
Language Server Protocol for ExtendJ
Fredrik Siemund

D15, Lund University, Sweden
htx12fsi@student.lu.se

Daniel Tovesson
C15, Lund University, Sweden

dic15dto@student.lu.se

Abstract
Microsoft’s Language Server Protocol (LSP) has been im-
plemented with ExtendJ in two widely popular Integrated
Development Environments (IDE), Eclipse and Sublime Text.
LSP is a way of supplying high level support — such as
code completion, hover tooltips, jump-to-definition and find-
references — for a programming language in a wide variety
of editors. ExtendJ is an extensible compiler for Java, speci-
fied using reference attribute grammars. Because of the time
limit of the project, only error checking was implemented. As
the user writes Java code, the IDEs will highlight erroneous
code and thereby simplify the process of finding errors. On
the client side, this was done by configuring two extensions,
one for each IDE. On the server side, a language server was
created that compiles the file with ExtendJ every time it is
changed by the user to search for compilation errors. To
make LSP work flawlessly with ExtendJ, an extension to
ExtendJ was created.

1 Introduction
The traditional way of supplying high-level support, such as
code completion, hover tooltips and jump-to-definition for a
programming language in an editor, is to develop a separate
plugin for each editor. Language Server Protocol (LSP) was
created by Microsoft to make this process easier. Instead
of developing and maintaining many different plugins, it is
with the help of LSP possible to implement one language
server which provides high-level support for many different
editors.

The goal of this project was to implement LSP for ExtendJ
[2], which is an extensible compiler for Java specified using
reference attribute grammars. Reference attribute grammars
makes it easy to extend the compiler with new language
constructs and analyses [5]. This was useful because an ex-
tension to ExtendJ had to be implemented which is described
later.

Focuswas on implementing error checking, which is called
Diagnostics in LSP. The implementation was done by cre-
ating a language server using LSP4J, a reusable Java imple-
mentation of LSP [10]. The language server in turn uses
ExtendJ to compile the file that the user is editing to search
for errors. To make ExtendJ work with the language server,
an extension to ExtendJ had to be developed. LSP communi-
cates with the language protocol over JSON-RPC [4], so the

Course paper, EDAN70, Lund University, Sweden
December 18, 2018.

ExtendJ extension outputs the errors in JSON format instead
of a sequence of strings. Finally, the IDEs were configured
to make use of the language server created. This improved
the process of developing in Java by providing the developer
with better feedback in the editor. The work was evaluated
by demonstrating the validation features implemented in
the language server. The language server was tested with
Eclipse and Sublime Text, which both worked well.

2 Background
2.1 Language Server Protocol
LSP is used to provide syntax highlighting and/or validation
for a specific language. As mentioned in [8], you need a client
and a server. The client, in this case an IDE, sends notifica-
tions to the server whenever some predefined events happen,
for example if something in a file is changed. One goal of LSP
is to standardize the exchange of these messages between the
client and the server [7]. When the server receives a notifi-
cation from the client, it interpreters it and eventually sends
a notification to the client containing information about the
change made, e.g. if it is valid or not.

Figure 1. How Microsoft’s Language Server Protocol works
[8].

The big advantage of using LSP is that you just need to
create one language server that handles all the logic, e.g.
what text should be highlighted and what is considered an
error. Earlier, each client needed to write an extension as
well as a server for each specific language to add support for
it. But with the introduction of LSP, just one language server
needs to be implemented for every editor supporting LSP.
On the client side only a small configuration has to be made
that tells the IDE to use that specific language server when
editing a text document. The benefits of LSP is visualized in
Figure 1.

1



Course paper, EDAN70, Lund University, Sweden Fredrik Siemund and Daniel Tovesson

2.1.1 LSP Messages
Since the client and server are decoupled, the communica-
tion between them is done using the language protocol over
JSON-RPC [4], which is a light-weight remote procedure call
protocol. For its communication, the LSP uses three different
types of messages: notifications, requests and responses [9].
Notifications don’t require a response while requests always
must be answered with a response.

Source Code 1. JSON-RPC request for receiving symbol
definition.

{
"jsonrpc": "2.0",
"id" : 1,
"method": "textDocument/definition",
"params": {

"textDocument": {
"uri": "file:///path/file.java"

},
"position": {

"line": 3,
"character": 12

}
}

}

A JSON-RPC message always contains the JSON-RPC ver-
sion, which method is being called and a number of parame-
ters. In addition to that, request and response messages also
contains an unique id. See Source Code 1.

Below are some examples of how the editor and language
server could communicate during an editing session [11]:

• User opens a file (called document in LSP): the client
sends a notification to the language serverwithmethod
textDocument/didOpen that has the file URI and file
contents as a parameter.

• User edits the document: the client sends a notification
to the language server with the method
textDocument/didChange. The server answers with
a new notification with the method
textDocument/publishDiagnostics.

• User uses ’Go To Definition’ on a symbol: client sends
a request to the server with method
textDocument/definition and two parameters: the
file URI and the text position of the symbol (see Source
Code 1). The server answers with a response contain-
ing a document URI and the symbol’s definition inside
the document.

2.1.2 LSP4J
The language server can be built in any programming lan-
guage when developed from scratch, but there also exists

frameworks to make this process a bit easier. In this project,
LSP4J was used. LSP4J [3] is a reusable Java implementation
of the language server protocol, developed and maintained
by the Eclipse Foundation. The LSP4J framework provides
several interfaces that need to be implemented to create a
new language server. LSP4J handles all the communication to
the client and makes it a lot easier to develop a new language
server.

2.2 Motivating Example
When developing in Java using ExtendJ, no syntax highlight-
ing or validation is provided when using a IDE. This makes
the process of developing in Java using ExtendJ quite difficult
when it comes to tracking down errors. There are several
ways to add support for syntax highlighting and validation
for a language in IDEs. You can create a client and a server
for each editor or you can use LSP. The latter option was cho-
sen because it would provide greater flexibility, be less time
consuming to implement and make it easier to add support
for ExtendJ in other editors in the future.

2.3 Process

Figure 2. Project structure.

Two widely popular IDEs were chosen, Eclipse and Sub-
lime Text, to evaluate that the language server was working.
In the next sections it will be described in detail how the
implementation of LSP was achieved with these two IDEs.
The overall project structure can be seen in Figure 2.

2.3.1 Setup language server
A language server was setup following a template created
by Lucas Bullen [1], which is based on the Java framework
LSP4J. As mentioned earlier, LSP4J provides interfaces that
can be implemented to create a language server that support
LSP. It consist of three classes worth mentioning:

Source Code 2. Language server setup.

public CompletableFuture<InitializeResult>
initialize(InitializeParams params) {

final InitializeResult res =
new InitializeResult(

new ServerCapabilities()
);

2



Course paper, EDAN70, Lund University, Sweden

res.getCapabilities().
setCodeActionProvider(Boolean.TRUE);

res.getCapabilities().
setCompletionProvider(

new CompletionOptions()
);

res.getCapabilities().
setDefinitionProvider(Boolean.TRUE);

res.getCapabilities().
setHoverProvider(Boolean.TRUE);

res.getCapabilities().
setReferencesProvider(Boolean.TRUE);

res.getCapabilities().
setTextDocumentSync(

TextDocumentSyncKind.Full
);

res.getCapabilities().
setDocumentSymbolProvider(Boolean.TRUE);

return CompletableFuture.
supplyAsync(() -> res);

}

ExtendJLanguageServerThis class is where all the setup
for the language server is made. LSP has a lot of functionality
and neither editor nor client need to support all of it. What
functionality (called capability in LSP) that is supported is
negotiated as the language server starts and it is configured
to support all features available in the IDEs, such as code
completion and text hover. This is done in the initialize
method of the language server which can be seen in Source
Code 2.

ExtendJTextDocumentService After setting up the lan-
guage server with the supported features, the code needs
to be validated. This is done in this class. There are several
methods in this class that can be implemented, but since er-
ror checking was the focus of this project only the methods
didOpen and didChange were implemented. The method
didOpen is called when a document is opened, didChange is
called when a document is changed. These are valuable trig-
gers as it allows real time feedback to the user as he or she is
typing. Both of these methods make use of a method called
validate. It was customary created for the sole purpose of
validating the text in the document whenever it is opened or
changed. The solution to this is quite straightforward. The
file that the user currently is working in will be compiled
with ExtendJ each time a change is made. This is done by us-
ing a version of ExtendJ that has been packaged into a .jar
file. The output from the compiler is fetched through a input
stream and is then parsed into a JSON object containing the
error message, line number and column number. This JSON
object is put into a Diagnostic object for each error that

occur. The object is then used to provide information to the
client which is the error and what line number and column
number is affected.

ExtendJWorkspaceService This class was not imple-
mented but can be used to trigger events when settings to
the workspace is changed.

Source Code 3. ExtendJ Extension.

// Code in ExtensionMain.java
@Override
protected void
processErrors(Collection<Problem> errors,
CompilationUnit unit) {

unit.process(errors);
}

// Code in ExtensionBase.jrag
aspect ExtensionBase {

public void CompilationUnit.process(
Collection<Problem> errors) {

ArrayList<String> jsonStrings =
new ArrayList<String>();

for (Problem error : errors) {
String fileName = "\"fileName\":\""

+ error.fileName()
+ "\"";

String message = "\"message\":\""
+ error.message()
+ "\"";

String line = "\"line\":"
+ error.line();

String column = "\"column\":"
+ error.column();

String endLine = "\"endLine\":"
+ error.endLine();

String endColumn = "\"endColumn\":"
+ error.endColumn();

jsonStrings.add("{"
+ String.join(",",
new String[]{

fileName, message, line,
column, endLine, endColumn

})
+ "}");

}
String json = "{\"errors\":["

+ String.join(",", jsonStrings)
+ "]}";

System.err.println(json);
}

}

3



Course paper, EDAN70, Lund University, Sweden Fredrik Siemund and Daniel Tovesson

2.3.2 Create ExtendJ extension
An ExtendJ extension was created so that the error output
from the ExtendJ compiler is in a JSON format instead of a
sequence of strings. The problem with having a sequence
of strings was that a regular expression had to be made to
interpret each string. The goal was to fetch the line num-
ber, column number and error message. If the format of the
strings would be changed in the future, the regular expres-
sion would have to be updated as well. Writing an ExtendJ
extension that changes the output to a JSON format made
the solution more future proof. Each error was made to an
object that was put into a array. Each error object has value-
key pairs for line, column, end line, end column and error
message that are fetched from the Problem objects. This was
done by overriding the processErrors method as seen in
Source Code 3.

2.3.3 Create IDE extension
When the language server is setup, the editors need to be
configured so that they can make use of it. Currently, there
exists no editor that has out of the box support for LSP, so
to make the IDE talk with the server an extension has to be
installed. This extension will handle the communication with
the language server over JSON-RPC and among other things
display errors in the editor. In this project the extension
LSP4E was used for Eclipse and the extension LSP was used
for Sublime Text.

The Eclipse extension is a small plugin that runs a version
of the language server packaged into a .jar file. Inspiration
for this plugin was taken from Mickael Istria [6].
The Sublime Text extension is just a small build script

which starts the server. Implementing this was straightfor-
ward as examples could be found by testing existing language
server solutions and looking how they were setup to work
with Sublime Text.

Onemajor difference between the LSP extension for Eclipse
and Sublime Text is that Sublime uses a generic plugin which
only requires some configuration. Eclipse on the other hand
requires a small plugin — based on LSP4E — for each new
programming language.

3 Evaluation
The implementation of the LSP server was evaluated by
writing Java code in the two chosen IDEs, Sublime Text and
Eclipse. Many different Java files were written, both with
correct and erroneous code, to see if the language server
behaved as expected. The output was compared with built-
in compilers, like javac, to see if they matched. It was crucial
to make the LSP implementation work seamlessly with the
two chosen IDEs. The response from the language server
when writing code containing errors should be quick and
by listening to changes in the text document the response
was immediate. When the user wrote code containing errors,

Figure 3. Errors in Eclipse

Figure 4. Errors in Sublime Text

they were highlighted as soon as they were made, as can be
seen in Figure 3 and 4. Since this worked so well, the IDE
warned before a line of code was completed were the part of
the code written could be considered erroneous. This is the
way all modern IDEs work today so it was not considered a
problem.

4 Related work
This project has taken inspiration from Lucas Bullen’s project
[1]. The aim with Bullen’s project was to give people not
familiar with LSP a tutorial on how to set one up. The goal
of the tutorial was to create an itinerary for what sessions
to attend at EclipseCon 2017, using a .txt file. This project
was extended to fit the needs of ExtendJ. Instead of .txt
files, .java files were used and instead of static suggestions
the text document was compiled with ExtendJ and the errors
were sent back to the client.

5 Conclusion and Future Work
We have implemented LSP support for the extensible Java
compiler ExtendJ. It has been evaluated by testing LSP func-
tionality in different IDEs. Because of the time limit of this
project, the only functionality implemented was error han-
dling. The limit was also set to two IDEs, Eclipse and Sublime
Text. The goals of the project were thereby achieved and the
result was satisfactory.

To further extend the project things like code completion,
hover tooltips, jump-to-definition, find-references, and more
could be implemented. Some of these would require addi-
tional extensions to ExtendJ but there should be no limits
regarding how many features that can be implemented.

4



Course paper, EDAN70, Lund University, Sweden

Acknowledgments
Wewould like to thank Niklas Fors for mentoring us through
this project.

References
[1] Lucas Bullen. 2018. Build Language Servers in Java. (2018). https:

//github.com/LucasBullen/LSP4J_Tutorial
[2] Torbjörn Ekman. 2018. ExtendJ - The JastAdd Extensible Java Compiler.

(2018). https://extendj.org
[3] The Eclipse Foundation. 2016. Eclipse LSP4J Project. (2016). https:

//projects.eclipse.org/proposals/eclipse-lsp4j
[4] JSON-RPC Working Group. 2013. JSON-RPC 2.0 Specification. (2013).

https://www.jsonrpc.org/specification
[5] Görel Hedin. 2000. Reference Attributed Grammars. Informatica

(Slovenia) 24 (2000), 301–317.
[6] Mickael Istria. 2018. Language Server Protocol demo. (2018). https:

//github.com/mickaelistria/eclipse-languageserver-demo
[7] R. Rodriguez-Echeverria M. Wimmer J. Cabot, J. Luis Cáno-

vas Izquierdo. 2018. Towards a Language Server Protocol Infras-
tructure for Graphical Modeling. Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages
and Systems 1 (2018), 370–380. https://dl.acm.org/ft_gateway.cfm?
id=3239383&ftid=2007177&dwn=1&CFID=6159321&CFTOKEN=
bc04a47d03daf50a-8DC8CD34-E02D-4C30-3BC2482066F596F0

[8] Microsoft. 2018. Example - Language Server. (2018). https://code.
visualstudio.com/docs/extensions/example-language-server

[9] Microsoft. 2018. What is the Language Server Protocol? (2018). https:
//microsoft.github.io/language-server-protocol/

[10] Miro Spönemann. 2018. Eclipse LSP4J. (2018). https://github.com/
eclipse/lsp4j

[11] The VS Code Team. 2016. A Common Protocol for Lan-
guages. (2016). https://code.visualstudio.com/blogs/2016/06/27/
common-language-protocol

5

https://github.com/LucasBullen/LSP4J_Tutorial
https://github.com/LucasBullen/LSP4J_Tutorial
https://extendj.org
https://projects.eclipse.org/proposals/eclipse-lsp4j
https://projects.eclipse.org/proposals/eclipse-lsp4j
https://www.jsonrpc.org/specification
https://github.com/mickaelistria/eclipse-languageserver-demo
https://github.com/mickaelistria/eclipse-languageserver-demo
https://dl.acm.org/ft_gateway.cfm?id=3239383&ftid=2007177&dwn=1&CFID=6159321&CFTOKEN=bc04a47d03daf50a-8DC8CD34-E02D-4C30-3BC2482066F596F0
https://dl.acm.org/ft_gateway.cfm?id=3239383&ftid=2007177&dwn=1&CFID=6159321&CFTOKEN=bc04a47d03daf50a-8DC8CD34-E02D-4C30-3BC2482066F596F0
https://dl.acm.org/ft_gateway.cfm?id=3239383&ftid=2007177&dwn=1&CFID=6159321&CFTOKEN=bc04a47d03daf50a-8DC8CD34-E02D-4C30-3BC2482066F596F0
https://code.visualstudio.com/docs/extensions/example-language-server
https://code.visualstudio.com/docs/extensions/example-language-server
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://github.com/eclipse/lsp4j
https://github.com/eclipse/lsp4j
https://code.visualstudio.com/blogs/2016/06/27/common-language-protocol
https://code.visualstudio.com/blogs/2016/06/27/common-language-protocol

	Abstract
	1 Introduction
	2 Background
	2.1 Language Server Protocol
	2.2 Motivating Example
	2.3 Process

	3 Evaluation
	4 Related work
	5 Conclusion and Future Work
	Acknowledgments
	References

