wore,
~Broadcast Al gorithms

Gustav Cedersjo

Qutline

Part | Delivery order

Part 2 Byzantine processes

Module

Reliable Broadcast

Validity: If a correct process p broadcasts a message m,
then p eventually delivers m.

No duplication: No message is delivered more than once.

No creation: If a process delivers a message m with
sender s, then m was previously broadcast by process s.

Agreement: If a message m is delivered by some correct
process, then m is eventually delivered by every correct
process.

old stuff...

Delivery Order

Module

FIFO Reliable Broadcast

Validity, no duplication, no creation, and agreement:
Reliable Broadcast

FIFO delivery: If some process broadcasts message m
before it broadcasts my, then no correct process delivers
m; unless it has already delivered m,.

Fail-Silent Algorithm

Broadcast with Sequence
Number

® Use a Reliable Broadcast module
® Add sequence numbers to each message

® Keep track of next expected sequence
number for each process

® Hold delivery until previous messages are
delivered

Fail-Silent Algorithm

Broadcast with Sequence
Number 0

upon event < frb, Init) do frb ‘ FIFO Reliable Broadcast '

Isn :=0; /'\

pending = O; C)
next :=[1]V; rb Reliable Broadecast

upon event < frb, Broadcast | m) do S
Isn :=lsn + 1; \'/
trigger < rb, Broadcast | [DATA, self, m, Isn] ;

upon event < rb, Deliver | p, [DATA, s, m, sn]) do
pending := pending U {(s, m, sn)};
while exists (s, m', sn') € pending such that sn’ = next[s] do
next[s| := next[s] + 1;
pending = pending \ {(s,m', sn')};
trigger < frb, Deliver | s,m');

Fail-Silent Algorithm

Broadcast with Sequence
Number o

upon event < frb, Init) do P
Isn :=0;
pending = J; q
next ;= [1]¥;

upon event < frb, Broadcast | m) do r

Isn :=lIlsn+ 1;
trigger { rb, Broadcast | [DATA, self, m, Isn]);

mima2

upon event < rb, Deliver | p, [DATA, s, m, sn]) do
pending := pending U {(s, m, sn)};
while exists (s, m', sn') € pending such that sn’ = next[s] do
next[s| := next[s] + 1;
pending = pending \ {(s,m', sn')};
trigger < frb, Deliver | s,m');

Module

Causal Reliable Broadcast

Validity, no duplication, no creation, and agreement:
Reliable Broadcast

Causal order: For any message m, that potentially caused
a message my, no process delivers m; unless it has
already delivered m;.

Fail-Silent Algorithm

No-Waiting Causal Broadcast

® Use a Reliable Broadcast module

® Send the history of all received messages
together with each message

® When receiving a message, deliver all
undelivered messages in its history before
delivering the new message itself

i)

at

Fail-Silent Algorithm

No-Waiting Causal Broadcast

upon event ¢ crb, Init) do A
delivered .= &, past :=[]; J,

upon event { crb, Broadcast | m) do erb ' Causal Reliable Broadecast ’

trigger < rb, Broadcast | [DATA, past, m]);

append(past, (self, m));

rb
upon event < rb, Deliver | p, [DATA, mpast, m]) do

if m & delivered then
forall (s, n) € mpast do // by the order in the list
if n & delivered then
trigger < crb, Deliver | s, n);
delivered := delivered U {n};
if (s, n) & past then append(past, (s, n));
trigger < crb, Deliver | p, m);
delivered := delivered U {m};
if (p, m) & past then append(past, (p, m));

Fail-Silent Algorithm

No-Waiting Causal Broadcast

upon event ¢ crb, Init) do
delivered .= &, past :=[];

upon event < crb, Broadcast | m) do
trigger < rb, Broadcast | [DATA, past, m] ;

append(past, (self, m));

upon event < rb, Deliver | p, [DATA, mpast, m]) do r
if m & delivered then mi m2
forall (s, n) € mpast do // by the order in the list
if n & delivered then
trigger < crb, Deliver | s, n);
delivered := delivered U {n};
if (s, n) & past then append(past, (s, n));
trigger < crb, Deliver | p, m);
delivered .= delivered U {m};
if (p, m) & past then append(past, (p, m));

Fail-Stop Algorithm

Garbage-Collection of Causal
Past

Use a Reliable Broadcast module
Use a Perfect Failure Detector module
Send message history with each message

Broadcast an ack for each delivered
message.

Remove a message from history when all
correct processes have ack’ed a message

PATA: hi [1) .

fAOK hi)

DATA: hej LD

f ACK: hej)
ACK: 1)

ACK: hej)

. DATA: ves [T

Fail-Stop Algorithm

Garbage-Collection of Causal
Past ,

upon event < crb, Init) do
delivered := O: erb ' Causal Reliable Broadcast '

past :=[]; A 7y
correct ;= 11; ' |

forall m do acklm] = &; rb ‘ Reliable Broade. ' P‘ Perfect Fail. Det. '
upon event { P, Crash | p) do | A A
Vv A\

correct .= correct \ {p};

upon exists m € delivered such that self & ack[m] do
ack|m] := ack[m] U {self};
trigger < rb, Broadcast | [ACK, m] »;

upon event < rb, Deliver | p, [ACK, m]) do upon event { crb, Broadcast | m) do
ack|[m] = ack[m] U {p}; // same as before
upon correct C ack[m] do upon event < rb, Deliver | p, [DATA, mp, m]) do
forall (s, m") € past such that m' = m do // same as before
remove(past, (s', m));

Fail-Silent Algorithm

Wiaiting Causal Broadcast

® Use a Reliable Broadcast module

® Record the number of delivered messages
from each process in a vector V

® Send the vector V with each message

® Delay the delivery of a message m with
vector Wuntil W < V <vi WJil = Vil

Fail-Silent Algorithm

Wiaiting Causal Broadcast

hi
| w
0 -
1

w /)
hif0001 hei£100]

hi hej

Fail-Silent Algorithm

Wiaiting Causal Broadcast

upon event ¢ crb, Init) do A
V= [0 V

Isn :=0; .
psennding = crb ‘ Causal Reliable Broadeast ’

upon event < crb, Broadcast | m) do
W=V rb
W [rank(self)] := Isn;
Isn :=1Ilsn+ 1;
trigger < rb, Broadcast | [DATA, W, m]);

upon event < rb, Deliver | p, [DATA, W, m]) do
pending = pending U {(p, W, m)};
while exists (p', W', m") € pending such that W < V do
pending := pending \ {(p", W', m')};
Vlrank(p')] := V{rank(p")] + 1;
trigger { crb, Deliver | p', m’');

Part 2

Byzantine Processes

Module

Byzantine Consistent
Broadcast

Validity: If a correct process p broadcasts a message m, then
every correct process eventually delivers m.

No duplication: Every correct process delivers at most one
message.

Integrity: If some correct process delivers a message m with
sender p and process p is correct, then m was previously
broadcast by p.

Consistency: If some correct process delivers a message m and
another correct process delivers a message m’, then m = m’.

Fail-Arbitrary Algorithm

Authenticated Echo Broadcast

® Use Authenticated Point to Point Links

® When you receive the first message m
from sender s, send m as ECHO to all other
processes

® |f you get more than (N + f) / 2 ECHO with
the same message m, then deliver m

PELIVERY

Fail-Arbitrary Algorithm

Authenticated Echo Broadcast

upon event < bcb, Init) do A
sentecho = FALSE; \',
delivered := FALSE;
echos := [L]V; beb ' Byzantine Consistent Proadcast '
upon event < bcb, Broadcast | m) do R AN
forall g € /1 do |

trigger < al, Send | q, [SEND, m] »; al

Auth Perfect Point To Point Link

upon event < al, Deliver | p, [SEND, m]) such thatp = s
and sentecho = FALSE do
sentecho := TRUE;
forall g € /1 do
trigger < al, Send | g, [ECHO, m]);

upon event < al, Deliver | p, [ECHO, m]) do
if echos[p] = 1L then
echos[p] = m;
upon exists m # L such that #({p € II | echos[p] = m}) > (N+f)/2
and delivered = FALSE do

delivered := TRUE;
trigger < bcb, Deliver | s, m);

Module

Byzantine Reliable Broadcast

Validity, No duplication, Integrity and Consistency: Byzantine
Consistent Broadcast

Totality: If some message is delivered by any correct process,
every correct processes eventually delivers a message

Fail-Arbitrary Algorithm

Authenticated Double-Echo
Broadcast
® Use Authenticated Point to Point Links

® When you receive the first message m from

sender s, send m as ECHO to all other
processes

® |f you get more than (N + f) / 2 ECHO or
more than f READY with the same message m,
then send m as READY to all other processes

® |[f you get more than 2f READY with the same
message m, then deliver m

N-=4
f=1

READY on 3 ECHO
READY on 2 READY

N-=4
f=1

READY on 3 ECHO
READY on 2 READY

N-=4
f=1

READY on 3 ECHO
READY on 2 READY

READY
p 3213:(?\1

—

)\

3 Echo
4 Ready
3 Echo
4 Ready
\V4
f=1
4 Ready READY on 3 ECHO

READY on 2 READY

PELIVERY -

e 3 Keadv

3 Echo
\/ 4 Ready
3 Echo
4 Ready
f=1
4 Ready READY on 3 ECHO

READY on 2 READY

Module

Byzantine Consistent
Broadcast Channel

Validity: If a correct process p broadcasts a message m, then
every correct process eventually delivers m.

No duplication: For every process p and label |, every correct
process delivers at most one message with label [and sender p.

Integrity: If some correct process delivers a message m with

sender p and process p is correct, then m was previously
broadcast by p.

Consistency: If some correct process delivers a message m with
label | and sender s, and another correct process delivers a

message m’ with label | and sender s, then m = m’.

Fail-Arbitrary Algorithm

Byzantine Consistent Channel

® Create an instance of a Byzantine
Consistent Broadcast for each process.

® On delivery of a message from sender s,
create a new instance of a Byzantine
Consistent Broadcast for process s.

A
|

‘ Byzantine Consistent Broadcast Channel '
oy 0
V vV V
Byz. Cons. br. Byz. Cons. br. ©oo Byz. Cons. br.
l\ 3) l 3) l 3)
Vv Vv \4

Module

Byzantine Reliable Broadcast
Channel

Validity, No duplication, Integrity and Consistency: Byzantine
Consistent Broadcast Channel.

Agreement: If some correct process delivers a message m with
label | and sender s, then every correct process eventually
delivers message m with label | and sender s.

Fail-Arbitrary Algorithm

Byzantine Reliable Channel

® Create an instance of a Byzantine Reliable
Broadcast for each process.

® On delivery of a message from sender s,
create a new instance of a Byzantine
Reliable Broadcast for process s.

A
|

‘ Byzantine Reliable Broadeast Channel '
A I A A
J J J
Byz. Rel. Br. Byz. Rel. Br. ©oeo Byz. Rel. Br.
l\ _) I _) l _)
)) J

LUNCH

