
Broadcast Algorithms
Gustav Cedersjö

more

hi
hi

hi

Outline
Part 1 Delivery order

Part 2 Byzantine processes

Module

Reliable Broadcast
Validity: If a correct process p broadcasts a message m,
then p eventually delivers m.

No duplication: No message is delivered more than once.

No creation: If a process delivers a message m with
sender s, then m was previously broadcast by process s.

Agreement: If a message m is delivered by some correct
process, then m is eventually delivered by every correct
process.

old stuff...

Part 1

Delivery Order

Validity, no duplication, no creation, and agreement:
Reliable Broadcast

FIFO delivery: If some process broadcasts message m1
before it broadcasts m2, then no correct process delivers
m2 unless it has already delivered m1.

Module

FIFO Reliable Broadcast

p

q

r

p

q

r

Not Okay Okay

Fail-Silent Algorithm

Broadcast with Sequence
Number

• Use a Reliable Broadcast module

• Add sequence numbers to each message

• Keep track of next expected sequence
number for each process

• Hold delivery until previous messages are
delivered

Fail-Silent Algorithm

Broadcast with Sequence
Number
upon event ⟨ frb, Init ⟩ do

lsn := 0;
pending := ∅;
next := [1]N;

upon event ⟨ frb, Broadcast | m ⟩ do
lsn := lsn + 1;
trigger ⟨ rb, Broadcast | [DATA, self, m, lsn] ⟩;

upon event ⟨ rb, Deliver | p, [DATA, s, m, sn] ⟩ do
pending := pending ∪ {(s, m, sn)};
while exists (s, mʹ′, snʹ′) ∈ pending such that snʹ′ = next[s] do

next[s] := next[s] + 1;
pending := pending \ {(s, mʹ′, snʹ′)};
trigger ⟨ frb, Deliver | s, mʹ′ ⟩;

FIFO Reliable Broadcast

Reliable Broadcast

frb

rb

Fail-Silent Algorithm

Broadcast with Sequence
Number
upon event ⟨ frb, Init ⟩ do

lsn := 0;
pending := ∅;
next := [1]N;

upon event ⟨ frb, Broadcast | m ⟩ do
lsn := lsn + 1;
trigger ⟨ rb, Broadcast | [DATA, self, m, lsn] ⟩;

upon event ⟨ rb, Deliver | p, [DATA, s, m, sn] ⟩ do
pending := pending ∪ {(s, m, sn)};
while exists (s, mʹ′, snʹ′) ∈ pending such that snʹ′ = next[s] do

next[s] := next[s] + 1;
pending := pending \ {(s, mʹ′, snʹ′)};
trigger ⟨ frb, Deliver | s, mʹ′ ⟩;

p

q

r

m1 m2

m1 m2

Validity, no duplication, no creation, and agreement:
Reliable Broadcast

Causal order: For any message m1 that potentially caused
a message m2, no process delivers m2 unless it has
already delivered m1.

Module

Causal Reliable Broadcast

p

q

r

p

q

r

Not Okay Not Okay

Fail-Silent Algorithm

No-Waiting Causal Broadcast
• Use a Reliable Broadcast module

• Send the history of all received messages
together with each message

• When receiving a message, deliver all
undelivered messages in its history before
delivering the new message itself

hi []

hej [hi]

yes [hi hej]

Fail-Silent Algorithm

No-Waiting Causal Broadcast
upon event ⟨ crb, Init ⟩ do
	

 delivered := ∅; past := [];

upon event ⟨ crb, Broadcast | m ⟩ do
	

 trigger ⟨ rb, Broadcast | [DATA, past, m] ⟩;
	

 append(past, (self, m));

upon event ⟨ rb, Deliver | p, [DATA, mpast, m] ⟩ do
	

 if m ∉ delivered then
	

 	

 forall (s, n) ∈ mpast do // by the order in the list
	

 	

 	

 if n ∉ delivered then
	

 	

 	

 	

 trigger ⟨ crb, Deliver | s, n ⟩;
	

 	

 	

 	

 delivered := delivered ∪ {n};
	

 	

 	

 	

 if (s, n) ∉ past then append(past, (s, n));
	

 	

 trigger ⟨ crb, Deliver | p, m ⟩;
	

 	

 delivered := delivered ∪ {m};
	

 	

 if (p, m) ∉ past then append(past, (p, m));

Causal Reliable Broadcast

Reliable Broadcast

crb

rb

Fail-Silent Algorithm

No-Waiting Causal Broadcast
upon event ⟨ crb, Init ⟩ do
	

 delivered := ∅; past := [];

upon event ⟨ crb, Broadcast | m ⟩ do
	

 trigger ⟨ rb, Broadcast | [DATA, past, m] ⟩;
	

 append(past, (self, m));

upon event ⟨ rb, Deliver | p, [DATA, mpast, m] ⟩ do
	

 if m ∉ delivered then
	

 	

 forall (s, n) ∈ mpast do // by the order in the list
	

 	

 	

 if n ∉ delivered then
	

 	

 	

 	

 trigger ⟨ crb, Deliver | s, n ⟩;
	

 	

 	

 	

 delivered := delivered ∪ {n};
	

 	

 	

 	

 if (s, n) ∉ past then append(past, (s, n));
	

 	

 trigger ⟨ crb, Deliver | p, m ⟩;
	

 	

 delivered := delivered ∪ {m};
	

 	

 if (p, m) ∉ past then append(past, (p, m));

p

q

r

m1

m2

m1 m2

Fail-Stop Algorithm

Garbage-Collection of Causal
Past
• Use a Reliable Broadcast module

• Use a Perfect Failure Detector module

• Send message history with each message

• Broadcast an ack for each delivered
message.

• Remove a message from history when all
correct processes have ack’ed a message

DATA: hi []

ACK: hi
ACK: hiACK: hi

DATA: hej [hi]

ACK: hej
ACK: hejACK: hej

ACK: hej ACK: hi

DATA: yes []

ACK: yes
ACK: yesACK: yes

ACK: yes

Fail-Stop Algorithm

Garbage-Collection of Causal
Past
upon event ⟨ crb, Init ⟩ do
	

 delivered := ∅;
	

 past := [];
	

 correct := Π;
	

 forall m do ack[m] := ∅;

upon event ⟨ P, Crash | p ⟩ do
	

 correct := correct \ {p};

upon exists m ∈ delivered such that self ∉ ack[m] do
	

 ack[m] := ack[m] ∪ {self};
	

 trigger ⟨ rb, Broadcast | [ACK, m] ⟩;

upon event ⟨ rb, Deliver | p, [ACK, m] ⟩ do
	

 ack[m] := ack[m] ∪ {p};

upon correct ⊆ ack[m] do
	

 forall (sʹ′, mʹ′) ∈ past such that mʹ′ = m do
	

 	

 remove(past, (sʹ′, m));

Causal Reliable Broadcast

Reliable Broadc.

crb

rb Perfect Fail. Det.P

upon event ⟨ crb, Broadcast | m ⟩ do
	

 // same as before

upon event ⟨ rb, Deliver | p, [DATA, mp, m] ⟩ do
	

 // same as before

Fail-Silent Algorithm

Waiting Causal Broadcast
• Use a Reliable Broadcast module

• Record the number of delivered messages
from each process in a vector V

• Send the vector V with each message

• Delay the delivery of a message m with
vector W until W ≤ V ⇔∀i W[i] ≤ V[i]

Fail-Silent Algorithm

Waiting Causal Broadcast

p

q

r

hi

hej

hi hej
hi [0,0,0] hej [1,0,0]

Fail-Silent Algorithm

Waiting Causal Broadcast
upon event ⟨ crb, Init ⟩ do
	

 V := [0]N;
	

 lsn := 0;
	

 pending := ∅;

upon event ⟨ crb, Broadcast | m ⟩ do
	

 W := V;
	

 W [rank(self)] := lsn;
	

 lsn := lsn + 1;
	

 trigger ⟨ rb, Broadcast | [DATA, W, m] ⟩;

upon event ⟨ rb, Deliver | p, [DATA, W, m] ⟩ do
	

 pending := pending ∪ {(p, W, m)};
	

 while exists (pʹ′, Wʹ′, mʹ′) ∈ pending such that Wʹ′ ≤ V do
	

 	

 pending := pending \ {(pʹ′, Wʹ′, mʹ′)};
	

 	

 V[rank(pʹ′)] := V[rank(pʹ′)] + 1;
	

 	

 trigger ⟨ crb, Deliver | pʹ′, mʹ′ ⟩;

Causal Reliable Broadcast

Reliable Broadcast

crb

rb

Part 2

Byzantine Processes

Module

Byzantine Consistent
Broadcast
Validity: If a correct process p broadcasts a message m, then
every correct process eventually delivers m.

No duplication: Every correct process delivers at most one
message.

Integrity: If some correct process delivers a message m with
sender p and process p is correct, then m was previously
broadcast by p.

Consistency: If some correct process delivers a message m and
another correct process delivers a message m′, then m = m′.

Fail-Arbitrary Algorithm

Authenticated Echo Broadcast
• Use Authenticated Point to Point Links

• When you receive the first message m
from sender s, send m as ECHO to all other
processes

• If you get more than (N + f) / 2 ECHO with
the same message m, then deliver m

SEND

faulty

ECHO

DELIVERY

Fail-Arbitrary Algorithm

Authenticated Echo Broadcast
upon event ⟨ bcb, Init ⟩ do
	

 sentecho := FALSE;
	

 delivered := FALSE;
	

 echos := [⊥]N;
upon event ⟨ bcb, Broadcast | m ⟩ do
	

 forall q ∈ Π do
	

 	

 trigger ⟨ al, Send | q, [SEND, m] ⟩;
upon event ⟨ al, Deliver | p, [SEND, m] ⟩ such that p = s
	

 	

 and sentecho = FALSE do
	

 sentecho := TRUE;
	

 forall q ∈ Π do
	

 	

 trigger ⟨ al, Send | q, [ECHO, m] ⟩;
upon event ⟨ al, Deliver | p, [ECHO, m] ⟩ do
	

 if echos[p] = ⊥ then
	

 	

 echos[p] := m;
upon exists m ≠ ⊥ such that #({p ∈ Π | echos[p] = m}) > (N+f)/2
	

 	

 and delivered = FALSE do
	

 delivered := TRUE;
	

 trigger ⟨ bcb, Deliver | s, m ⟩;

Byzantine Consistent Broadcast

Auth Perfect Point To Point Link

bcb

al

Module

Byzantine Reliable Broadcast
Validity, No duplication, Integrity and Consistency: Byzantine
Consistent Broadcast

Totality: If some message is delivered by any correct process,
every correct processes eventually delivers a message

Fail-Arbitrary Algorithm

Authenticated Double-Echo
Broadcast
• Use Authenticated Point to Point Links

• When you receive the first message m from
sender s, send m as ECHO to all other
processes

• If you get more than (N + f) / 2 ECHO or
more than f READY with the same message m,
then send m as READY to all other processes

• If you get more than 2f READY with the same
message m, then deliver m

SEND

faulty

N = 4
f = 1

READY on 3 ECHO
READY on 2 READY

0 Echo
0 Ready

0 Echo
0 Ready

0 Echo
0 Ready

0 Echo
0 Ready

ECHO

N = 4
f = 1

READY on 3 ECHO
READY on 2 READY

3 Echo
0 Ready

3 Echo
0 Ready

3 Echo
0 Ready

2 Echo
0 Ready

READY

N = 4
f = 1

READY on 3 ECHO
READY on 2 READY

3 Echo
3 Ready

3 Echo
3 Ready

3 Echo
3 Ready

2 Echo
2 Ready

READY

N = 4
f = 1

READY on 3 ECHO
READY on 2 READY

3 Echo
4 Ready

3 Echo
4 Ready

3 Echo
4 Ready

2 Echo
3 Ready

DELIVERY

N = 4
f = 1

READY on 3 ECHO
READY on 2 READY

3 Echo
4 Ready

3 Echo
4 Ready

3 Echo
4 Ready

2 Echo
3 Ready

Module

Byzantine Consistent
Broadcast Channel
Validity: If a correct process p broadcasts a message m, then
every correct process eventually delivers m.

No duplication: For every process p and label l, every correct
process delivers at most one message with label l and sender p.

Integrity: If some correct process delivers a message m with
sender p and process p is correct, then m was previously
broadcast by p.

Consistency: If some correct process delivers a message m with
label l and sender s, and another correct process delivers a
message m′ with label l and sender s, then m = m′.

Fail-Arbitrary Algorithm

Byzantine Consistent Channel
• Create an instance of a Byzantine

Consistent Broadcast for each process.

• On delivery of a message from sender s,
create a new instance of a Byzantine
Consistent Broadcast for process s.

Byzantine Consistent Broadcast Channel

Byz. Cons. Br. Byz. Cons. Br. Byz. Cons. Br.

Module

Byzantine Reliable Broadcast
Channel
Validity, No duplication, Integrity and Consistency: Byzantine
Consistent Broadcast Channel.

Agreement: If some correct process delivers a message m with
label l and sender s, then every correct process eventually
delivers message m with label l and sender s.

Fail-Arbitrary Algorithm

Byzantine Reliable Channel
• Create an instance of a Byzantine Reliable

Broadcast for each process.

• On delivery of a message from sender s,
create a new instance of a Byzantine
Reliable Broadcast for process s.

Byzantine Reliable Broadcast Channel

Byz. Rel. Br. Byz. Rel. Br. Byz. Rel. Br.

LUNCH

