O\)
&I1666 A5
055118

UNIVERSITY

Registers — Shared Memory

Fail-crash, fail-silent

BJORN A. JOHNSSON

Introduction

Analogy from multi-CPU computers.

Over network: emulation of shared-memory.

Benefit: use shared-memory where there really is none.

Considered easier than message exchanges.

LUND

UNIVERSITY

Register Overview

Process starts read operation with < r, Read)

Process starts write operation with < r, Write | v)

Process completes after reply event from register:
— {r, ReadReturn | v)
— (r, WriteReturn)

Processes access registers in sequential manner
Types: (1, 1), (1, N), (N, N)

N Z
N Z

S\

e\ S,

O 5

LUND

UNIVERSITY

Semantics

» Liveness: Every operation eventually completes.

« Safety. Every read operation returns the value written by
the last write operation.

A process p invokes a write operation on a register with a value v and com-
pletes this write. Later on, some other process ¢ invokes a write operation
on the register with a new value w, and then ¢ crashes before the operation
completes. Hence, ¢ does not get any indication that the operation has in-
deed taken place before it crashes, and the operation has failed. Now, if a
process r subsequently invokes a read operation on the register, what is the
value that r is supposed to return? Should it be v or w?

S,
%)

LUND

UNIVERSITY

Concurrency

« Serial (or sequential) exec: one operation after another
» Concurrent exec: what happens to def. of “last™?

« Three abstractions: safe, regular, and atomic.

LUND

UNIVERSITY

Algorithm Overview

* (1, N) Regular Register

— Read-One Write-All

— Majority Voting Regular Register
* (1, N) Atomic Register

— Read-Impose Write-All
— Read-Impose Write-Majority
* (N, N) Atomic Register
Y. . Y. .« Regi
— Read-Impose Write-Consult-All

— Read-Impose Write-Consult-Majority LUND

UNIVERSITY

Repetition

Distributed-System Models

 Fail-stop
— crash-stop, perfekt links, perfect failure detector (P)
 Fail-silent

— crash-stop, perfekt links, no failure detector

(72 %
5/~ s \%
Oy & <
2\Q 70 /%
Z S
2 gu
\C =/
6)

0,
&l()!)‘- q‘}‘;.\' >

UNIVERSITY

(1, N) Regular Register

Module 4.1: Interface and properties of a (1, V) regular register

Module:

Name: (1, N)-RegularRegister, instance onrr.

Events:

Request: (onrr, Read): Invokes a read operation on the register.
Request: (onrr, Write | v): Invokes a write operation with value v on the register.

Indication: (onrr, ReadReturn | v): Completes a read operation on the register
with return value v.

Indication: (onrr, WriteReturn): Completes a write operation on the register.

Properties:

initially L
ONRRI1: Termination: If a correct process invokes an operation, then the operation / y

eventually completes.

ONRR2: Validity: A read that is not concurrent with a write returns the last value
written; a read that i1s concurrent with a write returns the last value written or the
value concurrently written.

UN

UNIVERSITY

(1, N) Regular Register

write(x) write(y)
P @ o @ @
read() — L read() — X read() —y
q ® *—© *—©
Figure 4.1: A register execution that is not regular because of the first read by
process ¢
write(x) write(y) o
P @@ o—=0 / X" also regular
read() — x read() — x read() —y
9 @ *—© *—© @

Figure 4.2:| A regular register execution

UNIVERSITY

(1, N) Regular Register @

Read-One Write-All

Algorithm 4.1: Read-One Write-All

Implements:
(1, N)-RegularRegister, instance onrr.

Uses:
BestEffortBroadcast, instance beb;
PerfectPointToPointLinks, instance p/;
PerfectFailureDetector, instance P.

upon event (onrr, Init) do

val == 1;
correct :=11;
writeset := ();

upon event (P, Crash | p) do
correct := correct \ {p};

UNIVERSITY

(1, N) Regular Register

Read-One Write-All

upon event (onrr, Read) do
trigger (onrr, ReadReturn | val);

upon event (onrr, Write | v) do
trigger (beb, Broadcast | [WRITE, v]):

upon event (beb, Deliver | g, [WRITE, v]) do
val :=v;

trigger (pl, Send | q, ACK);

upon event (pl, Deliver | p, ACK) do
writeset := writeset U {p},

upon correct C writeset do
writeset = ();
trigger (onrr, WriteReturn);

UNIVERSITY

(1, N) Regular Register

Read-One Write-All

write(X) write(y)

read() — X

Figure 4.3: A non-regular register execution

LUND

UNIVERSITY

(1, N) Regular Register @

Majority Voting Regular Register

Algorithm 4.2: Majority Voting Regular Register

Implements:
(1, N)-RegularRegister, instance onrr.
Uses:
BestEffortBroadcast, instance beb;
PerfectPointToPointLinks, instance pl.

upon event (onrr, Init) do
(ts,val) := (0, L);

wts = 0;
acks :=0;
rid :=0;

readlist == [LN

upon event (onrr, Write | v) do
wts ;= wts + 1;
acks :=0;
trigger (beb, Broadcast | [WRITE, wts, v]);

upon event (beb, Deliver | p, [WRITE, ts’,v’]) do
if ts’ > ts then
(ts,val) = (ts’,v');
trigger (pl, Send | p, [ACK, ts']);

LUN

UNIVERSITY

(1, N) Regular Register @

Majority Voting Regular Register

upon event (pl, Deliver | q, [ACK, ts’]) such that ts’ = wts do
acks = acks + 1;
if acks > N/2 then
acks :=0;
trigger (onrr, WriteReturn);

upon event (onrr, Read) do
rid :=rid + 1;
readlist := [L]V
trigger (beb, Broadcast | [READ, rid]);

upon event (beb, Deliver | p, [READ, r]) do
trigger (pl, Send | p, [VALUE, r, ts, val]);

upon event (pl, Deliver | q, [VALUE, r, ts’,v’]) such that » = rid do
readlist|q] := (ts',v");
if # (readlist) > N/2 then
v := highestval(readlist); < returns pair with greatest time stamp
readlist := [L]V ;
trigger (onrr, ReadReturn | v);

UNIVERSITY

(1, N) Atomic Register

Module 4.2: Interface and properties of a (1, N) atomic register
Module:

Name: (1, V)-AtomicRegister, instance onar.
Events:

Request: (onar, Read): Invokes a read operation on the register.
Request: (onar, Write | v): Invokes a write operation with value v on the register.

Indication: (onar, ReadReturn | v): Completes a read operation on the register
with return value v.

Indication: (onar, WriteReturn): Completes a write operation on the register.

Properties:

ONARI1-ONAR2: Same as properties ONRRI-ONRR?2 of a (1, N) regular regis-
ter (Module 4.1).

ONAR3: Ordering: If a read returns a value v and a subsequent read returns a
value w, then the write of w does not precede the write of v.

LUND

UNIVERSITY

(1, N) Atomic Register

write(x) write(y)
P—@ @ L @
read() — X read() —» vy read() — X
9 ® *—© *—© @
Figure 4.4: A register execution that is not atomic because of the third read by
process q
write(X) write(y)
—@ @ L @
read() — X read() —y
g L *—© @
re@d() — x
r @ @

Figure 4.5: Violation of atomicity in the “Read-One Write-All” regular register
algorithm

LUND

UNIVERSITY

(1, N) Atomic Register

o write(x) write(y)

fs=1 fs=2

read() — X read() — vy
tS = 1 tS = 2
read() — X

r @ @

ts=1
s

ts=1
t

ts=1

Figure 4.6: Violation of atomicity in the “Majority Voting” regular register algorithm

LUND

UNIVERSITY

(1, N) Atomic Register
(1, N) Regular = (1, 1) Atomic Register

Algorithm 4.3: From (1, V) Regular to (1, 1) Atomic Registers

Implements:
(1, 1)-AtomicRegister, instance ooar.

Uses:
(1, N)-RegularRegister, instance onrr.

upon event (ooar, Init) do
(ts,val) := (0, L);

wts :=0;

upon event (ooar, Write | v) do
wts (= wts + 1;
trigger (onrr, Write | (wts,v));

upon event (onrr, WriteReturn) do
trigger (ooar, WriteReturn);

upon event (ooar, Read) do
trigger (onrr, Read):

upon event (onrr, ReadReturn | (ts’,v")) do
if ts’ > ts then
(ts,val) := (ts’,v");
trigger (ooar, ReadReturn | val);

UNIVERSITY

(1, N) Atomic Register @

(1, 1) Atomic = (1, N) Atomic Register

Algorithm 4.4: From (1, 1) Atomic to (1, N) Atomic Registers

Implements:
(1, N)-AtomicRegister, instance onar.

Uses:
(1, 1)-AtomicRegister (multiple instances).

upon event (onar, Init) do

ts :=0;

acks :=0;

writing := FALSE;
readval = | ;

readlist := [L]V
forall g € I1,r € II do
Initialize a new instance ooar.q.r of (1, 1)-AtomicRegister
with writer » and reader ¢:

upon event (onar, Write | v) do
ts:=ts + 1;
writing := TRUE;
forall ¢ € II do
trigger (ooar.q.self, Write | (ts,v));

LUN

UNIVERSITY

(1, N) Atomic Register

)

(1, 1) Atomic = (1, N) Atomic Register

upon event (ooar.q.self, WriteReturn) do
acks :=acks + 1;
if acks = N then
acks :=0;
if writing = TRUE then
trigger (onar, WriteReturn);
writing := FALSE;
else
trigger (onar, ReadReturn | readval);

upon event (onar, Read) do
forall » € II do
trigger (ooar.self.r, Read):;

upon event (ooar.self.r, ReadReturn | (ts’,v")) do
readlist[r] := (ts',v');
if #(readlist) = N then
(maxts, readval) := highest(readlist);
readlist == [L]V
forall ¢ € I1 do
trigger (ooar.q.self, Write | (maxts, readval));

LUND

UNIVERSITY

(1, N) Atomic Register

Read-Impose Write-All

Algorithm 4.5: Read-Impose Write-All

Implements:
(1, N)-AtomicRegister, instance onar.

Uses:
BestEffortBroadcast, instance beb:;
PerfectPointToPointLinks, instance p/;
PerfectFailureDetector, instance P.

upon event (onar, Init) do
(ts,val) := (0, L);
correct := 11,
writeset := (),
readval = 1 ;
reading = FALSE;

upon event (P, Crash | p) do
correct := correct \ {p};

upon event (onar, Read) do
| reading := TRUE;
readval :=val;
trigger (beb, Broadcast | [WRITE, ts, val]);

\

same for { onar, Write) |

LUN

UNIVERSITY

(1, N) Atomic Register @

Read-Impose Write-All

upon event (onar, Write | v) do
trigger (beb, Broadcast | [WRITE, ts + 1,v]);

upon event (beb, Deliver | p, [WRITE, ts’ ,U’N
P if ts’ ><ts then | R same for (onar, Read) !

(ts,val) = (ts’,v');
trigger (pl, Send | p, [ACK]):

upon event (pl, Deliver | p, [ACK]) then
writeset := writeset U {p};

upon correct C writeset do
writeset = (),
if reading = TRUE then
reading = FALSE;
trigger (onar, ReadReturn | readval);
else
trigger (onar, WriteReturn);

UNIVERSITY

(1, N) Atomic Register @

Read-Impose Write-Majority

Algorithm 4.6: Read-Impose Write-Majority (part 1, read)

Implements:
(1, N)-AtomicRegister, instance onar.

Uses:
BestEffortBroadcast, instance beb;
PerfectPointToPointLinks, instance pl.

upon event (onar, Init) do
(ts,val) := (0, L);

wts = 0;

acks :=0;

rid :=0;

readlist := [LN
readval = 1 ;

reading := FALSE;

LUN

UNIVERSITY

(1, N) Atomic Register @

Read-Impose Write-Majority

upon event (onar, Read) do
rid :=rid + 1;
acks :=0;
readlist := [L]V
reading := TRUE;
trigger (beb, Broadcast | [READ, rid]);

upon event (beb, Deliver | p, [READ, r|) do
trigger (pl, Send | p, [VALUE, r, ts, val]);

upon event (pl, Deliver | q, [VALUE, r, ts’,v’]) such that r = rid do
readlist[q] := (ts',v');
if # (readlist) > N /2 then
(maxts, readval) := highest(readlist);
readlist := [LN ;
trigger (beb, Broadcast | [WRITE, rid, maxts, readval))

ND

UNIVERSITY

(1, N) Atomic Register @

Read-Impose Write-Majority

upon event (onar, Write | v) do

rid :=rid + 1;
wts ;= wts + 1;
acks :=0;

trigger (beb, Broadcast | [WRITE, rid, wts,v]):

upon event { beb, Deliver | p, [WRITE, r, ts’,v']) do
if ts’ > ts then
(ts,val) = (ts’,v');
trigger (pl, Send | p, [ACK, r]):

upon event (pl. Deliver | g, [ACK, r|) such that » = rid do
acks :=acks + 1;
if acks > N /2 then
acks :=0;
if reading = TRUE then
reading := FALSE;
trigger (onar, ReadReturn | readval);
else
trigger (onar, WriteReturn);

UNIVERSITY

(N, N) Atomic Register

Module 4.3: Interface and properties of an (N, V) atomic register
Module:

Name: (N, N)-AtomicRegister, instance nnar.

Events:

Request: (nnar, Read): Invokes a read operation on the register.
Request: (nnar, Write | v): Invokes a write operation with value v on the register.

Indication: (nnar, ReadReturn | v): Completes a read operation on the register
with return value v.

Indication: (nnar, WriteReturn): Completes a write operation on the register.

Properties:

NNARI1: Termination: Same as property ONARI of a (1, N) atomic register
(Module 4.2).

NNAR2: Atomicity: Every read operation returns the value that was written most
recently in a hypothetical execution, where every failed operation appears to be
complete or does not appear to have been invoked at all, and every complete oper-
ation appears to have been executed at some instant between its invocation and its
completion. UN

UNIVERSITY

(N, N) Atomic Register

The hypothetical serial execution mentioned before is called a linearization of
the actual execution. More precisely, a linearization of an execution is defined as a
sequence of complete operations that appear atomically, one after the other, which
contains at least all complete operations of the actual execution (and possibly some
operations that were incomplete) and satisfies the following conditions:

1. every read returns the last value written; and
2. for any two operations o and o', if o precedes o’ in the actual execution, then o

also appears before o’ in the linearization.

We call an execution linearizable if there is a way to linearize it like this. With this
notion, one can reformulate the atomicity property of an (N, N') atomic register in
Module 4.3 as:

NNAR2’: Atomicity: Every execution of the register is linearizable.

UNIVERSITY

(N, N) Atomic Register @

(1, N) Atomic— (N, N) Atomic Register

Algorithm 4.8: From (1, N) Atomic to (N, N) Atomic Registers

Implements:
(N, N)-AtomicRegister, instance nnar.

Uses:
(1, N)-AtomicRegister (multiple instances).

upon event (nnar, Init) do
val = 1;
writing := FALSE;
readlist := [LN
forall ¢ € II do
Initialize a new instance onar.q of (1, N')-AtomicRegister
with writer q;

UNIVERSITY

(N, N) Atomic Register @

(1, N) Atomic— (N, N) Atomic Register

upon event (nnar, Write | v) do
val = v;
writing := TRUE;
forall ¢ € II do
trigger (onar.q, Read):

upon event (nnar, Read) do
forall ¢ € II do
trigger (onar.q, Read):

upon event (onar.q, ReadReturn | (ts’,v’)) do
readlist|q] := (ts’, rank(q),v");
if #(readlist) = N then
(ts,v) := highest(readlist);
readlist := [L]V ;
if writing = TRUE then
writing := FALSE;
trigger (onarself, Write | (ts + 1, val));
else
trigger (nnar, ReadReturn | v);

upon event (onar.self, WriteReturn) do
trigger (nnar, WriteReturn):

LUND

UNIVERSITY

(N, N) Atomic Register @

Read-Impose Write-Consult-All

Algorithm 4.9: Read-Impose Write-Consult-All

Implements:
(N, N)-AtomicRegister, instance nnar.

Uses:
BestEffortBroadcast, instance beb;
PerfectPointToPointLinks, instance p/;
PerfectFailureDetector, instance P.

upon event (nnar, Init) do
I (ts,wr,val):=(0,0,L1);

correct :=11;
writeset := ();
readval = 1 ;

reading = FALSE;

upon event (P, Crash | p) do
correct := correct \ {p};

LUN

UNIVERSITY

(N, N) Atomic Register

Read-Impose Write-Consult-All

upon event (nnar, Read) do
reading = TRUE;
readval = val;
trigger (beb, Broadcast | [WRITE, ts, wr,val]);

upon event (nnar, Write | v) do
trigger (beb, Broadcast | [WRITE, ts + 1, rank(self),v]):

upon event (beb, Deliver | p, [WRITE, ts’, wr’,v']) do
if (ts’,wr’) is larger than (¢s, wr) then
(ts,wr,val) := (ts’,wr’ v');

trigger (pl, Send | p, [ACK]);

upon event (pl, Deliver | p, [ACK]) then
writeset := writeset U {p};

upon correct C writeset do
writeset := ();
if reading = TRUE then
reading := FALSE;
trigger (nnar, ReadReturn | readval);
else
trigger (nnar, WriteReturn)

LUND

UNIVERSITY

(N, N) Atomic Register @

Read-Impose Write-Consult-Majority

Algorithm 4.10: Read-Impose Write-Consult-Majority (part 1, read and consult)

Implements:
(N, N)-AtomicRegister, instance nnar.

Uses:
BestEffortBroadcast, instance beb;
PerfectPointToPointLinks, instance pl.

upon event (nnar, Init) do
| (ts,wr,val) := (0,0, L);

acks :=0;
writeval := 1;
rid :=0;

readlist := [L]V
readval = 1 ;

reading = FALSE;

UNIVERSITY

(N, N) Atomic Register @

Read-Impose Write-Consult-Majority

upon event (nnar, Read) do
rid :=rid + 1
acks :=0;
readlist := [LN
reading = TRUE;
trigger (beb, Broadcast | [READ, rid]);

upon event (beb, Deliver | p, [READ, r|) do
trigger (pl. Send | p, [VALUE, r, ts, wr,val]);

upon event (pl, Deliver | q, [VALUE, r, ts’,wr’,v’]) such that r = rid do
readlist[q] := (ts',wr’,v");
if # (readlist) > N/2 then
(maxts, rr,readval) := highest(readlist);
readlist := [L]V ; <— @00 :
if reading = TRUE then factors in rank
trigger (beb, Broadcast | [WRITE, rid, maxts, rr, readval]);
else
trigger (beb, Broadcast | [WRITE, rid, maxts + 1, rank(self), writeval]);

ND

UNIVERSITY

(N, N) Atomic Register @

Read-Impose Write-Consult-Majority

upon event (nnar, Write | v) do

rid :=rid + 1;
writeval := v;
acks :=0;

readlist := [L]V
trigger (beb, Broadcast | [READ, rid]);

upon event (beb, Deliver | p, [WRITE, r, ts’,wr’ ;2]) do
if (ts’,wr’) is larger than (¢s, wr) then
(ts,wr,val) := (ts’,wr’,v");

trigger (pl, Send | p, [ACK, 7]):

upon event (pl, Deliver | q, [ACK, r|) such that » = rid do
acks :=acks + 1:
if acks > N /2 then
acks :=0;
if reading = TRUE then
reading := FALSE;
trigger (nnar, ReadReturn | readval);
else
trigger (nnar, WriteReturn);

UNIVERSITY

[LUND

UNIVERSITY

