TIME ASSUMPTIONS

&
TIME ABSTRACTIONS

TIME ASSUMPTIONS

e Previously: asynchronous systems.

e No timing assumptions.

e No physical clock.

e No bounds on process or communication delays.

e First a parenthesis ...

LOGICAL TIME

e Asynchronous systems.
e No physical clock!

e Time units: transmission and delivery of messages.

LOGICAL TIME - ALGORITHM

Each process p keeps an integer called logical clock Ip = o.

. Whenever an event occurs at process p, the logical clock Ip
is incremented by one unit.

2. p sends a message, adds timestamp t(e).

3.p receives a message m with timestamp tm, sets Ip :=
max{lp, tm} + 1.

séndag 21 april 13

LOGICAL TIME -CAUSALITY

SN

(2) (b) (c)

Event e1 may have potentially caused event e2, e1 — e2 if:

(a) e1 and e2 occurred at the same process p and ez occurred
before e2;

(b) e1 corresponds to the transmission of a message m at a process
p and e2 to the reception of m at some other process g; or

(c) there exists some event e’, such that e1 — e’ and e’ — e2.

séndag 21 april 13

SYNCHRONOUS SYSTEM

Synchronous computation: known upper bound on process
delays.

AND

Synchronous communication: known upper bound on
communication delays.

ALTERNATIVELY ONLY

Synchronous physical clocks: local physical clocks + upper
bound on deviation from global physical clock.

séndag 21 april 13

SYNCHRONOUS SYSTEM -
SERVICES

e Timed failure detection - heartbeats.
o Measure of transit delays.

e Coordination based on time. Lease.
o Worst-case performance.

e Synchronized clocks. Time stamp events + order (within
sync precision).

séndag 21 april 13

PROBLEMS

e Coverage: When the timing assumptions hold.

reddit is under heavy load right now

Source: screenshot reddit.com

Controlled network load Worst case scenario.

séndag 21 april 13

PARTIAL SYNCHRONY

e Periodically overloaded.

e No bound on the period that is asynchronous.

o After some time the timing assumptions hold “forever”.

e Eventually they will hold!

séndag 21 april 13

ABSTRACTING TIME

e Add the timing assumptions to ...
e ... links and processes? Messy.
e Introduce: failure detection!

e Crash: heartbeats.

séndag 21 april 13

PERFECT FAILURE DETECTION

e Timeouts: 2 x transmission time + worst-case process time.
e No response? Crash!

e Final judgement.

séndag 21 april 13

PERFECT FAILURE DETECTION

séndag 21 april 13

Module 2.6: Interface and properties of the perfect failure detector

Module:
Name: PerfectFailureDetector, instance 7P.
Events:
Indication: (P, Crash | p): Detects that process p has crashed.
Properties:
PFD1: Strong completeness: Eventually, every process that crashes is permanently
detected by every correct process.

o have crashed

PFD2: Strong accuracy: If a process p is detected by any process, then p has
crashed.

Algorithm 2.5: Exclude on Timeout

Implements:
PerfectFailureDetector, instance P.

Uses:
PerfectPointToPointLinks, instance pl.

upon event (P, Init) do

live := IT;
Z;;i,ed = 0; Large enough so that every process can send

starttimer(A); <

and deliver a heartbeat to all.

upon event (Timeout) do
forall p € IT do
if (p & alive) A (p € detected) then
detected := detected U {p};
trigger (P, Crash | p); —
trigger (pl, Send | p, HEARTBEATREQUEST]);
alive = (;
starttimer(A);

New heartbeats are triggered

upon event (pl, Deliver | g, [HEARTBEATREQUEST]) do
trigger (pl, Send | g, [HEARTBEATREPLY]);

upon event (pl, Deliver | p, HEARTBEATREPLY]) do
alive := alive U {p};

séndag 21 april 13

LEADER ELECTION

e Detect living process -> Leader.
e Leader that coordinates the others.
e Only for crash-stop!

e Useful for backup processes.

séndag 21 april 13

LEADER ELECTION

Module 2.7: Interface and properties of leader election
Module:

Name: LeaderElection, instance le.
Events:

Indication: (le, Leader | p): Indicates that process p is elected as leader.
Properties:

LE1: Eventual detection: Either there is no correct process, or some correct process
is eventually elected as the leader.

LE2: Accuracy: If a process is leader, then all previously elected leaders have
crashed.

séndag 21 april 13

Algorithm 2.6: Monarchical Leader Election

Implements:
LeaderElection, instance /e.

Uses:
PerfectFailureDetector, instance P.

upon event (le, Init) do
suspected :=0;
leader = 1;

upon event (P, Crash | p) do
suspected := suspected U {p};

upon leader # maxrank(II \ suspected) do
leader = maxrank@ \ suspected);
trigger (le, Leader | leader),

Source: http://en.wikipedia.org/wiki/ Source: http://en.wikipedia.org/wiki/
File:King Carl XVI Gustaf at Nationa T - o
File:Crown Princess Victoria.jpg

1 Day 2009 Cropped.png

séndag 21 april 13

http://en.wikipedia.org/wiki/File:King_Carl_XVI_Gustaf_at_National_Day_2009_Cropped.png
http://en.wikipedia.org/wiki/File:King_Carl_XVI_Gustaf_at_National_Day_2009_Cropped.png
http://en.wikipedia.org/wiki/File:King_Carl_XVI_Gustaf_at_National_Day_2009_Cropped.png
http://en.wikipedia.org/wiki/File:King_Carl_XVI_Gustaf_at_National_Day_2009_Cropped.png
http://en.wikipedia.org/wiki/File:King_Carl_XVI_Gustaf_at_National_Day_2009_Cropped.png
http://en.wikipedia.org/wiki/File:King_Carl_XVI_Gustaf_at_National_Day_2009_Cropped.png
http://en.wikipedia.org/wiki/File:Crown_Princess_Victoria.jpg
http://en.wikipedia.org/wiki/File:Crown_Princess_Victoria.jpg
http://en.wikipedia.org/wiki/File:Crown_Princess_Victoria.jpg
http://en.wikipedia.org/wiki/File:Crown_Princess_Victoria.jpg

EVENTUAL FAILURE DETECTION

e Partial synchronous systems.
e False suspicions.
o Change judgement.

e Small timeouts -> increased.

Source: http://en.wikipedia.org/wiki/File:Noel-

coypel-the-resurrection-of-christ-1700.jpg

e After increased timeouts -> system synchronous.

séndag 21 april 13

http://en.wikipedia.org/wiki/File:Noel-coypel-the-resurrection-of-christ-1700.jpg
http://en.wikipedia.org/wiki/File:Noel-coypel-the-resurrection-of-christ-1700.jpg
http://en.wikipedia.org/wiki/File:Noel-coypel-the-resurrection-of-christ-1700.jpg
http://en.wikipedia.org/wiki/File:Noel-coypel-the-resurrection-of-christ-1700.jpg

EVENTUAL FAILURE DETECTION

Module 2.8: Interface and properties of the eventually perfect failure detector
Module:

Name: EventuallyPerfectFailureDetector, instance OP.

Events:

Indication: (OP, Suspect | p): Notifies that process p is suspected to have crashed.
Indication: { OP, Restore | p): Notifies that process p is not suspected anymore.
Properties:

EPFD1: Strong completeness: Eventually, every process that crashes is perma-
nently suspected by every correct process.

EPFD2: Eventual strong accuracy: Eventually, no correct process is suspected by
any correct process.

séndag 21 april 13

Algorithm 2.7: Increasing Timeout

Implements:
EventuallyPerfectFailureDetector, instance OP.

Uses:
PerfectPointToPointLinks, instance pl.

upon event (OP, Init) do
alive = I1;
suspected := {0,
delay = A,
starttimer(delay);,

upon event (Timeout) do
if alive N suspected # () then
delay :=delay + A4; <«——— Performance goes down.
forall p € II do
if (p & alive) A (p & suspected) then
suspected := suspected U {p};
trigger (OP, Suspect | p);
else if (p € alive) A (p € suspected) then
suspected = suspected \ {p};
trigger (OP, Restore | p);
trigger (pl, Send | p, HEARTBEATREQUEST));
alive :=0;
starttimer(delay);

upon event (pl, Deliver | g, [HEARTBEATREQUEST]) do
trigger (pl, Send | g, [HEARTBEATREPLY]);

upon event (pl, Deliver | p, [HEARTBEATREPLY]|) do
alive := alive U {p},

séndag 21 april 13

EVENTUAL LEADER ELECTION

e Living dead!
o Eventually correct processes elect the same leader.
e Crash-recovery.

e Two algorithms.

séndag 21 april 13

EVENTUAL LEADER ELECTION

Module 2.9: Interface and properties of the eventual leader detector
Module:

Name: EventuallLeaderDetector, instance (2.
Events:

Indication: ({2, Trust | p): Indicates that process p is trusted to be leader.
Properties:

ELD1: Eventual accuracy: There is a time after which every correct process trusts
some correct process.

ELD2: Eventual agreement: There is a time after which no two correct processes
trust different correct processes.

séndag 21 april 13

Algorithm 2.8: Monarchical Eventual Leader Detection

Implements:
EventuallLeaderDetector, instance f2.

Uses:
EventuallyPerfectFailureDetector, instance OP.

upon event ((2, Init) do
suspected = (),
leader := 1 ;

upon event (OGP, Suspect | p) do
suspected := suspected U {p};

upon event (OP, Restore | p) do
suspected := suspected \ {p};

«—— N

upon leader # maxrank(II \ suspected) do
leader := maxrank(IT \ suspected);
trigger ((2, Trust | leader);

séndag 21 april 13

Algorithm 2.9: Elect Lower Epoch

Implements:
Eventual LeaderDetector, instance (2.

Uses:
FairLossPointToPointLinks, instance fil.
<«<— Note!

upon event { 2, Init) do
epoch :=();
store(epoch),
candidates = ;
trigger (2, Recovery); /f recovery procedure completes the initialization

upon event { £2, Recovery) do
leader := maxrank(IT);
trigger (12, Trust | leader);
delay = A,
retrieve(epoch);
epoch := epoch + 1;
store(epoch),
forall p € IT do

trigger { fil, Send | p, [HEARTBEAT, epoch|);

candidates = ;
starttimer(delay);

upon event { Timeout) do Select the one with highest rank,
newleader := sclect(candidates); €——————
if newleader # leader then .
s pesdin among those with lowest epoch.
leader := newleader:;
trigger { 02, Trust | leader);
forall p € IT do .
trigger { fil, Send | p, [HEARTBEAT, epoch)); Longer time
candidates = ();
starttimer(delay);

upon event { fil, Deliver | g, [HEARTBEAT, ep|) do
if exists (s, e) € candidates such that s = g A e < ep then
candidates := candidates \ {(gq,¢€)};
candidates = candidates | (g, ep);

séndag 21 april 13

BYZANTINE LEADER ELECTION

e Trust, but verify!
o Complain if wrong actions or too slow.

e Progressively more time to prove yourself.

séndag 21 april 13

BYZANTINE LEADER ELECTION

séndag 21 april 13

Module 2.10: Interface and properties of the Byzantine eventual leader detector

Module:
Name: ByzantineLeaderDetector, instance bld.

Events: Can be byzantine!

Indication: (bld, Trust | p): Indicates that process fa is trusted to be leader.

Request: (bld, Complain | p): Receives a complaint about process p.

Properties: Triggered by higher level algorithm

BLD1: Eventual succession: If more than f correct processes that trust some pro-

cess p complain about p, then every correct process eventually trusts a different
process than p.

BLD2: Putsch resistance: A correct process does not trust a new leader unless at
least one correct process has complained against the previous leader.

BLD3: Eventual agreement: There is a time after which no two correct processes
trust different processes.

BYZANTINE LEADER ELECTION

o Max f Byzantine processes.
o N> 3f.

e leader(r) = p when rank(p) = r mod N, r mod N # 0.
Otherwise g, such that rank(q) = N.

e More than 2f complaints needed!

e When more than f complaints for a round, processes than
haven’t complained, do it!

séndag 21 april 13

séndag 21 april 13

Algorithm 2.10: Rotating Byzantine Leader Detection

Implements:
ByzantineLeaderDetector, instance bld.

Uses:
AuthPerfectPointToPointLinks, instance al.

upon event { bld, Init) do
round :=1;
complainlist := [L]V,
complained := FALSE;
trigger (bld, Trust | leader(round)),

upon event { bld, Complain | p) such that p = leader(round) and
complained = FALSE do
complained := TRUE;
forall g € 11 do
trigger (al, Send | g, [COMPLAINT, round) };

upon event { al, Deliver | p, COMPLAINT, r]) such that r = round and
complainlist|p] = L do
complainlist[p] := COMPLAINT;
if #(complainlist) > f A complained = FALSE then
complained := TRUE;
forall ¢ € 11 do
trigger (al, Send | g, [COMPLAINT, round) };
else if #(complainlist) > 2f then
round := round + 1,
complainlist := [L]~
complained := FALSE;
trigger (bld, Trust | leader(round));

