
Consensus Variants

Usman Mazhar Mirza

6/17/2013 1

Consensus Variants

• In the variants we consider here, just like in
consensus, the processes need to make
consistent decisions, such as agreeing on one
common value.

• Most of the abstractions extend or change the
interface of consensus.

6/17/2013 2

Consensus Variants
• Abstractions we will study are:

– Total-Order Broadcast
– Terminating Reliable Broadcast
– Fast Consensus
– Non-blocking Atomic Commitment
– Group Membership
– View Synchrony

We will mainly focus on fail-stop algorithms for
implementing these abstractions. We will also consider
fail-arbitrary model implementation for:

– Byzantine Total-Order Broadcast
– Byzantine Fast Consensus

6/17/2013 3

Total-Order Broadcast: Overview
Earlier in Sect. 3.9, we discussed FIFO-order and causal-order(reliable)
broadcast abstractions and their implementation.

FIFO-order broadcast requires that messages from the same process
are delivered in the order that the sender has broadcast them. For
messages from different senders, FIFO-order broadcast does not
guarantee any particular order of delivery.

Causal-order broadcast enforces a global ordering for all messages
that causally depend on each other: such messages need to be
delivered in the same order and this order must respect causality. But
causal-order broadcast does not enforce any ordering among
messages that are causally unrelated, or “concurrent” in this sense.

6/17/2013 4

Total-Order Broadcast: Overview
• A total-order (reliable) broadcast abstraction orders all

messages, even those from different senders and those
that are not causally related.

• More precisely, total order broadcast is a reliable broadcast
communication abstraction which ensures that all
processes deliver the same messages in a common global
order.

• Whereas reliable broadcast ensures that processes agree

on the same set of messages they deliver, total-order
broadcast ensures that they agree on the same sequence
of messages; the set of delivered messages is now ordered.

6/17/2013 5

Total-Order Broadcast: Specifications

• We are considering two variants. The first is a
regular variant that ensures total ordering only
among the correct processes. The second is a
uniform variant that ensures total ordering with
respect to all processes, including the faulty
processes as well.

• Total order property is orthogonal to the FIFO-
order and causal-order properties. It is possible
that a total-order broadcast abstraction does not
respect causal order.

6/17/2013 6

Total-Order Broadcast: Specifications

6/17/2013 7

First Variant: Total Order only among
the correct processes

Same as “reliable
broadcast abstraction”

Total-Order Broadcast: Specifications

6/17/2013 8

Second Variant: Total Order with
respect to all processes

Same as
“uniform
reliable
broadcast
abstraction”

Fail-Silent Algorithm: Consensus-Based
Total-Order Broadcast

• Implements the first variant of Total-Order broadcast
abstraction.

• Uses reliable broadcast abstraction and multiple instances
of (regular) consensus abstraction.

• Messages are first disseminated using a reliable broadcast
instance. Recall that reliable broadcast imposes no
particular order on delivering the messages, so every
process simply stores the delivered messages in a set of
unordered messages. At any point in time, it may be that
no two processes have the same sets of unordered
messages in their sets. The processes then use the
consensus abstraction to decide on one set, order the
messages in this set, and finally deliver them.

6/17/2013 9

6/17/2013 10

One consensus instance for every round

Wait flag to ensure that new round is not started
before the previous round has terminated

6/17/2013 11

Fail-Silent Algorithm: Consensus-Based
Total-Order Broadcast

Consider the total order property. Let p and q be
any two correct processes that to-deliver some
message m2. Assume that p to-delivers some
distinct message m1 before m2 . If p to-delivers m1
and m2 in the same round then due to the
agreement property of consensus, q must have
decided the same set of messages in that round.
Thus, q also to-delivers m1 before m2, as we
assume that the messages decided in one round are
to-delivered in the same order by every process,
determined in a fixed way from the set of decided
messages.

6/17/2013 12

Byzantine Total-Order Broadcast:
Overview

• Uses the same overall approach as the total-
order broadcast abstraction with crash-stop
processes.

• For implementing total-order broadcast in the
fail-arbitrary model, however, one cannot
simply take the algorithm from the fail-silent
model and replace the underlying consensus
primitive with Byzantine consensus.

6/17/2013 13

Byzantine Total-Order Broadcast:
Specifications

• The abstraction ensures the same integrity
property as the Byzantine broadcast
primitives in the sense that every message
delivered with sender p was actually
broadcast by p, if p is correct, and could not
have been forged by Byzantine processes.

• Other properties are same as total-order
broadcast among crash-stop processes.

6/17/2013 14

Byzantine Total-Order Broadcast:
Specifications

6/17/2013 15

Fail-Noisy-Arbitrary Algorithm:
Rotating Sender Byzantine Broadcast

• Byzantine broadcast abstractions are more
complex because there are no useful failure
detector abstractions.

• But an algorithm may rely on eventual leader
detector primitive that is usually accessed
through an underlying consensus abstraction.

6/17/2013 16

6/17/2013 17

Each process send on authenticated
links with sequence number

6/17/2013 18

Returns first element

Propose if process finds no message in the queue of process s.

Terminating Reliable Broadcast

• Reliable broadcast abstraction ensures that if a
message is delivered to a process then it is
delivered to all correct processes (in the uniform
variant).

• Terminating reliable broadcast (TRB) is a form of
reliable broadcast with a specific termination
property. It is used in situations where a given
process s is known to have the obligation of
broadcasting some message to all processes in
the system.

6/17/2013 19

Terminating Reliable Broadcast

• Consider the case where process s crashes and
some other process p detects that s has crashed
without having seen m. It is possible that s
crashed while broadcasting m. In fact, some
processes might have delivered m whereas
others might never do so. This can be
problematic for an application.

• Process p might need to know whether it should
keep on waiting for m, or if it can know at some
point that m will never be delivered by any
process.

6/17/2013 20

Terminating Reliable Broadcast

Process p in the example cannot decide that it
should wait for m or not. The TRB abstraction
adds precisely this missing piece of information
to reliable broadcast. TRB ensures that every
process p either delivers the message m from
the sender or some failure indication Δ,
denoting that m will never be delivered (by any
process).

6/17/2013 21

Terminating Reliable Broadcast:
Specifications

• The abstraction is defined for a specific sender
process s , which is known to all processes in
advance.

• Only the sender process broadcasts a message;
all other processes invoke the algorithm and
participate in the TRB upon initialization of the
instance.

• The processes may not only deliver a message m
but also “deliver” the special symbol Δ, which
indicates that the sender has crashed.

6/17/2013 22

6/17/2013 23

 Fail-Stop: Consensus-Based Uniform
Terminating Reliable Broadcast

• The sender process s disseminate a message m
to all processes using best-effort broadcast. Every
process waits until it either receives the message
broadcast by the sender process or detects the
crash of the sender.

• The properties of a perfect failure detector and
the validity property of the broadcast ensure that
no process waits forever. If the sender crashes,
some processes may beb-deliver m and others
may not beb-deliver any message.

6/17/2013 24

 Fail-Stop: Consensus-Based Uniform
Terminating Reliable Broadcast

• Then all processes invoke the uniform consensus
abstraction to agree on whether to deliver m or the
failure notification.

• Every process proposes either m or Δ in the consensus
instance, depending on whether the process has
delivered m (from the best-effort broadcast primitive)
or has detected the crash of the sender (in the failure
detector).

• The decision of the consensus abstraction is then
delivered by the algorithm. Note that, if a process has
not beb-delivered any message from s then it learns m
from the output of the consensus primitive.

6/17/2013 25

 Fail-Stop: Consensus-Based Uniform
Terminating Reliable Broadcast

6/17/2013 26

Either “m” or “Δ” is proposed

Example

6/17/2013 27

Fast Consensus
• A consensus algorithm with good performance directly

accelerates many implementations of other tasks as
well.

• Many consensus algorithms invoke multiple
communication steps with rounds of message
exchanges among all processes.

• But some of these communication steps may appear
redundant, especially for situations in which all
processes start with the same proposal value.

• If the processes had a simple way to detect that their
proposals are the same, consensus could be reached
faster.

6/17/2013 28

Fast Consensus

• Fast consensus is the variation of the
consensus primitive with a requirement to
terminate particularly fast under favorable
circumstances. A fast consensus abstraction is
a specialization of the consensus abstraction
that must terminate in one round when all
processes propose the same value.

6/17/2013 29

Fast Consensus: Specifications

6/17/2013 30

different

Same as
uniform
consensus

From Uniform Consensus to Uniform
Fast Consensus

• It is a fail-silent algorithm and comes at the cost
of reduced resilience. Specifically, implementing
fast consensus requires that N>3f instead of only
N>2f.

• Every process broadcasts its proposal value with
best-effort guarantees. When a process receives
only messages with the same proposal value v in
this round, from N − f distinct processes, it
decides v. This step ensures the fast termination
property.

6/17/2013 31

From Uniform Consensus to Uniform
Fast Consensus

• Otherwise, if the messages received in the
first round contain multiple distinct values,
but still more than N − 2f messages contain
the same proposal value w, the process adopts
w as its own proposal value. Unless the
process has already decided, it then invokes
an underlying uniform consensus primitive
with its proposal and lets it agree on a
decision.

6/17/2013 32

6/17/2013 33

6/17/2013 34

No decision has been made yet

Thank you!

6/17/2013 35

	Consensus Variants
	Consensus Variants
	Consensus Variants
	Total-Order Broadcast: Overview
	Total-Order Broadcast: Overview
	Total-Order Broadcast: Specifications
	Total-Order Broadcast: Specifications
	Total-Order Broadcast: Specifications
	Fail-Silent Algorithm: Consensus-Based Total-Order Broadcast
	Slide Number 10
	Slide Number 11
	Fail-Silent Algorithm: Consensus-Based Total-Order Broadcast
	Byzantine Total-Order Broadcast: Overview
	Byzantine Total-Order Broadcast: Specifications
	Byzantine Total-Order Broadcast: Specifications
	Fail-Noisy-Arbitrary Algorithm: Rotating Sender Byzantine Broadcast
	Slide Number 17
	Slide Number 18
	Terminating Reliable Broadcast
	Terminating Reliable Broadcast
	Terminating Reliable Broadcast
	Terminating Reliable Broadcast: Specifications
	Slide Number 23
	 Fail-Stop: Consensus-Based Uniform Terminating Reliable Broadcast
	 Fail-Stop: Consensus-Based Uniform Terminating Reliable Broadcast
	 Fail-Stop: Consensus-Based Uniform Terminating Reliable Broadcast
	Example
	Fast Consensus
	Fast Consensus
	Fast Consensus: Specifications
	From Uniform Consensus to Uniform Fast Consensus
	From Uniform Consensus to Uniform Fast Consensus
	Slide Number 33
	Slide Number 34
	Slide Number 35

