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Abstract—Yet being immersed in the globalisation era, we can
still perceive isolation and rivalry between software developing
teams that share ambitions. Nonetheless, DeepCode proposes a
cooperation between parties in order to achieve greater results.
DeepCode is a tool that, by processing a data-set formed by source
codes performing a generic task A, learns how to implement
task A and outperform every individual from studied data-set.
Unfortunately, no existing tool is capable of homogenizing a
source code data-set in a manner that can be post processed
by AI tools. DeepCode phase 1 targets to fill this gap in the
field by offering a standardised data structure representing a
generic source code. Furthermore, this paper presents a practical
application that generates aforementioned representation given a
well-formed source code file.

Index Terms—Abstract syntax tree, Tree traversal, Code auto-
generation, Deep Learning.

I. INTRODUCTION

Coders, Group of coders, Departments, Companies or Group
of companies compete every day to get the most efficient
algorithm for a specific problem. Regardless of the nature
of the research, a common denominator can be spotted: they
all try to get the best existing ideas on the field and apply
some new improvement/s that makes their own implementation
the best in a specific set of “tangible” aspects (performance,
usability, efficiency, etc.). In that sense, enormous amount of
time and effort is spent by each researcher analyzing and
mastering the field. Additionally, told hypothetical researcher
won’t have any kind of assurance that a competitive approach
has been discarded during the process.

In this paper, DeepCode is presented, a new tool that will try
to auto-generate unique and original code. DeepCode system
aims to generate code that solves a generic task A by learning,
from a large set of different codes, data-set, how to solve
task A. Notice that each element in the data-set tries, as well,
to solve task A. Therefore, the concept data-set under same
distribution, references a group of different code implementa-
tions that perform the exact same job such as compressing a
file, processing a signal or solving mathematical paradigms.
Furthermore, DeepCode’s most innovative objective is the
ability to overcome best test-performance reached by any
individual from the data-set it’s been learning from.

Given the complexity and nature of DeepCode, two stages
are defined: Phase 2, that, with Artificial Intelligence (AI)
techniques, learns which ideas in the data-set imply good code
performance and phase 1, which studies and builds customised

code representation in order to provide phase 2 an optimised
and workable data-set.

This paper deeply describes phase 1 of DeepCode but not
phase 2. Nevertheless, phase 2 is relevant for this paper since
it defines what kind of transformation has to be applied to the
source code data-set in order to accomplish future intelligent
decisions (See Figure 1). In that sense, this paper suggests,
builds and provides an original code representation to be
utilised afterwards by AI processes.

Most generally, source codes, irrespective of it’s original
language, can be represented in lower abstractions levels. From
machine code1, unintelligible from human perspective, until
low level code such as Assembly. For DeepCode’s purposes, a
middle level representation of source code must be generated.
Such intermediate depiction of the code allows any data-set to
be homogenized, allowing, this way, to make fair comparisons
among code samples under the same distribution.

Arbitrary code analysis and transformation is accomplished
by generating an abstraction of the source code called Abstract
Syntax Tree [2] (AST). Generally, AST abstraction format
is fed to subsequent compiler’s layers such as optimization
of code or Assembly code generation. This paper is highly
focused in AST generation stage.

Installed Python packages include an in-build Python com-
piler written in C Programming language. Additionally, Python
packages include in-build front-end libraries enabling, from
Python code, to access compiler’s internals. Among other
modules, ast [3] front-end can be found, which converts a
Python source code into an AST. From ast object, a rich AST
context is accessible, providing, this way, a great entry point
to transform the AST.

By DeepCode’s means, tree representation of the code
(AST) is very profitable. Due to time consuming processes
in phase 2, every redundant information in the AST must
be eliminated. In other words, internal AST generated by
the compiler includes neglectable nodes from DeepCode’s
perspective. [4] proved that such strategy implies better results
against close competitors and, in consequence, their work
inspired paper’s solution. In that sense, AST generated by the
compiler must be simplified as much as possible without losing

1Machine code, also called machine language, is a computer language that
is directly understandable by a computer’s Central Processing Unit (CPU),
and it is the language into which all programs must be converted before they
can be run. Each CPU type has its own machine language, although they are
basically fairly similar. [1]



Fig. 1: Architectural schema representing DeepCode’s full
scope. Notice the contribution provided by each phase of
DeepCode to the full project.

valuable information. Hence, above strategy satisfies sought
middle level representation of source code.

Summarizing, this paper suggests and provides a com-
pressed and enriched code representation that will be used
to feed further post-processes layers within DeepCode scope.

The rest of this paper is organized as follows. Section II
introduces similar existing ideas in the field. Section III charac-
terizes AST architecture and suggests a feasible transformation
while section IV describes how to achieve customised AST.
Section V evaluates results achieved by testing the application
against realistic use cases. Suggested extensions to paper’s
work are found in section VI and, finally, section VII con-
cludes with a summary of report’s achievements.

II. RELATED WORK

Source code analysis has drastically evolved since AI’s
reborn. While code processing tools were exclusively based
in complex and deterministic techniques, AI provides another
dimension to existing tools. By gathering information from
user experience, AI enables code processing tools to optimize
itself on the fly. Currently, there’s a big interest and investment
from a well established community. Specifically, a big effort
is invested by Integrated Development Environment (IDE) and
code analysis applications such as bug finders or providing
interesting and personalised hints while coding.

[5] provides a brief text summary of what an inputted code
intends to do while [6] provides a tool to learn which non-
written conventions and patterns are followed by developers.
Both studies have in common that they treat source code as
simple text instead of utilising representations such as ASTs
or machine code.

Furthermore, finest results were achieved by studies utilising
abstracted representations of source code. Code clone detec-
tion application [7] overcame state-of-the-art of the moment
by extracting AST of it’s source code data-set.

An original suggestion is found in [8], where they propose
an encoded version of the AST based in [9], that converts tree

structures in vectorised information. Great improvement on
bug localisation was achieved by [4] by adopting the program
representation proposed by [9]. Additionally, [4] included the
concept of compressing the AST as much as possible in order
to facilitate AI layers to complete their job with optimised
results. In consequence, [4] is used as the inspiration to achieve
project’s objectives.

Commonly, each programming language has it’s own AST
generator engine and, in many cases, more than one. This
paper attempts to corroborate that an intelligent filter in current
ASTs can be beneficial for post processing techniques.

Low Level Virtual Machine [10] (LLVM) is a compiler
framework that uses a build in intermediate human readable
code language with slightly higher level abstractions than
Assembly. Although LLVM code can be written from scratch,
it’s typical to produce it when compiling source code, as in-
termediate step for code optimization layers and/or optimised
machine code generation.

Clang project provides a language front-end and tooling
infrastructure for languages in the C language family for the
LLVM project [11]. Clang is an open source project well
established in the community, having up to 79k commits by
the time this report is written. Although Clang is backed by a
huge community and provides reliable services, this paper will
choose Python compiler [12], a less complex compiler engine
system that demands less time to familiarise with.

III. ARCHITECTURE

Within DeepCode’s scope, DeepCode phase 1 commences
once the text data-set is assembled (Figure 2). Proposed tool by
this paper handles each element in the data-set individually. In
this regard, CLI module provides an entry point to DeepCode
phase 1 where each sample is injected in an iterative way.

Python’s inner compiler engine produces an AST that will
be trust and used by subsequent modules. Such dependency
on Python’s compiler core can be assumed given the reliability
provided by the existence of a vast community along Python
itself.

Fig. 2: Architectural model of DeepCode phase 1. From gath-
ered python text files2, DeepCode’s command line interface
(CLI) triggers transformation cycle for each individual sample
in the data-set. Notice that final version of cAST can be
outputted in JSON, eJSON, or as PyPickle.



Parallel, Python’s engine is bound to report’s tool in a way
that AST context is shared and accessible. Thereafter, every
node in retrieved AST is traversed following a visitor strategy
in order to forge pursued custom AST(cAST). While visiting
a node, paper’s implementation decides which information
is relevant from that node, if any at all, and persists it in
the cAST. Notice that customised tree carries a one to one
connection between cAST nodes and their AST node pair.

Finally, DeepCode phase 1 application grants to the user
the functionality to store or output created cAST in diverse
formats. This report contemplates JSON, encoded JSON3

(eJSON), or pickle format (PyPickle) to be shown at console
or saved in a file.

IV. IMPLEMENTATION

This section deeply describes meaningful steps involved in
the transformation of the data-set. Notice that told conversion
is achieved by applying the same algorithm to each sample
inside the data-set, modifying, this way, each individual at a
time. By the end of this section, an optimised set of code
representations for DeepCode will be accessible.

In order to provide a better depiction of the optimisations
suggested by this paper, the reader can find AST’s and cAST’s
final graphical representations extracted from snippet of code
(Listing 1) at Figure 3 and Figure 4 respectively.

A. Gathering the Abstract Syntax Tree

AST is a hierarchical representation of the abstract syntactic
structure of source code written in a programming language.
Each node of the tree denotes a construct occurring in the
source code [2]. As stated in section II, state-of-the-art tools
that process source code utilise AST as their inputted data
format.

This project only considers Python AST abstraction, con-
straining, this way, to only take into account Python source
code. Even though it might appear a limitation, it is enough
to proof paper’s objective.

Python’s in-build front-end class ast hosts a method parse()
which takes as input a string and returns an AST tree object.
Internally, ast.parse() method calls builtin.compile() including,
as argument, ast.PyCF ONLY AST. Named constant implies
that only AST representation is calculated while other com-
piler computations are skipped such as optimization.

Injecting ast’s functionalities in report’s tool is straight-
forward by binding them in code. Consequently, a fine AST
object and it’s context is reachable from DeepCode phase 1’s
operations.

B. Traversing the AST

Multiple approaches to traverse trees are known. Concretely,
this implementation considers recursive visitors technique

3Encoded JSON directly depends in final global DeepCode data-set. De-
pending in the different node types sighted in data-set, the eJSON will cipher
accordingly.

while other approaches such as AST matchers [13] or cursor
traversing [14] are also functional.

By visiting nodes, the reader should think of walking
through each node in the AST from north-to-south direction.
For each encountered node, the node must be analysed and,
afterwards, visit() function called for every of it’s childs.

Visitor class, inherited from ast.NodeVisitor, is defined.
Among others, Visitor implements visit {NODE ENTITY}()
method for every conceivable node entity in the AST. More-
over, given the case where a node entity couldn’t match any
pre-defined visit method, generic visit() will match as a last
instance. Notice that latter visit method is defined to provide
robustness to the implementation and to apply a default logic.

Recursive traversal of nodes enables the Visitor class to
build up the cAST and provide access to it from other points
of the implementation.

C. Filtering nodes

Selecting substantial information from a node is crucial in
order to reach report’s goals. An intelligent filtering logic is
applied in order to maximise compression of an AST without
losing important information.

Filtering cycle will be prompt for each traversed node in
the original AST. Depending in node’s entity and it’s near
context, different information will be persisted in the cAST.
Following, an overview of the filters considered by report’s
implementation.

1) Disallowing Aliases: Aliases are extremely useful in
terms of smoothing the readability of a source code by
humans. However, they add a counterproductive link between
nodes inside the tree which must be erased.

Visitor class keeps track of aliases assigned in source code
and performs a translation to it’s original name when persisting
information in cAST.

2) Minimizing number of node types in AST: According
to [4] implementation, grouping related node types can be
very productive for following post-processing techniques. By
minimizing the number of conceivable types in the cAST, the
natural number of combinations that AI layers have to deal
with will decay following equation 1.

num combinations = NM (1)

Where N is the total number of node types and M is the
amount of nodes the tree is composed of.

Followed, a set of the most repeated groups:
* Loop group includes For, AsyncFor, and While node

types.
* Name group includes Name, and NameConstant node

types.
* Import group includes Import, and ImportFrom node

types.
* Op group includes BoolOp, BinOp, and UnaryOp node

types.
Grouping types strategy entails a relative compression rate

of expressions of 0.63 (27 AST expressions and 17 cAST
expressions) and a relative compression rate of statements of



Fig. 3: Representation of test code(1) as AST.

Fig. 4: Representation of test code(1) as cAST.

0.7 (27 AST statements and 19 cAST statements). Notice
that it doesn’t necessarily lead to an absolute compression
rate as the ones stated before since absolute compression rate
directly depends on the probability of appearance of each
entity. Section V provides absolute compression rates.

3) Minimizing number of nodes in AST: Naturally, com-
pression can be achieved if nodes can be neglected without

losing information. Inspired in [4], nodes are neglected fol-
lowing a deterministic strategy.

This paper understands a negligible node as the ones that,
once dropped, can be re-injected again by deterministic means.
For instance, a function Call node entity emerges from an
Expr node with no other substantial information from post
processing layers perspective. In this case, we can conclude
that Expr node can be neglected from the AST.



import p p r i n t a s a l i a s p p r i n t
from s r c . m y p r e t t y import m y p r i n t

def foo ( l i s t 1 ) :
f o r i in l i s t 1 :

a l i a s p p r i n t ( m y p r i n t ( i ) )

Listing 1: Snippet of code chosen to depict an example of
Disallowing Aliases (IV-C1), Minimizing number of Types
(IV-C2), Minimizing number of Nodes (IV-C3), Discriminating
method Calls (IV-D1) and Representing the cAST (IV-E)

D. Enriching the AST

Yet an enrichment of the AST can contradict the goal of
maximising the compression of the AST, this report suggests
that some extra information can be exceptionally advantageous
for DeepCode phase 2.

1) Discriminating method Calls: Knowing the origin of a
function call can be convenient in order to decide which nodes
should gain more attention or, even, to treat them differently.
DeepCode phase 1 classifies method calls by the ones coming
from a method system (SYS), the ones created by the user
(USR), and Python buildins methods (NATIVE).

Firstly, the tool has to find potential Python libraries ac-
cessible from the system. Such non-trivial task is performed
with the help of Python’s modulefinder package. Once po-
tential SYS and NATIVE method calls are constructed, it’s a
trivial problem of classifying traversed nodes whose types are
directly related to method calls (e.g., call or import nodes).

Fig. 5: Analysis of a 10k samples data-set under the same
distribution. Depicted, accumulation of number of nodes seen
during the analysis of the data-set when formed by ASTs and
cASTs.

Fig. 6: Analysis of a 10k samples data-set under the same
distribution. Depicted, accumulation of number of node types
seen during the analysis of the data-set when formed by ASTs
and cASTs.

E. Representing the customised AST

Subsequent treatment of cAST by a generic group of
consumers can be very heterogeneous. From consumer’s point
of view, could be interesting to decide which format the tool
should output the cAST. Ergo, implemented tool offers three
options to specify application’s output format.

By default, JSON format is used, which fits the tree repre-
sentation in to a JSON object. Extending it, an encoded JSON
representation can be demanded, which codifies every node
representation depending in the importance of such node in the
global data-set. In contrast, PyPickle option enables a way to
output a Python object representation as a pickle representation
[15].

Lastly, DeepCode phase 1 application allows the consumer
to specify if chosen cAST representation will be outputted in
console or written in a file.

V. EXPERIMENTS

The experiments and evaluations are sequentially divided
and sorted by increasing significance to the report.

A. Custom-simple test code

In order to provide an specific example for each of report’s
implementations, custom source code (Listing 1) is analysed.
Figure 3 represents the original AST while Figure 4 illustrates
the transformation applied by DeepCode phase 1’s core.

Utilising DeepCode phase 1’s analysis tool (see results
in box below) the report defines that it’s been achieved a
compression rate of rate types=0.692, and rate nodes=0.682.

DeepCode - Evaluation - INFO - Analysis AST:
total types=13, total nodes=22

DeepCode - Evaluation - INFO - Analysis cAST:
total types=9, total nodes=15



B. Custom-complex test code

Secondly, this paper tries to adjust difficulty of code by
analysing a more elaborated implementation. For that reason,
big integer factorising algorithm4 is studied.

One more time, from DeepCode phase 1’s analysis tool (see
results in box below), a compression rate of rate types=0.927,
and rate nodes=0.751 have been reached.

DeepCode - Evaluation - INFO - Analysis AST:
total types=55, total nodes=1151

DeepCode - Evaluation - INFO - Analysis cAST:
total types=51, total nodes=865

C. Transforming a 10k files data-set

Finally, this report analyses AST transformation quality in
a real data-set under the same distribution. DeepCode includes
a web parsing module in order to gather such amount of data.

After studying and comparing every pair of AST and cAST
from each individual in the data-set, we can foresee promising
results regarding the amount of needed nodes in order to
represent the same information (Figure 5). In average, the
difference of nodes between AST and cAST extracted from
each individual from the data-set is 10.8 nodes. In reference
to number of node types, a successful behaviour can be spotted
(Figure 6).

The report believes that if a data-set hosting a more complex
task was chosen, more nodes and, specially, more node types
would be involved. In consequence, more patterns that imply
a compression rule would be seen enhancing, this way, higher
compression ratios.

VI. FUTURE WORK

This section suggest two lines of work that can directly
benefit paper’s implementation.

This report suggests that there’s margin of improvement
regarding current grouping techniques. Adding new group or
fine tuning existing groups might lead to higher compression
rate in terms of number of types in cAST.

Moreover, DeepCode phase 2 tries to discover every sub
task A that constructs task A. When distinguished, each sub
task is processed independently with the aim to identify how
beneficial, compared to aligned sub tasks in the data-set, the
sub task is to accomplish task A. From this perspective, custom
AST can be enriched in a manner that identifies and divides
each sub task within task A’s code.

VII. CONCLUSIONS

This paper has investigated an original manner of assem-
bling an optimised data-set of source codes for future artificial
intelligence processing layers. During the study process, a
lack of relation between post-processing techniques and the
source code text has been spotted. Thus, DeepCode phase 1
has decided to use Abstract Syntax Tree format as it’s source
code representation baseline to produce an optimised data-set.

4Find big integer factorising implementation at
https://github.com/miquelpuigmena/cryptography/blob/master/factorising/factoring.py.

Subsequently, mimicking best results found in the field,
report’s solution focuses in maximizing the compression rate
of the AST whilst keeping intact the information contained
in the original tree object. DeepCode phase 1 tool achieves
promising results in terms of absolute number of nodes
needed in customised AST against a generic AST extracted
from compiler’s engine. Additionally, the report introduces a
grouping strategy that, with further fine tuning adjustments,
can be beneficial for AI related applications.

Lastly, this paper includes the concept of appending aux-
iliary information to source code representations in order to
facilitate and flatten the learning curve of a generic AI system.

In future, new paradigms are worth studying such as sub-
tasking a concrete task utilising deterministic means or statis-
tically studying the impact of entity grouping strategy towards
the compression rate and compression quality achieved by the
tool. Nonetheless, this paper offers an original bridge for AI
systems to work in an optimised manner with source code
data-sets.
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