An MPS implementation for SimpliC

Raphaél Castanier
D11, Lund University, Sweden
raphael.castanier@grenoble-inp.org

Abstract

The goal of this study was to evaluate JetBrains language
editor provided as an Open Source project called MPS (Meta-
Programming System). One way to evaluate MPS perfor-
mances for designing simple language compiler was to imple-
ment the SimpliC language in MPS through its projectional
editor. We will present in this paper what a projectional
editor is and its opportunities for language design. Then
we will introduce basic concepts of language design in MPS
through our SimpliC implementation, and discuss the lessons
we learned from this. We also discuss an evaluation of this
process and present related academic work.

1 Introduction

Designing compilers is a complex task, requiring different
steps. Usualy a compiler [2] first translates source code writ-
ten on text files into tokens. Then the token list is parsed
to an Abstract Syntax Tree (AST). Now we can add seman-
tic analysis aspects like name analysis, type checking and
error checking. There are several ways to do that, namely
through wvisitors [2] or with Attributed AST [3]. From this
last production, compiler can generate intermediate code
and target code. All these steps require different techniques,
usually with different tools.

The parsing step is often a bottleneck when designing
language [9]. Indeed, if we want to extend the language, we
will need to change the grammar to introduce new language
constructs and keywords. This step may be difficult and
may introduce unparsable grammar. It can be avoided if we
directly work on AST, adding and editing tree nodes.

That is why we introduce projectional editing [9]. Instead
of writing programs on text files and then have a parsing
process that can be complex, we use projectional language.
Using a projectional editor, developer will modify directly
the AST stored in XML or database. Thus, we can easily
edit program in just editing AST nodes instead of complete
language edition. It avoids concrete grammar or parser use
and enables designer to extend language without changing
language grammar.

JetBrains provides a tool called Meta-Programming Sys-
tem (MPS). It stores the code into models instead of text
files, providing projectional edition [7]. MPS is an Open
Source project!, under Apache License. MPS Editor provides

https://github.com/JetBrains/MPS

Course paper, EDAN70, Lund University, Sweden
January 30, 2020.

a structure that allows better flexibility for language design,
including extension and visualisation [9].

MPS represents programs in tree models stored in XML
files. The tree represents the structure of program and each
node is called concept. Each concept can have hierarchical
inheritance and specific rules, allowing complex structure
constructions. Thus, the program can be represented in the
editor, i.e. projected, into different views, using editor aspects.
For instance, the same program can be projected into textual
notation, diagram editor or symbolic editor [7]. Moreover,
constraints and behaviours add rules to construct program
structure. Finally, previous aspects of language contruction
enable MPS to perform a lot of static analysis such as type
checking, name analysis and code generation.

For educational purpose, we used a C-like language called
SimpliC. SimpliC is a reduced-concepts language with most
of C language constructs: function declarations, function
calls, typed variables, expressions, control structures
Compiler course uses this simplified language to teach stu-
dents how to handle main compiler concepts. SimpliC is
implemented in Java, in connection with JFlex? (lexical an-
alyzer generator), Beaver® (LALR(1) parser generator) and
JastAdd* (meta-compilation system that supports Reference
Attribute Grammars (RAGs)).

We will study on this paper how to implement SimpliC
language and compiler in MPS. Our goal is to build a com-
piler for SimpliC language into MPS environment instead
of using previous mentioned tools. We want to implement
SimpliC language in a standalone SimpliC IDE (Integrated
Development Environment) that will provide projectional
editor to allow SimpliC programs edition and compilation.

The main activities are to implement the core concepts of
SimpliC on MPS. Then we try to implement simple SimpliC
programs as study cases to demonstrate the language use.
Finally, we release a standalone SimpliC IDE.

All this activities have as backgroud aim to compare the
two ways of implementing compiler: using JetBrains MPS or
using Java with JFlex, Beaver and JastAdd. The benefits of
MPS implementation for a language is that in the same time
you get an IDE and a compiler for SimpliC without adding
other features.

We try to answer the following question: "What is the
extra work for creating an editor for a language we already
have a compiler?”

Zhttps://jflex.de/
3http://beaver.sourceforge.net/
*http://jastadd.org/web/

https://github.com/JetBrains/MPS
https://jflex.de/
http://beaver.sourceforge.net/
http://jastadd.org/web/

Course paper, EDAN70, Lund University, Sweden

program.in
v int fac(int n) {
if (n <= 1) {
return n;

}
return fac(n-1) * n;
}
int maingb {
print(fac(7));
return 8;

Figure 1. Simple SimpliC program

The rest of this paper is structured as follows: Section
2 introduces the useful backgroud to understand what we
expect from MPS. Section 3 presents how we implemented
SimpliC in MPS Project, using IDE functionalities, sandbox
and standalalone IDE generation. Section 4 introduces the
criteria we can use to evaluate SimpliC implementation. Sec-
tion 5 presents other tools than MPS as projectional editors.
Section 6 provides a short summary and a conclusion.

2 Background

2.1 SimpliC language

The SimpliC language is a small C-like language. It allows
developers to create programs composed of named function
with parameters and return values.

This language is namely composed of function declara-
tions, statements, expressions and variable uses. Variable
are typed (void, int or bool) and numerals are allowed.
Comparison, binary and unary operators are defined for ex-
pressions and common control structures (if/else, while
and return) are defined.

We usually edit SimpliC programs in text editors or classic
IDE. See Figure 1.

2.2 Projectional editing

The classical approach to write software source code is to
write down the program on simple text files. This way is
really easy, any text editor allows to open and edit text files
and modern IDE allow developers to manage projects with
a lot of source files. Nevertheless, this approach may lead to
issues when designing and extending languages: one may
want to add new constructs to a language to solve a specific
aspect of an application.

Raphaél Castanier

For example, one may want to use tabular representation
for some computations into C programs, but textual edition
does not support this format. Scanner and parser will not
handle this construct and will fail to compile the program. Or
one could want to represent process using diagram notation
but most classical IDE do not provide this feature and text
files cannot support diagram storage as is.

For thoses reasons we try to use projectional editing [8].
This approach allows to manipulate directly the AST, instead
of working with a parser. The editor has special rules to
allow user to edit tree, add, remove or edit nodes.

Then developers and non computer science specialists do
not need to know the language constructs and check the
correctness of their source code implementation because the
language is already built when they create new nodes in
the AST. The programs are stored in IDE internal format,
generaly XML files, and language users only manipulate
models. This projectional edition allows several program
views: text-like, tabular, diagram, tree... Moreover, the same
program can be viewed in different views at the same time.
Finally, this approach allows language extenions, just by
adding new nodes types and tree construction rules. This
new types do not break parsing rules because no parsing
rule is applied.

2.3 Meta-Programming System

JetBrains MPS is an open source projectional language work-
bench [7]. MPS is an Integrated Development Environment
allowing language design using projectional edition. MPS
is based on JetBrains Java core architecture. MPS is boot-
straped, i.e. the languages we use for desing inside MPS are
projectional languages themselves (MPS base language).
MPS allows to create two project types: 1) Custom lan-
guage design and 2) Development using custom languages.
Custom language design (1) allow developers to create new
languages for their specific application with their own rules.
Development projects (2) allow developers to apply their
newly created languages on specific application solutions.
MPS represents programs in tree models. The tree rep-
resents program Structure and each node is called concept.
Each concept can have hierarchical inheritance and specific
rules, allowing complex structure constructions like ancestry,
children and reference concepts. Thus, the program can be
represented in the editor, i.e. projected, into different views,
using editor aspects. Default editor for a concept is a textual
view with indentation of each child. Moreover, one program
can be projected into textual notation, diagram editor or
symbolic editor [7]. Constraints add rules to construct pro-
gram structure. Behaviours allow languague designer to add
methods to nodes. Previous aspects of language contruc-
tion enable MPS to perform a lot of static analysis such as
type checking and name analysis. Finally, a program an be
exported in text format using Text Generation rules.

An MPS implementation for SimpliC

Figure 2. Comparison between Conventional compilers and
MPS

Conventional Compiler | MPS

Programs are written Programs are written
in files on Models

AST Structure

Parser No parser / Editor

Attributed AST Behaviour

Type Analysis TypeSystem

Code generation Text Gen

2.4 Summary

Conventional compiler use several steps to translate pro-
grams written in text files into executable code. They are
modualble and efficient but may be difficult to extend and
improve.

MPS solves parser bottleneck in proposing a projectional
editor and many other structures to implement custom lan-
guages.

We can compare conventional compilers and MPS in ta-
ble 2.

3 Implementation

We will explain how we implemented SimpliC language in
MPS using different language design aspects. Then, we will
present the embedded sandbox system we used to check
SimpliC implementation in MPS. Finally, we will introduce
the stadalone IDE generation from MPS and some interesting
functionalities of projectional editing.

3.1 SimpliC aspects

MPS manipulates programs as trees of concepts, like an Ab-
stract Syntax Tree. A concept is an program element carac-
terized by several language aspects. An aspects view in MPS
can be seen Figure 3.

One main aspect of a concept is the Structure aspect (1): it
gives concept a name and its relationship with other nodes.
Then the Editor aspect (2) gives MPS rules to project each
concept in projectional editor. Behaviour aspect (3) allows
language designer to add methods to nodes like JastAdd.
TypeSystem aspect (4) adds types support for variables and
return types. Finally, Text Generator aspect (5) enables to
translate a concept into text, that is the compile step to get
assembly code from a SimpliC program.

3.1.1 Structure

A Structure aspect is the first aspect to implement. It has a
name, it extends a BaseConcept or another abstract Structure,
it has own members and has links to other nodes (children
or reference). MPS provides also classical concepts interfaces
to be implemented like INamedConcept or ITypedConcept,
providing automatic name/type analysis and suggestion.

Course paper, EDAN70, Lund University, Sweden

SimpliC
structure
editor

constramts
: behavior

Figure 3. SimpliC language aspects

Implementing SimpliC Structure aspect was quite easy: we
simply translated the concrete grammar definition for Sim-
pliC into MPS concepts. We have a Program root structure
and abstract structures like Statements and Expressions.
We also have concrete structures like FunctionDeclaration
and Param or Assignment. We have IdDeclaration state-
ments and IdUse expressions. Finally we implemented all
unary and binary expressions like comparison operators or
mathematical operators.

At this step, we are able to create any SimpliC program in
the default editor.

3.1.2 Editor

The Editor aspect is really important to give our programs
the projections we expect to edit SimpliC programs. This
step is tedious because we choose to mimick the text-like
behaviour of projectional editor for SimpliC in order to let
developers feel comfortable with our IDE.

An Editor aspect for a concept consists in cell layout de-
sign. Each concept is projected in projectional editor through
its cell. Therefore we defined every concepts editors as inden-
tation layout for text-like behaviour. Then we added concepts
keywords and properties to make SimpliC programs look
text-like editable.

As example, take a look at IdDeclaration Editor (Figure 5).
The Editor for this concept starts with the type, is followed
by the name and finally has an optional semicolon. The
inspector MPS tool allows us to show semicolon only if the
IdDeclaration concept is a standalone Statement. Otherwhise,
IdDeclaration is member of a function parameters list or a
declaration/assignement and should not be followed by a
semicolon.

We also added comments lines and implemented simple
syntax highlighting.

3.1.3 Behaviour
The Behaviour aspects add methods to the concepts to extend
their abilities, like JastAdd.

For example, we added a builtin concept for print func-
tion in SimpliC programs. As we can see Figure 6, every new

Course paper, EDAN70, Lund University, Sweden

SimpliC program has a builtin function print and a bare
main function.

We can also add new methods but we did not exploit this
opportunity.

3.1.4 TypeSystem

A TypeSystem aspect is available in MPS to handle type
checking and compatibility.

In this study, we only implemented simple types (void,
int and bool), allowing projectional editor to suggest them.
In future work, we can use this aspects to check expression
types and function call return types for example.

3.1.5 Text Generation

The TextGen aspects are really similar to Code Generation
we implemented for SimpliC in compiler course. Thier im-
plementation was relatively easy because it is the same as
previously done.

We have basic text generation, i.e. each concept appends
it’s own assembly code to MPS output. We implemented all
parts of assembly code except labels, that require more effort
using Behaviour aspects.

At this step, we were able to generate the compiled ASM
code corresponding to a SimpliC program.

Another aspect exists in MPS, called Generator aspect.
This aspect name can lead to confusion with Text Gen and
is only related to translation from one language to another
by MPS.

3.2 Sandbox

One powerfull tool in MPS is the Sandbox system.

When creating a language design project in MPS, one
can add an attached Sandbox that uses the new language.
It allows language designer to create dynamically simple
programs and check that changes in language design corre-
sponds to what is expected.

In particular, one can use the new language as a released
version and work completely using MPS framework. All
features are directly available like name and type sugges-
tion and checking, projectional editor interaction and AST
manipulation. One can also use the Text Gen to check that
compiled code corresponds to what is expected.

3.3 Standalone IDE

MPS is able to generate a standalone IDE that embedds our
specific designed language with all JetBrains editor features.

To do so, one should use the generic version of MPS to
have the required binary artifacts for all supported operating
systems (Windows, Linux, MacOS).

Once generated, the SimpliC standalone IDE can be in-
stalled in any environment and run an instance of a Jet-
Brains editor with all projectional editor features. One can
namely create new program using SimpliC language and

Raphaél Castanier

N Program

vold main (<< ... >)

i
print: { fac { 7y } =z

}

int fac {(int n)

{
stop condition
if(n <= 1)

%Y Show Node in Logical View Alt+F2

Felding :

Aft+Incert

Crl+Alt+T

Preview Generated Text Ctrl+Alt+Shift+F9

Language Debug >
Q, Find Usages Alt+F7
Q, Find Usages Settings... Ctrl+Alt+Shift+F7

Refactoring b

Push Editor Hints

Show Reflective Editor Ctrl+[

Show Reflective Editor for the Subtree

Ctrl+ Shifts [

Figure 4. Reflective editor menu

use JetBrains editor features (name and type check, name
suggestion, autocorrection).

One interesting feature is the ability to switch between
Regular and Reflective Editors as program projection. This
can be applied to all program or just some nodes. See Figure 4
as example on a simple program.

Finally, text generation is available to compile any SimpliC
program into assembly code.

3.4 Summary

We have been able to implement some SimpliC language
constructs on MPS using different language aspects and MPS
features. Projectional editor is used in text-like mode to allow
easy understanding by SimpliC designers.

We were able to release the implementation as a MPS
project, containing SimpliC implementation, Sandbox ex-
amples and standalone IDE build scripts. We also released
an Alpha version of Standalone IDE for various operating
systems.

Some SimpliC constructs are not fully implemented and
functionnal but can be improved following same steps than
used previously.

4 Evaluation
This study was focused on implementing SimpliC in MPS.

An MPS implementation for SimpliC

The metrics we used was a sample program in SimpliC as
factorial (see Figure 1). This factorial program uses most of
all SimpliC aspects:

1. Main function and another function definition with
parameter

2. Function call, builtin function call and recursive call

3. If statement and return statement

4. Boolean and integer binary expressions

Moreover, we used to add some of id declarations and assigne-
ment to have a complete coverage of all kind of language
constructs.

We were able to test that it was easy to use MPS projec-
tional editor to write this kind of simple programs using the
Sandbox system and through the Standalone SimpliC IDE
we generated.

Note that MPS allows embeded automated unit test suite [6],
but this feature was outside the scope of this study. The prob-
lem for an automated test approach was that the project was
not mature enough to provide relevant test cases.

One other way onf evaluating this study is the self-grader
tool for compiler course. This tool tests our SimpliC imple-
mentation by running generated compiler. Howerver, our
production is not a Java-based compiler but a complete IDE
solution.

5 Related work

Voelter studied 2010 MPS projectional language workbench
for modular languages implementation [9]. This study intro-
duces projectional edition and JetBrains MPS. It introduces
most of concepts presented above and includes a clear step
by step example for language implemention on MPS. This
paper has been the first step of our study.

Three years later Voelter studied MPS projectional editor
for language and IDE modularization and composition [7].
He introduced new MPS features for language design and
modularization. The concepts were more focused on lan-
guage modularization and it was out of the scope of this
study.

One year later Voelter, Siegmund, Berger and Kolb studied
user-friendly projectional editor instead of using text files
to represent source code [8]. They focused on challenge for
most of developers to interact with projectional editors and
how to solve the drawback of unfamiliar editing experience.
In spite of projectional editors usability issues, their results
show benefits of flexible language composition when projec-
tional editors emulate parser-based editors. We used their
advices for implementing our SimpliC editor.

One example of practical application of specific language
implementation in MPS is Klimes study [4]. Klime$ imple-
mented a prototype of his own language Eddie in MPS and
produced a Standalone IDE. His work is more complete than
this one, with static analysis and more complete type system.
However, it was an inspiring paper, presenting clearly MPS

Course paper, EDAN70, Lund University, Sweden

concepts from a more practical point of view than previous
ones.

An interesting study focused on automated testing for
specific language implementation [6]. This study presents
several approaches to increase the automation of language
testing. Automated testing is an important aspect of lan-
guage implementation but it comes after a good knowledge
of language specifications and tools handling. This is why
we did not deepen this aspect of our project.

Finally, some other solutions than MPS exist for language
design [1]. For exemple Eclipse Xtext, Spoofax or MetaEdit+.
Most of them are released as Eclipse plugins for specific
language design. They provide an interesting alternative to
MPS solutions.

6 Conclusion

We will conclude on the work we released, answer the ques-
tion we asked and expose personal feelings.

6.1 Released work

We implemented several aspects of SimpliC in JetBrains MPS.
We used a Sandbox system to check that most of SimpliC
language constructs are implemented and usable. We gener-
ated a standalone IDE embedding SimpliC implementation
to create SimpliC programs and compile them into assembly
code.

We can say that we produced an IDE for SimpliC for the
first time.

Our results can be useful for educational purpose, to en-
able students to learn language design through several as-
pects. MPS approach is original with projectional editor, lan-
guage design and embeded features. The standalone IDE may
be used to design simple SimpliC programs, use name and
type suggestions and text generation. The projectional edi-
tion is particularly interesting through editor switch, to see
hax AST nodes are directly modified when editing programs.

6.2 Future work

Our implementation is focused on previously introduced
code example (Figure 1). Standalone editor allows a straight-
forward implemention of this code snippet. Howevern, Sim-
pliC implementation could be improved through several as-
pects.

For example, we lack some expressions implementation
(rule priority or parenthesis). These rules can be easily imple-
mented using work from previously implemented SimpliC
aspects and with help from online documentation. Moreover,
if/else and while statement support are not fully oper-
ational. Their implementation may be improved and new
statament (for loops) may be introduced.

Text Gen should be fixed for function calls and structure
with labelling system. Note that we did not check generated

Course paper, EDAN70, Lund University, Sweden

code to compile using 1d and as. Name analysis may be im-
proved for scope declaration and use. Syntactic coloration
can be implemented for keywords, structure, ID declara-
tion/use...

One may implement struct constructs to join Object
Oriented programming to SimplC, as well as pointer support
or modular language extension. One may also add a new
projectional editor for a diagram view, like what we can find
in DrAST [5].

6.3 Research question

Through this study, we tried to answer the question "What
is the extra work for creating an editor for a language we
already have a compiler?".

For one who never experienced projectional editor, an
extra work is necessary to handle this concepts. Then it is
strongly recommended to follow MPS user guide and project
examples to become friendly with MPS tool and languages.
Finally, if previous steps are done correctly, we estimate that
implementing complete SimpliC language support in MPS
can take approxiately 20 hours.

The entire furnished work previously written can easily
lead to a Standalone SimpliC editor for educational purpose.

6.4 Feelings

MPS seems to be easy to learn, as it is presented. But one
have to get deep in knowledge of the tool to be able to get
the same thing you might do with another tool.

MPS uses internal Base Language, where no reference is
given. Then it is sometimes difficult to get a quick idea of
what is needed and relevant for our specific project.

Projectional editing is a real advantage in editing AST
and avoid parser step bottleneck. Approaching this edition
aspect is sometimes difficult but really powerful when we
got it in hands.

Acknowledgments

We would like to thank Alfred Akesson for his support in
carrying out the study and for his practical advice.

References

[1] 2016. Language Workbench Challenge. https://2016.splashcon.org/
track/lwc2016#About. (2016).

[2] Andrew W Appel. 2004. Modern compiler implementation in C. Cam-
bridge university press.

[3] Gorel Hedin. 2000. Reference attributed grammars. Informatica (Slove-
nia) 24,3 (2000), 301-317.

[4] Jonas Klimes. 2016. Domain-Specific Language for Learning Program-
ming. (2016).

[5] Joel Lindholm and Johan Thorsberg. 2016. DrAST - An attribute debug-
ger for JastAdd. (2016). Student Paper.

[6] Daniel Ratiu and Markus Voelter. 2016. Automated Testing of DSL
Implementations: Experiences from Building Mbeddr. In Proceedings of
the 11th International Workshop on Automation of Software Test (AST
’16). ACM, New York, NY, USA, 15-21. https://doi.org/10.1145/2896921.
2896922

Raphaél Castanier

[7] Markus Voelter. 2013. Language and IDE Modularization and Composi-
tion with MPS. Springer Berlin Heidelberg, Berlin, Heidelberg, 383-430.
https://doi.org/10.1007/978-3-642-35992-7_11
Markus Voelter, Janet Siegmund, Thorsten Berger, and Bernd Kolb.
2014. Towards User-Friendly Projectional Editors. In Software Language
Engineering, Benoit Combemale, David J. Pearce, Olivier Barais, and
Jurgen J. Vinju (Eds.). Springer International Publishing, Cham, 41-61.
[9] Markus Volter and Konstantin Solomatov. 2010. Language Modular-
ization and Composition with Projectional Language Workbenches
illustrated with MPS. (01 2010).

8

[}

https://2016.splashcon.org/track/lwc2016#About
https://2016.splashcon.org/track/lwc2016#About
https://doi.org/10.1145/2896921.2896922
https://doi.org/10.1145/2896921.2896922
https://doi.org/10.1007/978-3-642-35992-7_11

An MPS implementation for SimpliC Course paper, EDAN70, Lund University, Sweden

A Appendix

ldDeclaration C ints 1 f_|dD 5 factorings Intentions Feedback Find Usages DataFl

Figure 5. IdDeclaration Editor aspect

Course paper, EDAN70, Lund University, Sweden Raphaél Castanier

concept behavior

main.t
main.t

.addFirst (m

Figure 6. Program Behaviour aspect

	Abstract
	1 Introduction
	2 Background
	2.1 SimpliC language
	2.2 Projectional editing
	2.3 Meta-Programming System
	2.4 Summary

	3 Implementation
	3.1 SimpliC aspects
	3.2 Sandbox
	3.3 Standalone IDE
	3.4 Summary

	4 Evaluation
	5 Related work
	6 Conclusion
	6.1 Released work
	6.2 Future work
	6.3 Research question
	6.4 Feelings

	Acknowledgments
	References
	A Appendix

