
Distribution, Abstractions,
Processes, and Links

A Course on Distributed Algortihms,

Spring 2013, Computer Science dept.,
Lund University

Amr Ergawy, Jörn Janneck
2 April 2013

Outline

• Part1: Distribution and Abstractions.

• Part2: Processes and Links.

References

Chapter 1 and sections 2.1, 2.2, and 2.4 of the course book:

Christian Cachin, Rachid Guerraoui, and Luis Rodrigues,
Introduction to Reliable and Secure Distributed Programming,
Springer, 2011,
ISBN 3-642-15259-7

For demonstration purposes, all figures are copied an pasted
from the course.

Part 1: Distribution and Abstraction

1. Motivation.

2. Abstractions.

3. Inherent distributions.

4. Artificial distribution.

5. The end-to-end argument.

6. Software components.

7. Layering of process modules.

8. Modules and algortihms.

9. Algorithms classification.

• The need to distributed programming abstraction = abstractions +
problems + robustness + processes = agreement abstractions.

• Over a modular strategy based on APIs.

• Concrete API = notation + event based invocation.

• In addition to concurrent execution, distributed processes may stop, e.g.
crashing or disconnecting => partial failures.

• A failure in a computer that you do not know it exited may harm your
own computer.

Motivation (1/2)

• In addition to partial failures, cooperation is aimed to be robust against
adversarial attacks.

• Ensuring robustness is difficult:

1. distinguish process failure from network failure.

2. a process controlled by a malicious adversary.

• An example is the client/server computing:

1. a server process continue working on a server instead of a failed one.

2. a server process shall not stuck on the failure of one its clients.

• In addition to client-server: we have the multiparty model, i.e. multiple
devices and combining patterns, e.g. a server interacts with other severs
is a multiparty manner.

Motivation (2/2)

• System models = processes + links. Chapter 2 discusses system models.

• Abstractions: interaction cooperation/agreement problems.

• Difficulty of abstraction: to capture partial failures + malicious behaviour.

• Abstractions capture the common among a significant range of systems:

So that we do not re-invent the wheel for every slight variant of the same
problem.

• Abstracting the underlying physical system = a system model = elements + their
properties + interactions = mainly two abstractions = processes + links.

• A Process: a computer, a process, a thread, a trust domain, an administrative
domain, ... etc.

• A link: any communication network.

Abstractions (1/2)

• We focus on robust cooperation problems that are modeled as
distributed agreement problems:

1. agreement on address and data format, i.e. protocol.

2. agreeing a common plan/value, i.e. the consensus problem.

3. agreeing whether a set of actions shall take place based on
conditions, e.g. the atomic commitment problem for distributed
transactions.

4. agreeing the order in which a set of actions shall take place, e.g. the
total order broadcast problem to replicate data to achieve fault
tolerance.

Abstractions (2/2)

• We distinguish two origins of abstractions:

1. from natural/inherent distribution of the application.

2. when distribution is an engineering choice.

• Examples of inherent distribution:

- info processing engines.

- multiuser cooperative systems.

- distributed shared spaces.

- process control.

- cooperative editors.

- distributed data bases.

- distributed storage systems.

• In Info-dissemination pub-sub systems we need to disseminate the same set of
messages to all subscribers of the same topic. Otherwise an unfair service.

Inherent Distribution (1/3)

• The cooperation abstraction in a pub-sub audio stream:

Dissemination is enough best-effort, the subscriber can tolerate losing
some messages.

• In the case of a pub-sub system for stock info dissemination:

The subscriber is interested in every message, requiring the reliable
broadcast abstraction, or even in order.

• A set of processes controlling a manufacturing plant or a device, e.g. replicated
or sharing a task, they provide sensor readings to the control algorithm:

They must agree an input value even if their associated sensors provide
different readings or some of the processes have failed/crashed. This is the
consensus problem among these processes.

Inherent Distribution (2/3)

• Sharing work space of a software or a doc, a distributed dialogue, an online
chat, a virtual conference, etc:

A shared memory abstraction where processes agree the order of write
and read operations to the shared space to maintain a consistent view of it.

• In distributed databases, agreement abstractions help transactions managers

to obtain a consistent view of the running transactions and can make consistent
decisions on the transactions serialization:

The involved agreement transaction in the case of distributed databases is
atomic commitment.

• In distributed storage, a set of data is distributed over a set of storage nodes to

overcome their limited capacity, i.e. natural distribution, and also to ensure
system resilience, i.e. artifact distribution:

The shared memory abstraction fits here, and the order of read/write
operations is important for a consistent view.

Inherent Distribution (3/3)

• Distribution may be an engineering decisions to achieve:
- fault tolerance.
- load balancing.
- fast sharing.

• Replication by distributions:

- service survives the failure of some replicas.
- better performance.
- service survives malicious attacks that stops some replicas.
- replicas must be in a consistent state, for the illusion of one-service.
- Two types of replicas:

- deterministic: full consistency to ensure that the same set of
requests must reach all replicas in the same order, requires total
order broadcast.
- nondeterministic: that requires a different ordering algorithm.
- For both sets of abstractions, fault tolerance is the challenge.

Artificial Distribution

• The end-to-end argument:

To push as much complexity as possible to the application level.

I.e. to combine some of the functionality of the distributed abstractions
with the application logic for optimization.

• Against this approach

- The distributed abstractions = complex + high inter-component
dependency:

The end-to-end monolithic approach is error-prone.

- Depending on many factors, e.g. network and required quality of
service, we chose a distributed abstraction:

Oppositely to end-to-end, modular distribution = changing it as it
fits, use-case/deployment environment and requirements.

The End to End Argument

• Interaction among processes and its components is
asynchronous event based.

• We use pseudo code is to describe distributed
algorithms.

• Algorithms of the distributed abstraction are event
handlers.

• A component is a module = properties + events to
send/receive, i.e. Interface.

• Components of a process = software stack, the
application at top and networking level is bottom.
Distributed abstractions focuses on the
components in-between.

Software Components (1/3)

• An event = type + attributes + intended for all
components or only for one.

• A component may provide a handler for an event
or it may filter it. A process handles only one
event per time. Once done with event, a process
periodically checks for new events. Implicitly
assumed in pseudo code.

• An event handler may trigger events for: same
component, other components, other processes.
FIFO ordering among components, some other
criteria among processes.

• An event handler may handle conditions, i.e. not
external events maintained by local variables.

Software Components (2/3)

• A handler may handle an external event only on an internal condition is
satisfied.

Software Components (3/3)

This may require buffering the external event in the run-time system. Which may
request an unbounded buffer.

A solution:

- define a handler that stores a triggered external event in a local variable.
- define a handler that is based only on the internal condition variable, that
one recalls the locally stored external event upon the satisfaction of the
condition.

• Requests: events going downwards in the stack.

- service-request or signaling messages.

• Indications: events going downwards in the stack.

- delivered data, e.g. message contents, or
signaling messages.

• Both types of events may contain data payloads
or just signaling info.

Layering of Process Modules

• Below, the interface and the properties of a job handler module, and two
implementations for it, a synchronous one and an asynchronous one.

Modules and Algorithms

• Classifications of distributed algorithms depends on the failure assumptions,
the environment and system parameters, and other choices.

• Not every distribution abstraction, e.g. shared space or best effort broadcast
has a solution, i.e. an algorithm, of every algorithm class.

Algorithms Classification

Part 2: Processes and Links

1. Abstraction types.

2. Distributed computation: processes, messages, automata,
steps, safety, and liveness.

3. Abstracting processes: models of process failure.

4. Abstracting communication: link models.

• The distributions abstractions and algorithms are not tied to a specific
combination of system components, i.e. OS, file systems, middleware, ...
etc.

• Three types of abstractions: processes, links, and failure detectors,
which are combined to form distributed system models.

• Because an abstraction is never generic enough to capture all varieties
of physical systems, we define different instances of an abstraction
type.

Abstraction Types

• ∏ is a typically static set of N process, p, q, r, s, ... etc.

• A function rank: ∏ -> {1, .., N} maps a process Id to an index.

• The process name self is the one that executes the algorithm.

• All processes run the same local algorithm.

• Exchanged messages are uniquely identified, e.g. (sender, sequence
number).

• Messages are exchanged through communication links.

Distributed Computation (1/4):
Processes and Messages

• A distributed algorithm is a collection of automata, one per process.
The automaton on a process defines how it reacts to a message.

• The execution of a distributed algorithm is a sequence of steps executed
by the processes.

• We assume a global clock/scheduler that assigns time units to
processes, even if two algorithm steps execute on the same process.

• A process step = receiving + local computations + sending.

- If any of the step components is not required by the algorithm, it is
replaced by nil: e.g. send nil message, receive nil message, or nil local
computation.

Distributed Computation (2/4):
Automata and Steps (1/2)

• A distributed algorithm = computation steps, including events among
components, and communication steps, for exchanging messages
among processes. Considering timing assumptions of different steps.

• We focus on deterministic algorithms =

(local computation step + state after computation + sending step)

only based on (the prior state of the process + the received message).

• Non-deterministic algorithms may involve a randomized source.

Distributed Computation (3/4):
Automata and Steps (2/2)

• A distributed algorithm may be executed in a infinite number of inter-leavings
of its steps, however it must satisfy specific properties of the abstractions it
implements, which falls into classes safety and live-ness.

• Safety is a property that once violated at time t, it is never satisfied again:

- E.g. a perfect link does not initiate messages be itself.

- To prove by contradiction, identify a time t or a partial execution sequence
that violaye the safety property.

• Live-ness is the property that eventually some thing good will happen.

- E.g. a perfect link eventually delivers a message.

- To prove that for any time t, the property will be satisfied at time t' >= t.

• A combined example: an inter-process communication service where every
message is delivered, live-ness, and not duplicated, safety.

Distributed Computation (4/4):
Safety and Liveness

• The process is the unit of failure, it fails all its components fail.

• Failure types: crash-stop, omission, crash with recovery, eavesdropping,
arbitrary.

• In a crash-stop process abstraction:

- a process stops executing algorithm steps.

- a process may recover but it is not any-more part of the running
instance of the distributed algorithm.

- An algorithm is designed with a resilience, measured in number of
processes f that is assumed to may fail out of N processes.

- It is also good practice to study which properties are preserved
when failure goes beyond the resilience threshold.

Abstracting Processes (1/3)

• In omission-crash process abstraction:

- process does not send/receive a message that is shall send/receive
in a step of the algorithm. Mainly because of communication
channel/buffer congestion/fullness.

- We don't focus on omission faults, instead we generalize to crash-
recovery, next.

• In crash-recovery process abstraction:

- After-recovery, the failed process may re-participate in the running
algorithm instance that is failed in.

- a process may crash and recover for an infinite number of times,
losing messages as in omission crash, and losing its internal state.

- A stable storage of the internal state, called log, is used and
accessed via store/retrieve operations. Shall minimize accessing it.

Abstracting Processes (2/3)

• In eavesdropping-crash process abstraction:

- A process that its internal state or exchanging messages is
eavesdropping failed.

- The minimal protection is encrypting the messages.

- We do not focus on eavesdropping faults.

• In arbitrary-failure process abstraction:

- No assumptions on the behavior of faulty processes.

- Byzantine or malicious failures => a Byzantine/arbitrary-fault process

- The most expensive to tolerate, but the only suitable abstraction
when unpredictable faults may occur, by malicious attacks or even
bugs/errors.

- We use defensive techniques: Cyclic Redundancy Check for
bugs/errors, and cryptographic measures for malicious attacks.

Abstracting Processes (3/3)

• The abstraction of a link is bidirectional between two processes.

• A distributed algorithm may refine the abstract network view to utilize
a specific network topology.

• Every message must include info to uniquely identify its sender.

- Ensured in crash-stop and crash-recovery process abstractions.

- In arbitrary/Byzantine faults, this property may not be satisfied, e.g.
an adversary may insert messages to the network. Algorithms
depend on cryptography to provide correct sender identification.

• Processes that exchange messages in a request-reply manner must
provide a numbering scheme that associates which request or reply.

Absrtacting Communication

• We assume that the probability that a message reaches its destination is non-
zero, eventually a message is delievered.

• Two main ways to overcome network failures:

- Re-sending messages.

- Using cryptography against adversary.

• For point-to-point communication, we introduce five link abstractions.

• Link abstractions:

- fair-loss links: a message not to be lost has a non-zero probability of
delivery. For fail-stop process abstractions.

- stubborn and perfect links: retransmission over fair-loss. For fail-stop
process abstractions.

- logged perfect links, for crash recovery process abstractions.

- authenticated links, for arbitrary failed processes.

Link Failures (1/2)

• The properties of each link abstraction are described in terms of two events:

- a send request.

- a deliver indication.

• The term “deliver” is favored over the term “receive”, because we talk from
the perspective of the link instead of the receiver process.

• Before a message is delivered to upper layers, it is stored in a buffer, then an
algorithm is executed to ensure the properties of the required link abstraction.

Link Failures (2/2)

• The simplest abstraction - I think its properties are that of physical links.

Fair-Loss Links

• The stubborn property delivers a message an infinite number of times.

• The algorithm Retransmit Forever implements stubborn/fair-loss:

- Correctness: stubborn properties are satisfied fair-loss properties.

- Performance: book-keeps all sent messages, not efficient.

Stubborn Links

• The perfect link detect message duplicates and allows retransmission too. The properties reliable
delivery and no duplication ensure the every sent message is delivered only once.

• The algorithm Eliminate Duplicate implements perfect link/stubborn:

- Correctness: reliable delivery/stubborn, no duplication/conditioned delivery, inherited no
creation.

- Performance: book-keeps sent and delivered messages, not efficient.

A solution: acknowledge delivered messages, and reject earlier time-stamped retransmissions.

Perfect Links

• Events are locally logged to the delivered storage.

• Same properties as the perfect link, with the exception of reliable-delivery that assumes a never-
crash sender, that does not use a stable store. Crash-recovery is assumed only on delivery.

• The algorithm Log Delivered modifies the algorithm Eliminate Duplicates to implement a logged
perfect link:

- The correctness and performance are the same of the "eliminate duplicates" algorithm, with the
addition of considering the stable storage.

Logged Perfect Links

• The difference between this property and the no-creation property of the perfect link is
emphasizing the "correctness" of both sender or receiver processes as legitimate processes.

• The algorithm “Authenticate and Filter” implements authenticated perfect/stubborn.

- It uses a Message Authentication Code, MAC, to generate an authenticator for a message in
terms of the sender, the message, and the destination.

- The destination does the opposite.

- The correctness and performance are inherited from eliminate duplicates, which authenticity is
ensured by using the MAC.

Authenticated Perfect Links

• The perfection of a link is more delegated to physical links or transport
layer, e.g. TCP.

• In studying distributed algorithms, it is not relevant to get deep into the
implementation details, but in practice it is relevant to get into these
details, e.g. using sequence numbers and message retransmissions.

• Some times the upper layers may became responsible for some
functionality, e.g. remembering the delivered messages in a more
expensive logged perfect links.

Consideration on Link Abstractions

Thanks!

