
Breaking Student Parsers with Generated Test Cases
Filip Johansson

E16, Lund University, Sweden
fi2541jo-s@student.lu.se

Abstract
In this paper we try to increase the coverage of a handwritten
test suite used to test student parser grammars. To do this
we construct a tool, called NeoTestGen, that generates test
cases for parsers based on an input grammar. This is done by
extending the parser generator NeoBeaver. NeoTestGen can
generate both positive and negative test cases, that is test
cases that the parsers should pass or fail respectively. The
resulting tool can quickly generate a large test suite with
large coverage; however, there some tests in the handwritten
suite that could not be generated. Furthermore, no tests in
the generated suite were found to increase the coverage of
the handwritten one.

1 Introduction
In the Compiler course EDAN65 at Lund University, stu-
dents write an LR parser grammar for a simple C subset
called SimpliC. The students’ grammars are tested on a test
suite,TSr ef , containing small test cases written by the teach-
ers. However, due to a lack of coverage, there may still be
incorrect grammars that passTSr ef . To find such misses and
eventually improve TSr ef , the goal of this project is to build
a tool, called NeoTestGen, that can automatically generate
a test suite TSдen with greater coverage. NeoTestGen could
also be used to compare and find errors in other grammars.

BothTSr ef andTSдen , contains two kinds of tests: positive
and negative, i.e. tests that the parser should pass and fail
respectively. To generate positive tests there are several algo-
rithms. For example, Purdom [8] has designed an algorithm
that generates a test suite that utilizes every production in
a grammar. For the generation of negative tests, there has
recently been significant developments as Raselimo, Taljaard,
and Fischer [9] have come upwith two new algorithms: word
mutation and rule mutation. Word mutation works by mu-
tating positive tests to ensure that the result is faulty and
rule mutation works by mutating the grammar and then
generating positive tests for these faulty grammars.
To produce NeoTestGen, we develop an implementation

of these aforementioned algorithms as an extension to the
NeoBeaver parser generator. The information needed for the
algorithms, such as symbols and productions, will be gath-
ered from the attributed syntax tree (AST) that NeoBeaver
produces after having parsed the grammar file. To evaluate
NeoTestGen, we compare TSдen to TSr ef . In particular, the

Course paper, EDAN70, Lund University, Sweden
January 15, 2020.

main question we try to answer in this article is ifTSдen will
cover cases thatTSr ef does not, in other word if we can find
new tests which find errors in student grammars that were
previosuly not found.

2 Background
In this section we establish nomenclature and describe the
different algorithms that we have implemented in NeoTest-
Gen.

2.1 Nomenclature
In this subsection we define concepts that will be used repeat-
edly over the paper. We use the same definitions of context-
free grammar (CFG), language, the first- and follow-set, and
items as Aho et al. [1]. Briefly, a CFG, G, is a four-tuple of
the set of terminals, T , the set of non-terminals, N , the start
symbol, S , and the set of productions, P . The language of G,
L(G), is the set of token strings that can be generated from,
G.

The first-set of a symbol, first(X ), is defined as the set of
terminals that is the first symbol in some token string derived
from X and the follow-set of a symbol, follow(X ), is the set
of terminals coming directly to right of X in any production.
Moreover, an item is defined as being a production rule where
a dot keeps tracks of the position of the current parsing, for
example p = A → α • β . The set of all items for a grammar
will be referred to as P•.

For the definition of the last- and precede-set we use simi-
lar definitions as Raselimo et al. [9]. The last-set of a symbol,
last(X ), and the precede-set, precede(X ), are defined, in jux-
taposition to the first- and follow-set, as the set of terminals
that is the last string defined from X, and respectively as the
set of terminals coming directly to left of X in any produc-
tion.

2.2 Purdom’s Algorithm
Purdom [8] presents a method to produce a positive test
set which uses every production in the grammar at least
once. Purdom’s algorithm is divided into three, distinct, se-
quentially executed parts. The first of these is the Shortest
Terminal String Algorithm, which determines the data struc-
ture SHORT . For every non-terminal n ∈ N , SHORT [n] con-
tains the production used to obtain one of the shortest string
derivable from n. The second step is the Shortest Deriva-
tion Algorithm. This algorithm calculates PREV . PREV [n] is
also defined for every n ∈ N and contains the production
that introduces n into the shortest derivation. Observe, that

1



Course paper, EDAN70, Lund University, Sweden Filip Johansson

since the start symbol is always on the left hand side of
rules, it will never be introduced by another non-terminal;
thus, PREV [S] = null . The last part is the Sentence Genera-
tion Algorithm, which utilizes SHORT and PREV to generate
positive tests. The non-deterministic test set generated by
Purdom’s algorithm will be referred to as TSPur .

2.3 Word Mutations
Raselimo et al. [9] introduce new algorithms for negative
parser test generation. The first one, word mutation, mutates
words w ∈ L(G) into wmut < L(G). Central to this method
are poisoned pairs. A poisoned pair is a pair of symbols
(A,B), that cannot occur next to each other. Furthermore,
they denote PP(G) as the set of all poisoned pairs in the
grammar G. The pair (A,B) is in PP(G) if and only if A <
precede(B) or equivalently, if and only if B < f ollow(A).
Since any word with a poisoned pair cannot be formed, such
word is not in the language.

To perform the mutations, Raselimo et al. employ the
string editing operations that are used to calculate the Damer-
eau-Levenshtein string edit distance, as mutation opera-
tions [3, 6]. The mutations are defined as follows, where
a,b, c,d ∈ T , and x,y are possibly empty strings of termi-
nals:

1. Token deletion: if xabcy ∈ L(G) and (a, c) ∈ PP(G),
then xacy < L(G).

2. Token insertion: if xacy ∈ L(G), and either (a,b) ∈

PP(G) or (b, c) ∈ PP(G), then xabcy < L(G).
3. Token substitution: if xabcy ∈ L(G), and either (a,d) ∈

PP(G) or (d, c) ∈ PP(G), then xadcy < L(G).
4. Token transposition: if xabcdy ∈ L(G), and either

(a, c) ∈ L(G) or (c,d) ∈ PP(G) or (b,d) ∈ PP(G), then
xacbdy < L(G).

2.4 Rule Mutations
Raselimo et al. [9] outline another mutation based approach
for generating negative test cases called rule mutations . First,
rules in the grammar G are mutated forming the mutated
grammar Gmut . The types of mutations possible are similar
to token deletion, token insertion, and token substitution for
word mutations; the difference being, they are performed on
right-hand symbols in rules instead of on tokens in words. A
wordw ∈ L(Gmut ) is not in L(G) if the mutated rule is in the
derivation ofw . The wordw can thus be used as a negative
test when the aforementioned condition is fulfilled.

To be able to determine when to mutate the rules, there are
two auxiliary functions called left and right. These functions
operate on items and are defined as follows, where α, β are
possibly empty strings of symbols and A ∈ N :

left(A → α • β) =

{
last(α) ∪ precede(A) if α is nullable
last(α) otherwise

right(A → α • β) =

{
first(β) ∪ follow(A) if β is nullable
first(β) otherwise

An item of a mutated ruleA → α •β will lead to a negative
test when (1) or (2) is true.

follow(left(A → α • β)) ∩ right(A → α • β) = ∅ (1)

left(A → α • β) ∩ precede(right(A → α • β)) = ∅ (2)

2.5 Pretty Printing
The tests in TSr ef are small examples of program text in
the SimpliC language. However, the aforementioned algo-
rithms output token strings. Thus, to be able to compare the
generated tests to TSr ef , the token strings need to be pretty
printed to program text. This is done in a simplistic manner,
where each token is translated to a corresponding character
or string. For example, the NUMERAL token translates to 1
and the ID token translates to a in all cases.

3 Implementation
We extended the NeoBeaver parser generator by first parsing
the input grammar. The grammar that is used to parse the
input file is called GGrammar. After parsing, NeoBeaver
traverses the generated AST to collect the information about
all symbols and productions needed for generating a new
parser.

The implementation of Purdom’s [8] two first parts were
straight forward according to the descriptions in the pa-
per. However, Purdom’s description of the Sentence Gener-
ation Algorithm is convoluted and therefore hard to trans-
late into code. This is an issue recognized by Malloy and
Power [7]. They have thus attempted to describe the algo-
rithm in pseudo-code. Once we had implemented Malloy’s
and Power’s pseudo-code, we discovered that it was faulty.
In particular, Malloy’s and Power’s subroutine load_ONCE().
This method omits to check whether a non-terminal is ready
to be assigned a rule it is supposed to use, and thus over-
writes some rules that have not yet been used, resulting in
the algorithm finishing prematurely. By comparing to Pur-
dom’s description we eventually discovered and fixed this
error. An example of a sentence in the language of SimpliC
generated by Purdom’s algorithm is:
int a(int a) {

int a;

}

To implement negative test generation by word mutation,
the follow set needed to be implemented to be able to de-
termine the poisoned pairs in SimpliC, PP(SimpliC). This
was done in a similar way to Appel’s and Palsberg’s [2]

2



Breaking Parser Course paper, EDAN70, Lund University, Sweden

fixed point iteration (FPI) to calculate the nullable-, first- and
follow-set.

To see where the mutations should be applied, we iterate
over a list of tokens that form a positive test (i.e. tests in
TSPur ) and record were a mutation will result in a poisoned
pair. Then the positive test is mutated and printed. A negative
test generated by this method is:
int a(int % a) {

int a;

}

Here the token REST was inserted in-between the INT and
ID tokens, because the pair (INT ,REST ) ∈ PP(SimpliC).
At first, there were some issues with positive cases being
generated by the algorithm. One such example was:
int awhile () {

}

AWHILE token was inserted since (ID,WHILE) ∈ PP(Simp-
liC). However, due to the simplicity of the pretty printer, it
could not figure out spacing for faulty tests, and thus the
ID token and the WHILE token were printed without any
spaces between them. For a scanner ’awhile’ is just an ID.
We fixed this issue by making sure there is sufficient with
spaces next to ID tokens.

For the implementation of rule mutations the last set and
precede set needed to be implemented. These were imple-
mented similarly to the way the first and follow set were
implemented. After this, we implemented the left and right
set. The left attribute implemented in JastAdd looks as fol-
lows:
syn Set <String > GRule.left(int pos) {

GGrammar g;

GComponent leftComp;

String leftSym;

g = getGrammar ();

if (pos <= 0) {

return g.precede(leftSide ());

}

leftComp = getGComponent(pos -1);

leftSym = leftComp.getName ();

if (g.nullable(leftSym )) {

Set <String > l = g.last(leftSym );

l.addAll(left(pos -2));

return l;

} else {

return g.last(leftSym );

}

}

The code above returns the left set for an item with its dot
at position pos. It returns the last-set of the symbol on the
left of the dot. If the symbol left of the dot is nullable it will

return the left-set of the position one to the left. If there is
no more symbol on the left of the dot the precede set of the
left hand side of the rule will be returned as per definition.
We implemented the right set in a similar way, using the
first and follow attribute instead of last and precede. The
mutations are thus generated by iterating over every rule
and checking when a mutation could be done. A mutation
in this sense is that one copies the GGrammar AST and
modifies a GRule. Following the mutation, a test needs to
generated for this mutated grammar. Raselimo et al. do not
provide a method for this in their paper [9]. Furthermore,
one cannot use Purdom’s algorithm [8] straight off, since
it is possible that test cases that doesn’t use the mutated
rule are generated (and the resulting test is not be negative).
However, it possible to use the two first parts in Purdom’s
algorithm to generate short tests that make sure to utilize
the mutated rule. The pseudo-code of out implementation is
provided below, where short(sym) is a method that returns
the shortest word derivable from the symbol sym, lhsmeans
the left-hand-side of a rule and rhs means the right-hand-
side of a rule:
input: GGrammar g // mutated grammar

input: Symbol s // start symbol

input: GRule mRule // mutated rule in g

output: test

method genRuleMutationTest:

set test to NULL

set SHORT using Purdom first part

set PREV using Purdom second part

set m to mRule

if SHORT[s] equals NULL:

end method // test cannot be formed

if PREV[m.lhs] equals NULL:

end method // test cannot be formed

set shortM to empty list

for each symbol i in m.rhs:

add i to shortM

if m.lhs equals s:

set test to shortM

end method

set shortW to empty list

do:
set p to PREV[m]

set cWord to empty list

for each symbol i in p.rhs:

if i equals mRule.lhs:

add shortM to cWord

else if i equals shortW.lhs:

add shortW to cWord

3



Course paper, EDAN70, Lund University, Sweden Filip Johansson

else
add short(i) to cWord

set shortW to cWord

set m to p

set test to shortW

end method

For somemutated grammars it is impossible to generate a test
based on how the grammar mutated. This is why we check
if SHORT[s] or PREV[m.lhs] equals NULL. Such a scenario
might happen due to generated recursion in the CFG. One
example of a test that was generated by rule mutation looks
as follows:
int a() {

a(1 int a() {

}

, 1);

}

Here the function_declaration non-terminal was added into
the argument_list rule.

4 Evaluation
To evaluate the implementation, we compare the generated
test suite, TSдen , to the teachers’ test suite, TSr ef . For Sim-
pliC, the implementation generates 7 positive tests and 9316
negative tests. However, since running the student parsers
through a large test suite takes a lot of time, only 900 (about
10%) negative tests are included inTSдen . 1 On the other side,
TSr ef , contains 128 tests, both positive and negative.

Both TSдen and TSr ef were run on 724 student parsers,
out of which 341 passes TSr ef . No generated tests in TSдen
were discovered that increases coverage. Furthermore, six
submissions were failed by the teachers’ test suite that passed
the test suite. Figure 1 shows the number of parsers failed
by tests for TSдen .

As seen by the distribution, there were about 35 negative
tests that failed at least one parser submission. This means
that there were 865 negative tests that provided no coverage.
The positive test cases failed a lot of parser submissions per
test, one even failed almost 250 submissions.

Figure 2 shows the number of submissions failed for tests
in TSr ef . As seen, there are more than 60 tests that fails
parser submissions. This is a larger amount than for TSдen .
Furthermore, it is also clear that TSr ef contain a higher pro-
portion of positive tests that have an impact thanTSдen . One
reason for these differences could be that the hand written
tests were specifically written to test one language feature,
while the generated tests inadvertently could test many fea-
tures at a time and thus reducing the number of tests needed.
Having a test suite with fewer tests is usually an advantage
1It took almost 3 days to run all the parsers on the tests.

Figure 1. The number of failed parser submissions per test.
The blue tests are negative and the orange are positive.

Figure 2. The number of failed parser submissions per test.
The blue tests are negative and the orange are positive.

as it saves disk space and also testing time. However, the
advantage of being able to track the failed test to a specific
issue in the parser grammar probably is the most important
aspect in this case. Another reason for there being a higher
proportion of positive tests in TSr ef , could be the testing or-
der. ForTSдen all the negative tests are run first and after this
the positive tests are run. This is in contrast to TSr ef , where
there is no clear execution order. Some tests might not have
been needed if another test, covers the same feature. There is
an indication of that this is impacting the results, as test 35 in
TSдen is identical to test 1 in TSr ef ; however, they fail a dif-
ferent amount of parser submissions in their respective test
suite. This means some submissions that were covered by
test 35 inTSдen had already been failed by previous negative
tests. These negative tests are perhaps superfluous.

4



Breaking Parser Course paper, EDAN70, Lund University, Sweden

By analyzing the submissions that were failed by TSr ef ,
but passed TSдen we found both positive and negative tests
that could not be generated by our implementation. An ex-
ample of such a positive test case is:
int f() {

return -(3 + 2);

}

In this specific case, the rule, factor → MINUS factor, has
to be in the derivation of the sentence. The issue is that
Purdom’s algorithm stipulates that it is only necessary to
use a rule once, and the rule, factor → MINUS factor, had
already been used to generate another shorter test. Thus,
the aforementioned positive test can not be generated by
Purdom’s algorithm. The other positive tests in TSr ef that
could not be generated are also caused by the same issue.
An example of a negative test case in TSr ef that could not
be generated is:
int f(int x) {

x = x = 0;

}

This negative test case could not be generated since the sen-
tence lacks any poisoned pairs. Thus neither word mutation
or rule mutation could result in tests like this. The same is
true for all negative test cases that could not be generated.

5 Related work
There are other algorithms for generating test cases for
parses than the ones we implemented for NeoTestGen. For
example, Lämmel [4] describes a method for positive test
case generation called Context-Dependent Rule Coverage
(CDRC) that makes sure that every rule is utilized in every
potential location. CDRC could potentially generate the test
cases that Purdom’s algorithm could not. Another method by
Lämmel and Schulte [5] is a smart brute force method, where
certain factors are limited to avoid an explosive amount of
tests.
Toolkits for generating test cases for parsers have been

implemented before. For example, Xu, Zheng, and Chen [10]
implemented a toolkit which employ variants of Purdom’s
algorithm and Lämmel’s CDRC. However, it has no methods
of generating negative test cases.

6 Conclusion
To see if it would be possible to increase the coverage of an
existing parser grammar test suite, TSr ef , we implemented
a tool called NeoTestGen which generates a parser test suite,
TSдen , based on a input grammar. The algorithm we imple-
mented for positive test generation is Purdom’s algorithm
and the algorithms we implemented for negative test gen-
eration are word mutation and rule mutation. When we

compared TSдen to TSr ef , we found that TSдen had less cov-
erage. There were some positive test cases NeoTestGen could
not generate due to a limitation of Purdom’s algorithm. Also,
negative test cases that did not contain poisoned pairs could
not be generated.
This tool could be used to generate a test suite; however,

one should be wary due its limitations. The major advantage
of generating tests using this tool compared to writing them
yourself is that it is a lot faster.

For future work, we could use CDRC instead of Purdom’s
algorithm. This would allow the same level of positive cover-
age asTSr ef . To increase the negative coverage one could per-
haps implement a solutions that checks for poisoned strings
of length n. With a sufficiently large n all negative test cases
in TSr ef could be generated. Furthermore, one could also
implement a method where you generate parsers based on
the grammars from the rule mutation method. These parsers
could then be run on TSr ef . If a parser passes all tests, then
TSr ef is missing in coverage.

Acknowledgments
Thank you to Jesper Öqvist and Görel Hedin for invaluable
supervision, and thank you to Moeketsi Raselimo and Berndt
Fischer for explaining the finer parts of their paper.

References
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2007.

Compilers: Principles, Techniques, and Tools (2Nd Edition). Pearson
Education, Inc., Boston, MA, USA.

[2] Andrew W. Appel and Jens Palsberg. 2003. Modern Compiler Imple-
mentation in Java (2nd ed.). Cambridge University Press, New York,
NY, USA.

[3] Fred J. Damerau. 1964. A Technique for Computer Detection and
Correction of Spelling Errors. Commun. ACM 7, 3 (March 1964), 171–
176. https://doi.org/10.1145/363958.363994

[4] Ralf Lämmel. 2001. Grammar Testing. In Proceedings of the 4th Interna-
tional Conference on Fundamental Approaches to Software Engineering
(FASE ’01). Springer-Verlag, Berlin, Heidelberg, 201–216.

[5] Ralf Lämmel and Wolfram Schulte. 2006. Controllable Combinato-
rial Coverage in Grammar-Based Testing. In Proceedings of the 18th
IFIP TC6/WG6.1 International Conference on Testing of Communicat-
ing Systems (TestCom’06). Springer-Verlag, Berlin, Heidelberg, 19–38.
https://doi.org/10.1007/11754008_2

[6] Vladimir I Levenshtein. 1966. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet physics doklady, Vol. 10.
707–710.

[7] Brian A. Malloy and James F. Power. 2001. An Interpretation of Pur-
dom’s Algorithm forAutomatic Generation of Test Cases.

[8] Paul Purdom. 1972. A sentence generator for testing parsers. BIT
Numerical Mathematics 12, 3 (01 Sep 1972), 366–375. https://doi.org/
10.1007/BF01932308

[9] Moeketsi Raselimo, Jan Taljaard, and Bernd Fischer. 2019. Breaking
Parsers: Mutation-based Generation of Programs with Guaranteed
Syntax Errors. In Proceedings of the 12th ACM SIGPLAN International
Conference on Software Language Engineering (SLE 2019). ACM, New
York, NY, USA, 83–87. https://doi.org/10.1145/3357766.3359542

[10] Zhiwu Xu, Lixiao Zheng, and Haiming Chen. 2011. A Toolkit for
Generating Sentences from Context-Free Grammars. Int. J. Software

5

https://doi.org/10.1145/363958.363994
https://doi.org/10.1007/11754008_2
https://doi.org/10.1007/BF01932308
https://doi.org/10.1007/BF01932308
https://doi.org/10.1145/3357766.3359542


Course paper, EDAN70, Lund University, Sweden Filip Johansson

and Informatics 5 (01 2011), 659–676. https://doi.org/10.1109/SEFM.
2010.21

6

https://doi.org/10.1109/SEFM.2010.21
https://doi.org/10.1109/SEFM.2010.21

	Abstract
	1 Introduction
	2 Background
	2.1 Nomenclature
	2.2 Purdom's Algorithm
	2.3 Word Mutations
	2.4 Rule Mutations
	2.5 Pretty Printing

	3 Implementation
	4 Evaluation
	5 Related work
	6 Conclusion
	Acknowledgments
	References

