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Abstract
More and more software has been making its way into the

browser. Usually this involves rewriting the software in web

specific languages, or creating complex APIs with which

the front-end can communicate with a high-performance

back-end. Now, however, with the help of WebAssembly, a

general-purpose virtual instruction set created in the likeness

of low-level assembly languages, it is possible to weave per-

formant code into JavaScript, a typical front-end language,

which is run through the V8 engine, potentially increasing

performance.

At the moment, WebAssembly is able to be generated

from C, C++, Rust, Go and all LLVM compatible languages.

In this paper, the potential advantages and disadvantages to

this approach of web programming will be discussed. The

creation of a WebAssembly-compiler will also be explored,

using a simplified C-like source language.

With our compiler ready we then perform several bench-

marks, comparing the speed of emcc (C to WebAssembly)

compiled WebAssembly code to, amongst others, our own

compiler’s and Javascript’s. As expected our compiler was

the slowest contester, finishing just after Javascript. The

emcc-generated WebAssembly code however, is faster than

Javascript albeit slower than languages such as Rust and

Java, when run natively. With JIT-compilation turned off in

Javascript even our compiler produces code that is magni-

tudes faster–a fact that could be used to emphasise the need

of JIT-functionality in WebAssembly.

1 Introduction
Web applications are rather flexible programs; the client may

interact with a program or service, such as Netflix, through

the front-end in the web browser. The back-end, on the other

hand, may either be locally- or remotely accessed, perform-

ing the heavier calculations. Following the Netflix example,

the back-end might be the server providing the video feed,

transcoding (i.e. compressing or encoding in real-time) the

stream if needed. This makes web programs highly portable

in nature, as they may be run on any device, as long as they

supply a modern web browser.

This flexibility has extended to desktop applications, such

as balenaEtcher (a program used to write image files onto

storage media), which runs JavaScript locally through the

Node.js-framework.
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A drawback of this approach is the design of the back-

end; In some cases, it’s desirable to write both the front-

end and back-end in JavaScript, especially if the back-end is

executed on the client-side. This makes the bridge between

front-end and back-end seamless. JavaScript is, however, JIT-

compiled, which might affect the performance negatively.

In many cases this is not an issue however, as the accepted

performance depends on the application.

Simultaneously, constructing a back-end in a compiled,

optimised language introduces a new issue - how does the

front-end communicate with the back-end? One solution

is introducing some bridge mechanism, such as a Remote

Procedure Call-protocol. A RPC protocol allow the caller

(client) to send procedure requests to the server through

some portable format, and receives a response when the

operation has completed on the server side[88].

WebAssembly allows web applications to take the best

properties from both of these approaches. It runs natively

in the JavaScript engine. At the same time, it is optimised

beforehand.

By writing procedures which may be computationally

heavy in a high-performance, compile-time optimised lan-

guage such as C, C++ or Rust, these procedures may be com-

piled into WebAssembly and imported into- and called from

the JavaScript runtime directly, as if they were JavaScript

functions.

2 WebAssembly
WebAssembly is an intermediate language, similar in appear-

ance to x86-assembly, and in functionality to Java bytecode.

It is based on the concept of a stack machine; all We-

bAssembly code does is push, pop- or operate on values on

a virtual, implicit stack. The user does not have to explicitly

rearrange stack pointers, return addresses etc.[Ros+nd]

The only four types in the language are i32, i64, f32 and

f64. These represents signed integers and floats of 32 and

64 bytes respectively. It is completely platform-independent,

and also web-agnostic; the specification does not mention

the web in any measure[Pro+19].

Its conception was driven mainly by the desire to improve

performance in web applications. In contrast to JavaScript,

WebAssembly does not have a garbage collector, which can

impact performance unpredictably[Pro+19]. Another argu-

ment for its creation is to counteract certain potential secu-

rity flaws in JavaScript. Historically, many large web hosts

such as Facebook, Yahoo and Google have used intricate

sandboxing methods in order to encapsulate JavaScript code
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from untrusted sources. this means that the untrusted code

could only be interacted with through certain API:s while

limiting or preventing the usage of "unsafe" operations and

rebindings[Tal+11]. WebAssembly’s semantics and static

typing migitates this, as it is easier to analyse and reason

about[Pro+19]. This report is, however, more focused on the

performance aspect of WebAssembly.

Certain high-level programming languages may be com-

piled intoWebAssembly, such as C, C++ and Rust.WebAssem-

bly exists in two different formats:

1. .wasm: Portable binary code format

2. .wat: Human-readable WebAssembly, written as S-

expressions.

Although the .wasm-format is needed to run WebAssem-

bly, a programmer may seamlessly convert files between

these formats through the use of wat2wasm and wasm2wat,

supplied by the WebAssembly Binary Toolkit
1
. This process

is analogous to converting files between Machine language

and Assembly Language.

As previously mentioned, the .wat-format is written us-

ing S-expressions. This is not required however, as a linear

format works identically:

i32.const 1

i32.const 3

i32.add

set_local $variable

(set_local $variable (i32.add (i32.const 1) (i32.const 3)))

Both of the code snippets above sets the value of a local

variable called "variable" to the value of 1 plus 3.

The uppermost snippet shows how WebAssembly oper-

ates on the virtual stack: the two values 1 and 3 are pushed

on top of the stack. The add operator is then called, popping

the two uppermost values, adding them together and push-

ing the result back on the stack. Finally, the result is popped

from the stack, and stored in the local variable.

S-expressions, first popularized with the programming lan-

guage Lisp, uses a variant of the function notation f (e1, ..., en)
called sequence notation (f , e1, ..., en), for some function f
and parameters e1, ...en .[Dai15]

2.1 WebAssembly implementation
Most JavaScript engines, such as V8 (Chrome) and Spider-

Monkey (Firefox), use their JavaScript compilers to create op-

timized native binaries fromWebAssembly modules ahead of

time. Chakra (Edge) however, performs lazy translation to an

internal bytecode format upon execution of the WebAssem-

bly module, performing JIT-compilations on repeatedly used

code[Ros+nd].

Furthermore, WebAssembly is designed to allow stream-
ing; an engine may compile individual functions and use

them before the entire binary has been loaded completely[Ros+nd].

1
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3 SimpliC
SimpliC is a language which consists of a limited subset of

the C language, and as such its usefulness outside of learning

about compilers is also limited. It is used to teach compiler

implementation in the course EDAN65 at the Faculty of

Engineering at Lund’s University
2
.

The SimpliC language is capable of:

1. Function calls

2. Local variables

3. Integer arithmetic

4. Integer comparison

5. Looping

6. Conditional execution

7. Basic I/O operations

3.1 Data types
There is only one data type in SimpliC: Integers. As such, all

functions are required to return an integer value, and may or

may not take integers as parameters (Although the language

may evaluate booleans in certain cases, see 3.5) Integers may

be used as hard-coded constants, in e.g. function calls, or

local variables. SimpliC has no notion of static or global

variables.

All data in SimpliC uses stack-dynamic allocation.

3.2 I/O
The I/O operations are limited to the two built-in functions

"print" and "read", printing single whole numbers to stan-

dard output, and reading integers from standard input re-

spectively.

3.3 Arithmetic operators
SimpliC allows addition, subtraction, multiplication, division

(quotient of the division between integers), and modulo-

division (remainder of the division between integers), and is

performed with the infix operators +, -, *, / and % respectively.

3.4 Boolean operators
Integers may be compared by Less-Than,Less-or-Equal-To,

Equal, Not-Equal, Greater-Than and Greater-or-Equal-To

with the infix operators <, <=, ==, !=, >, >= respectively.

3.5 Control flow
SimpliC has support for C-styleWhile-statements, If-statements,

and If-Else-statements. In these control flow statements, sin-

gle conditionals in the shape of integer comparisons may

be evaluated implicitly to booleans, although the language

itself has no support for the boolean data type, and multiple

separate integer comparisons may not be joined with the

"AND"-operator or the "OR"-operator.

2
http://fileadmin.cs.lth.se/cs/Education/EDAN65/2019/web/index.html
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4 Our implementation
Using JastAdd

3
, a meta-compilation system, our SimpliC

to WebAssembly compiler manages to compile a SimpliC

program into the WebAssembly text format. In order for

the generated file to be useful in JavaScript, it has to be

converted using the tool "wat2wasm", which is a part of the

WebAssembly Binary Toolkit. Figure 1 show the process used

to generate WebAssembly.

Figure 1. Compilation- and usage pipeline

The output of the compiler could be kept very short, had

it not been the two I/O operations "print" and "read". When

using the Emscripten compiler, including the stdio.h-header
in C-programs would result in massive files, likely imple-

menting these functions as WebAssembly functions.

An easy workaround is using the import system; It is

possible to declare functions in WebAssembly to be external

(similar to the keyword extern in C/C++), implementing them

in JavaScript and importing them later on:

(import "imports" "print" (func $print (param i32)))

(import "imports" "read" (func $read (result i32)))

The above declares two functions, print and read to be

external, and to be found in a Map-object under the key

"imports".

In the JavaScript file, the following code creates the im-

port object, including function pointers to print- and read

respectively.

1 function readfunction (){

2 var value = prompt("Enter an integer:");

3 return parseInt(value);

4 }

5

6 var importObject = {imports:

7 {print: arg => console.log

(arg},

8 read: readfunction }};

Listing 1. Importing JavaScript functions intoWebAssembly

the object importObject may then be passed as a parame-

ter when instantiating the WebAssembly module, see later

sections.

3
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5 Evaluation
The evaluation of our work in WebAssembly may be divided

into two parts; Benchmarking the execution speed of We-

bAssembly in comparison to JavaScript, and evaluating the

integration of WebAssembly into JavaScript.

During both parts of the evaluation, the web browser

Firefox was used.

5.1 Benchmarking
In order to benchmark WebAssembly, we needed to select

some simple algorithm according to the single criterion of be-

ing expressible in SimpliC. This means our algorithm needs

to be expressed only with integer arithmetic and stack allo-

cation.

In the end, recursive fibonacci calculations without mem-

oization was the algorithm of choice; the function’s repeated

call to itself makes the JIT-compiler activate after a certain

threshold has been reached, optimizing the JavaScript code.

In order to get a better overview of the performance of

WebAssembly, the following tests were made:

1. Average execution time over 10 iterations, JavaScript’s

JIT-compiler activated

2. Average execution time over 10 iterations, JavaScript’s

JIT-compiler deactivated

3. Average execution time over 10 iterations, using Em-

scripten to compile WebAssembly rather than our own

compiler

For each of the above tests, the fibonacci numbers between

10 and 41 were calculated repeatedly, logging the average

execution time of 10 iterations.

Furthermore, a different test was created specifically to

measure how much the execution time varies in WebAssem-

bly. The same fibonacci algorithm was used again. This time,

in 30 iterations per language, a call to fibonacci(35) was done.
After each iteration, the execution time was recored.

5.1.1 Test 1: JIT-active
As seen in figure 2, our compiler performed worst of all

contestants. As one would expect Rust and Java are the two

fastest languages when it comes to calculating fibonacci num-

bers. In fact they were only invited to the competition as two

examples of performance-oriented languages. So what could

be the cause leading to our wasm-code being slower than

Javascript?We believe it mainly has to do with optimizations,

which our compiler does not know how to perform. The fact

that our compiler, without optimizations, still manages to

be a worthy adversary to Javascript in this benchmark, is a

good indication of how well WebAssembly performs.

The results of test 1 may be found in figure 2.
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Figure 2. Performance of WebAssembly in comparison to

various languages, Compiled by our SimpliC compiler

5.1.2 Test 2: JIT-inactive
When disabling the JIT-compiler in javascript our compiler

outshines all of its opponents, i.e. Python and Javascript.

Figure 3 shows the results of this test.

Figure 3. Performance of WebAssembly in comparison to

various languages, Compiled by our SimpliC compiler, JIT-

compilation disabled in JavaScript

5.1.3 Test 3: Emscripten compiled WebAssembly
Once the proper Emscripten compiler is allowed to compile

our SimpliC fibonacci code the results become even more

promising. In figure 4 it is clear that wasm is slightly faster.

Even though we suspected a more dramatic decrease in time,

compared to Javascript, it is nonetheless faster.

Figure 4. Performance of WebAssembly in comparison to

various languages, Emscripten-compiled

5.1.4 Test 4: Variance
Calculating variance for a set of n samples is done with the

following calculation:

V (X ) =

n∑
i=0

Xi − X

n − 1

Where X is the mean value of the set.

Figure 5 shows the result of this test, also highlighting the

minimum- and maximum execution time for each language

tested.

Variance can be thought of as a measurement of the dis-

tance between a randomly selected sample in the set and the

mean value.

A large variance in this case means that the execution time

varies more, while a small variance means the execution time

tends to be similar between different runs.

Figure 5.Variance, minimum- andmaximum execution time

of several languages

As can be seen, the variance for both SimpliC- and EMCC

compiled WASM are the lowest of the tested languages. This

is quite interesting, in the light of the previous tests where

the execution speed was not as fast as initially believed.

This effectively means that WebAssembly performs in a very

predictable manner, compared to the second lowest variance

in JavaScript, which is roughly tenfold of the WebAssembly

variance.

5.2 Integration
Besides benchmarking, another important part of the evalua-

tion was exploring both the ease-of-use of WebAssembly and

its tools, and how to integrate it into JavaScript applications.

5.2.1 Generating WebAssembly
Using Emscripten would produce three quite large source

files. calling the command emcc main.c produces:

a.out.wasm

a.out.js

a.out.html

The large size of the .wasm-file can be attributed to the

code generated for handling allocation- and deallocation

to the heap. Importing standard I/O functionality into C

through the stdio.h-header would also generate code in order

to support formatted prints through the C-function "printf".
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The .html-file and .js-file which were also generated could

be considered optional, since they make up a generated de-

fault webpage with a console, which runs your .wasm-binary

as if it was run from a terminal window.

Besides the large files which were hard to navigate, we

ran into two issues when generating WebAssembly in this

manner:

1. Function names are obfuscated.Given a C-file with
the sole function named "fibonacci", the produced We-

bAssembly file contains no such function, but rather

a dozen functions following the naming convention

"$f1, $f2... ".

2. Functions are not exported by default. This is not
an issue if you only want to run the generated default

website as it knows which function to call in order to

start execution. However, combined with the previous

point, whenever a custom website is to call some We-

bAssembly function, it becomes unfeasible to search

for the desired function and export it manually.

The goal was to produce a very simple website which

imported- and used a very simple WebAssembly binary, and

the previously mentioned issues were a source of great frus-

tration.

We did, however, discover a way to produce an accessible

.wasm-binary without the generated website.

Given the same example as previously used, a C-file con-

taining the sole function "fibonacci", the following command

produces only a .wasm-binary, which also exports the func-

tion "fibonacci" without any name changing:

emcc main.c -o main.wasm -s
EXPORTED_FUNCTIONS="[’_fibonacci’]"

5.2.2 Fetching WebAssembly from JavaScript
Given a WebAssembly binary "simple.wasm" and a function

"exported_func" written in the source language, Mozilla’s

documentation forWebAssembly suggests the following way

of calling exported WebAssembly functions:

1 var importObject = { imports: { imported_func: arg

=> console.log(arg) } };

2

3 WebAssembly.instantiateStreaming(fetch('simple.

wasm'), importObject)

4 .then(obj => obj.instance.exports.exported_func ())

;

Listing 2.Mozilla recommendation of calling WebAssembly

Here, we can see that the user passes the Map object "im-

portObject" into the instantiateStreaming-function. This ob-

ject contains all of the data and functions which are listed as

imported inside of the WebAssembly binary. As previously

mentioned in section 4, this passing method was used in

order to use JavaScript functions to emulate both the "read"

and "print"-functions in our generated WebAssembly code.

This way of executing WebAssembly functions was far

from ideal for our purposes; it executes asynchronously, and

requires some understanding of the intricacies of JavaScript

in order to be fully utilized.

After a bit of tinkering, the following was found to work:

1 let exported_func;

2

3 function loadWasm(filename){

4 return fetch(filename , {mode: 'no-cors'})

5 .then(response => response.arrayBuffer ())

6 .then(bits => WebAssembly.compile(bits))

7 .then(module => { return new WebAssembly.

Instance(module); });

8 };

9

10 loadWasm('simple.wasm')

11 .then(instance => {

12 exported_func = instance.exports.

exported_func;

13 });

Listing 3. Setting a function pointer to a WebAssembly

function

By doing this, a function pointer to the WebAssembly

function is saved in the JavaScript variable "exported_func",

and may be called freely from that point onwards.

5.2.3 CORS request blocked
By loading a local resource with a call to the JavaScript

function "fetch", as seen in the previous section, one may

run into the error "CORS request blocked". CORS (Cross-

Origin Resorce Sharing) is a security system used to prevent

resources to be loaded on a website with a different origin

(domain, protocol or port) than its own.

This problem can be solved in two ways:

1. Reaching the desired resource through an URL-path

rather than the typical file path

2. Turning of CORS-request blocking.

We decided upon using the latter solution, which requires

some tinkering with the web browser configuration.

6 Related work
The paper "Not So Fast: Analyzing the Performance of We-
bAssembly vs. Native Code" has a similar research goal to

our report. Through a similar test approach, it describes a

process of using smaller, scientific programs of roughly 100

lines of code being compared in both WebAssembly and na-

tive code. In order to run UNIX applications in the web, they

created the BROWSIX-WASM extension, which allows UNIX

system calls to be done through the browser.

Their results are similar to ours; WebAssembly runs on av-

erage between 45 to 55% slower than native code depending
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on the browser, claiming that it is due to missing optimiza-

tions, and slowdown inherent to the WebAssembly platform

[Jan+19].

In the paper "New Kid on the Web: A Study on the Preva-
lence of WebAssembly in the Wild", authors M. Musch et. al.

investigated the spread of WebAssembly in 2019, and its’

primary uses on the world-wide web.

It was discovered that in the Alexa Top 1 million websites,

roughly 1500 of them execute at least some WebAssembly

code. Around 50 % of these sites use WebAssembly for cryp-

tomining and various malicious activity. The remaining sites

useWebAssemblymainly in either cross-compiled C# in gam-

ing applications, or as part of publicly available JavaScript

libraries, intended to speed up execution.

It also suggests how to execute WebAssembly binaries

through the JavaScript API, which were used as a clue for

our understanding on how they integrate in our evaluation.

[Mus+19].

Another paper which evaluates WebAssembly, "Bringing
the Web Up to Speed with WebAssembly", gives an overview

of the language, its’ syntax and performance.

It reports that the performance, although varying heavily

depending on the algorithm, has an upper bound execu-

tion time of 2x native code, and could even outperform it

in a small set of cases. In this test suite, the size of the We-

bAssembly binaries are on average 85.3% of the native x86

binaries[Ros+nd].

7 Conclusion
As promising as it sounds on paper, WebAssembly has yet

to overtake native code in execution time. It gives a slight

boost to JavaScript whenever it is applicable, however both

our results combined with the results of others show that the

gap between native performance compared to WebAssembly

is still noticable.

Although not easily quantifiable, our experience with

learning to use- and usingWebAssemblywas not very smooth.

Ideally, a user should be able to import- and use WebAssem-

bly modules as if they were native JavaScript, letting the

JavaScript engine take care of any of the internal mysteries

of the language in the spirit of abstraction.

Today, however, a user is reliant on the asynchronous

Promise-system of JavaScript, making the programmer re-

quired to not only have a working knowledge of one high-

level language which compiles to WebAssembly, but also

JavaScript.

WebAssembly is still a promising piece of technology. The

variance test that was performed shows that it is quite pre-

dictable in its execution time in comparison to pure JavaScript.

This can be benificial in applications that require predictable,

smooth performance.

As of today it is only some two years old and obviously

still in its infancy, but given some time we believe it could

improve, potentially reaching speeds comparable to native

code.

8 Future work
Several potential research topics emerged as this project

progressed.

One interesting question that could be explored is whether

there exists a significant difference in performance depend-

ing on which browser used. Microsoft Edge is, for instance,

currently the only browser with Just In Time-compilation ca-

pabilities for WebAssembly. Could there also be a difference

between Chrome and Firefox?

We were also worried that the use of only one algorithm

as the base for all benchmarks would generate unreliable

results. Using several algorithms for benchmarking would

not only increase the reliability, but also perhaps find cases

where Javascript outperforms WebAssembly.

For now our compiler outputs standalone WebAssembly

code. The officially recognized compiler emcc does not only

this but also generates the Javascript-glue as well as some

html-files. In essence, the whole package needed for the

script to run in the browser. And since the only purpose of

WebAssembly is to be run in the browser it would prove use-

ful to have our own compiler also generating the necessary

Javascript and html.
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