose intersection with {ji1 , ji2 , ji3} is
exactly A. This will ensure that every good 2-factor of Γi must satisfy one of the literals of Ci. It
remains to ensure the consistency between clauses and variables. This is done by using a connector
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e_l_0e_l_1

Figure 6: variable component γl

j_i_1 j_i_2 j_i_3

Figure 7: clause component Γi

j’ j’’

e’ e’’
e e

jj

Figure 8: connector

edge e is chosen:edge j is chosen: neither e nor j are chosen:

Figure 9: All possible configurations for a connector

component (figure 8) the connector has the following property: every good 2-factor of it contains
j′ iff it contains j′′, similarly it contains e′ iff it contains e′′. Furthermore it can not contain all
four edges j′, j′′, e′, e′′. It follows that in the context of 2-factor the edges j′, j′′ can be thought of
as one imaginary edge j, similarly e′, e′′ can be thought of as one edge e. It is guaranteed that a
good 2-factor does not contain both e, j.
We use the connector component in the following way: consider a variable xl which has a positive
literal in Ci e.g. yi1 = xl. We want to prevent the situation in which both el0 and ji1 are chosen
(since it can not be that xl is false but it’s positive literal has a true value). We prevent this by
connecting the edges el0 and ji1 using a connector. Since variable xl may have up to 3 appearances
and there is only one el0 edge, we chain copies of el0 as needed (see figure 10). The connector
properties ensures that all the edges in the side of el0 behave as one edge; i.e. every good 2-factor
contains one of them iff it contains all of them.
Cycles length parity does not change: notice that after we connect the components of the
graph, edge ji1 becomes imaginary. This is due to the fact that it is replaced by two connector
edges j′i1 , j

′′
i1

which behave the same. An important fact is that if the edges j′i1 , j
′′
i1

are contained
in a good 2-factor then they are a part of an odd path which goes in and out of the corresponding
connector (as illustrated in figure 9). Since the length of this path is odd, it has the same parity
of a single edge. It follows that all the properties of the clause component (which depend on the
parity of cycles) are still valid. A similar thing happens with the imaginary edge el0 . It follows that
the resulting graph has a good 2-factor iff the MAX 3 SAT-3 instance has a satisfying assignment.
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e_l_1 e_l_0

Figure 10: variable component γl

C.2 It is NP-hard to Approximate Max edge 2-coloring
Better Than 1− ε

The reduction maps a MAX 3 SAT-3 instance A into a graph G. A vertex v ∈ V (G) is called
perfect with respect to a solution of G if it has degree 2 in this solution. Denote by OPT(A) the
fraction of clauses satisfied by an optimal assignment, denote by OPT(G) the fraction of edges
in an optimal solution for G out of |V (G)| (|V (G)| is the best possible). Since MAX 3 SAT-3
is APX-Complete then there exists δ < 1 such that distinguishing between instances which have
OPT = 1 and instances which have OPT ≤ δ is NP-hard. We will prove the following connection
between OPT(A) and OPT(G): there exists an ε1 < 1 such that for every instance A there exists
ε ≤ ε1 (dependent on A and can be easily computed from A) s.t. OPT (G) = ε + (1− ε) ·OPT (A).
It follows that if OPT (A) ≤ δ then OPT (G) ≤ ε1 + (1− ε1)δ , if OPT (A) = 1 then OPT (G) = 1.
Thus it is NP-hard to approximate the new problem better then ε1 + (1 − ε1)δ which is strictly
smaller then one. The number of clauses and variables in an instance A are linearly related. For
each variable/clause there is a bounded number of edges in G, so both the instance size and the
optimum value (as an integer rather then as a fraction out of |V (G)|) grow only linearly by the
reduction. To show the existence of such ε1 < 1 we will show that for every unsatisfied clause in an
optimal solution of an instance A we have to pay in exactly two unperfect vertices in an optimal
solution for G (i.e. one edge less). This follows from the following facts that can be verified by
inspecting the gadgets of section C.1:

• An optimal assignment for the MAX 3 SAT-3 instance can be translated into a solution for G
in which all variable components are perfect, all satisfied clause components are perfect and
only clause components of unsatisfied clauses are not perfect. They have exactly two vertices
which are not perfect and all other vertices are perfect.

• We may assume without loss of generality that in an optimal solution of G the only vertices
with degree less than 2 are inside clause components. Also if a clause component is not perfect
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(i.e. contains a vertex which is not perfect) then it contains exactly 2 vertices which are not
perfect and all the other vertices in the component are perfect.

• If an optimum solution for the MAX 3 SAT-3 instance does not satisfy m′ clauses then an
optimum solution for G will have exactly 2m′ vertices with degree 1 and all other vertices
with degree of 2.

D Even Cycles

We present an algorithm that given a multigraph G finds an even length cycle (not necessarily
simple), or asserts that there isn’t one.

Algorithm find-even-cycles

1. Initially all the vertices of the graph are marked as simple. During the run of the
algorithm the vertices will be marked either simple or shrunk.

2. Find a cycle in the graph. This can be done using the DFS algorithm. Call the
cycle found C. If there are no cycles in the graph return: NO CYCLE.

3. If C is of even length or C is not a simple cycle or C has a chord or C contains a
vertex which is shrunk, then return C and stop.

4. Shrink the vertices of C into one vertex vC and set this vertex as shrunk. The
shrinking process may create parallel edges. Return to step 2.

Lemma D.1. Algorithm find-even-cycles returns a cycle C iff there exists an even length cycle
in the graph.

Proof: Assume algorithm find-even-cycles returns a cycle C. If C contains only simple vertices
then all the vertices of C belong to G as well. Therefore according to claim 8.1 C contains an even
length cycle in G. Assume C contains a shrunk vertex vD. vD can be blown up again to be the
original cycle D. Since D is odd, we can augment the cycle C by adding to it either an odd or an
even path of D. Thus all shrunk vertices of C can be blown up to create an even length cycle in G.
Assume algorithm find-even-cycles returns NO CYCLE. This means that when the algorithm
terminates, it holds a tree composed of simple and shrunk vertices. If we blow up the shrunk
vertices we see that G looked like a tree when some of it’s vertices are in fact simple odd cycles.
Hence G has no even cycles.

Proof of claim 8.1 a: If an odd cycle is not simple, it can be divided into two cycles, one
of which is odd length and one of which is even length, contradicting the assumption that there are
no even length cycles in the graph.
b: Let C1 and C2 be two non disjoint odd cycles. We show that C1∪C2 contain an even length cycle.
Let T be the set of edges that appear in both cycles. Let H be the graph formed by the symmetric
difference of C1, C2; i.e. E(H) = (E(C1)∪E(C2))\T . Note that |E(H)| = |E(C1)|+ |E(C2)|−2|T |
which is even. Furthermore all vertices in H have an even degree. We deduce that every component
of H is an Euler cycle. If H has a component with an even number of edges then we are done.
Otherwise every component of H is an odd cycle and there is an even number of components.
C1 ∪C2 form a graph without bridges. It follows that there exists a cycle in C1 ∪C2 that connects
components of H. Such a cycle is depicted in figure 11; the bold edges represent edges of T . Each
component of H can be decomposed to an odd path and an even path. We conclude that an even
cycle can be formed.
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Figure 11: A cycle formed by components from H
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