
Distributed Algorithms (PhD course)
Consensus
 SARDAR MUHAMMAD SULAMAN

Consensus

•  The processes use consensus to agree on a
common value out of values they initially
propose

•  Reaching consensus is one of the most
fundamental problems in distributed computing

•  Any algorithm that helps multiple processes
maintain common state or to decide on a future
action involves solving a consensus problem

Consensus Algorithms
•  Regular consensus: (fail-stop model)

–  Flooding consensus algorithm
– Hierarchical consensus algorithm

•  Uniform consensus: (fail-stop model)
–  Flooding uniform consensus algorithm

– Hierarchical uniform consensus
•  Uniform consensus: (fail-noisy model)

–  Leader-Based epoch change

– Epoch consensus
–  Leader-Driven consensus

Distributed System Models

•  Fail-Stop:
–  Processes execute the deterministic algorithms

assigned to them, unless they possibly crash, in which
case they do not recover. Links are supposed to be
perfect. Finally, the existence of a perfect failure
detector

•  Fail-Noisy:
–  Like fail-stop model together with perfect links. In

addition, the existence of the eventually perfect
failure detector

Regular consensus

•  A consensus abstraction is specified in terms of two events:

1.  Propose (propose | v)

» Each process has an initial value v that it proposes for
consensus through a propose request, in the form of
triggering a propose event. All correct processes must
initially propose a value

2.  Decide (Decide | v)

» All correct processes have to decide on the same value
through a decide indication that carries a value v

(The decided value has to be one of the proposed values)

Regular Consensus Properties

Contd.

•  The termination and integrity properties together imply
that every correct process decides exactly once

•  The validity property ensures that the consensus
primitive may not invent a decision value by itself

•  The agreement property states the main feature of
consensus, that every two correct processes that decide
indeed decide the same value

Flooding Consensus Algorithm

•  It uses a perfect failure-detector and a best-effort broadcast
communication abstraction

•  The processes execute sequential rounds. Each process
maintains the set of proposed values that it has seen; this set
initially consists of its own proposal

•  The process typically extends this proposal set when it moves
from one round to the next and new proposed values are
encountered

•  In each round, every process disseminates its set in a
PROPOSAL message to all processes using the best-effort
broadcast abstraction.

 (Process floods the system with all proposals it has seen in previous rounds)

Contd.

•  When a process receives a proposal set from another process,
it merges this set with its own. In each round, the process
computes the union of all proposal sets that it received so far.

•  A process decides when it has reached a round during which it
has gathered all proposals that will ever possibly be seen by
any correct process. At the end of this round, the process
decides a specific value in its proposal set.

Contd.

Process p crashes during round 1 after broadcasting its proposal. Only
process q sees that proposal. No other process crashes. As process q
receives proposals in round 1 from all processes and this set is equal to the
set of processes at the start of the algorithm in round 0, process q can
decide. It selects the minimum value among the proposals and decides value
w.

Contd.

•  The validity and integrity properties follow from the
algorithm and from the properties of the broadcast
abstraction

•  The termination property follows from the fact that in
round N , at the latest, all processes decide. This is
because:

–  Processes that do not decide keep moving from round to round
due to the strong completeness property of the failure detector

–  At least one process needs to fail per round, in order to force the
execution of a new round without decision

–  There are only N processes in the system

Hierarchical Consensus Algorithm
•  It’s an alternative way to implement regular consensus in the

fail-stop model

•  It is interesting because it uses fewer messages than our
“Flooding Consensus” algorithm and enables one process to
decide before exchanging any messages with the rest of the
processes; this process has zero latency

•  However, to reach a global decision, i.e., for all correct
processes to decide, the algorithm requires N communication
steps, even in situations where no failure occurs

•  It exploits the ranking among the processes given by the rank(.)
function. The rank is a unique number between 1 and N for
every process

•  The important ranks are low numbers, hence, the highest rank
is 1 and the lowest rank is N

Contd.
•  The “Hierarchical Consensus” algorithm works in rounds and relies on

a best effort broadcast abstraction and on a perfect failure detector

•  In round i , the process p with rank i decides its proposal and
broadcasts it to all processes in a DECIDED message. All other
processes that reach round i wait before taking any actions, until they
deliver this message or until P detects the crash of p

•  No other process than p broadcasts any message in round 1

•  If the process p with rank 1 does not crash in the “Hierarchical
Consensus” algorithm, it will impose its value on all other processes by
broadcasting a DECIDED message and every correct process will
decide the value proposed by p

•  If p crashes immediately at the start of an execution and the process q
with rank 2 is correct then the algorithm ensures that the proposal of
q will be decided

Process p decides w and broadcasts its proposal to all processes, but crashes.
Processes q and r detect the crash before they deliver the proposal of p and advance to
the next round. Process s delivers the message from p and changes its own proposal
accordingly, i.e., s adopts the value w
In round 2 , process q decides its own proposal x and broadcasts this value. This causes
s to change its proposal again and now to adopt the value x from q. From this point on,
there are no further failures and the processes decide in sequence the same value,
namely x, the proposal of q. Even if the message from p reaches process r much later,
the process no longer adopts the value from p because it has already adopted a value
from process with a less important rank.

Uniform Consensus

•  Uniform consensus ensures that no two processes decide
different values, whether they are correct or not

•  Its uniform agreement property eliminates the restriction
to the decisions of the correct processes and requires that
every process, whether it later crashes or not, decides the
same value.

•  All other properties of uniform consensus are the same
as in (regular) consensus

Contd.

Flooding Uniform Consensus

•  A process can no longer decide after receiving messages from the
same set of processes in two consecutive rounds.

•  Recall that a process might have decided and crashed before its
proposal set or decision message reached any other process. (As this
would violate the uniform agreement property)

•  The “Flooding Uniform Consensus” algorithm always runs for N
rounds and every process decides only in round N .

•  Instead of a round-specific proposal set, only one global proposal set
is maintained, and the variable receivedfrom contains only the set of
processes from which the process has received a message in the
current round

Contd.

Hierarchical Uniform Consensus

•  The “Hierarchical Uniform Consensus” algorithm uses a perfect
failure-detector, a best-effort broadcast to disseminate the
proposal, a perfect links abstraction to acknowledge the
receipt of a proposal, and a reliable broadcast abstraction to
disseminate the decision

•  Every process maintains a single proposal value that it
broadcasts in the round corresponding to its rank. When it
receives a proposal from a more importantly ranked process, it
adopts the value

•  In every round of the algorithm, the process whose rank
corresponds to the number of the round is the leader, i.e., the
most importantly ranked process is the leader of round 1

Contd.
•  A round here consists of two communication steps: within the

same round, the leader broadcasts a PROPOSAL message to
all processes, trying to impose its value, and then expects to
obtain an acknowledgment from all correct processes

•  Processes that receive a proposal from the leader of the round
adop t th i s p roposa l as the i r own and send an
acknowledgment back to the leader of the round

•  If the leader succeeds in collecting an acknowledgment from
all processes except detected as crashed, the leader can
decide. It disseminates the decided value using a reliable
broadcast communication abstraction

Uniform Consensus: (fail-noisy model)
•  The consensus algorithms presented so far cannot be used in

the fail-noisy model, where the failure detector is only
eventually perfect and might make mistakes

•  Fail-Noisy uniform consensus algorithm causes the processes
to execute a sequence of epochs

•  The epochs are identified with increasing timestamps; every
epoch has a designated leader , whose task is to reach
consensus among the processes

•  If the leader is correct and no further epoch starts, then the
leader succeeds in reaching consensus

•  But if the next epoch in the sequence is triggered, the
processes abort the current epoch and invoke the next one,
even if some processes may already have decided in the
current epoch

Contd.

•  Introduces two new abstractions to build a fail-noisy
consensus algorithm:

–  The first one is an epoch-change primitive that is
responsible for triggering the sequence of epochs at
all processes

–  The second one is an epoch consensus abstraction,
whose goal is to reach consensus in a given epoch

Epoch-Change

•  Epoch-change abstraction signals the start of a new
epoch by triggering a (StartEpoch | ts, l) event, when a
leader is suspected

•  The event contains two parameters: an epoch timestamp
ts and a leader process l that serve to identify the
starting epoch. When this event occurs, we say the
process starts epoch (ts, l)

Leader-Based Epoch-Change

•  Every process p maintains two timestamps:
– a timestamp lastts of the last epoch that it

started (i.e., for which it triggered a StartEpoch
event)

– The timestamp ts of the last epoch that it
attempted to start with itself as leader (i.e., for
which it broadcast a NEWEPOCH message)

Contd.
•  Initially, the process sets ts to its rank. Whenever the leader

detector subsequently makes p trust itself, p adds N to ts and
sends a NEWEPOCH message with ts.

•  When process p receives a NEWEPOCH message with a
parameter newts > lastts from some process and p most
recently trusted, then the process triggers a StartEpoch event
with parameters newts and l.

•  Otherwise, the process informs the aspiring leader l with a
NACK message that the new epoch could not be started.

•  When a process receives a NACK message and still trusts
itself, it increments ts by N and tries again to start an epoch by
sending another NEWEPOCH message

Epoch Consensus
•  The properties of epoch consensus are closely related to those

of uniform consensus. Its uniform agreement and integrity
properties are the same

•  The termination condition of epoch consensus is only
weakened by assuming the leader is correct

•  The validity property extends the possible decision values to
those proposed in epochs with smaller timestamps, assuming a
well-formed sequence of epochs

•  Finally, the lock-in property is new and establishes an explicit
link on the decision values across epochs: if some process has
already ep-decided v in an earlier epoch of a well-formed
sequence then only v may be ep -decided during this epoch

Read/Write Epoch Consensus

•  The leader tries to impose a decision value on the processes.

•  The algorithm involves two rounds of message exchanges
from the leader to all processes

1.  Propose and ACK
2.  Write and Accept

•  The goal is for the leader to write its proposal value to all
processes, who store the epoch timestamp and the value in
their state and acknowledge this to the leader

•  When the leader receives enough acknowledgments, it will
ep–decide this value

Contd.
•  The leader reads the state of the processes by sending a READ

message. Every process answers with a STATE message
containing its locally stored value and the timestamp of the
epoch during which the value was last written

•  The leader receives a quorum of STATE messages and
choses the value that comes with the highest timestamp as its
proposal value, if one exists. This step uses the function
highest(.)

•  The leader then writes the chosen value to all processes with a
WRITE message. The write succeeds when the leader receives
an ACCEPT message from a quorum of processes

•  The leader now ep-decides the chosen value and announces
this in a DECIDED message to all processes; the processes
that receive this ep–decide as well.

