
Reference Attribute Grammars in Python
Christoffer Olsson

Lund University, Sweden
olschr2@gmail.com

Liang Ce
Lund University, Sweden
liangce0830@gmail.com

Abstract
This is a short report on a Python library that implements
so called reference attribute grammars. Reference attribute
grammars are in short a way to give attributes to already ex-
isting tree data structures. Attributes are computed properties
of nodes in a tree, defined by equations. The ability to attribute
trees is something that is very useful in for example compiler
construction. There are already several implementation of refer-
ence attribute grammars in languages such as Java and Scala.
However there are none in more dynamic languages such as
Python. Therefore this report presents a small library written
in Python that enables an end user to attribute any tree like
data structure in the very same language.

1 Introduction
This is a short paper on reference attribute grammars (RAGs)
implemented in Python 3. RAGs provide a way to attribute
nodes in any spanning tree data structure. This is very useful
in the context of compilers where the semantic analysis of
a program involves the traversal of a tree. RAGs allow the
compiler to assign attributes that provide semantic meaning
to this intermediate representation of a program. Moreover,
RAGs are generally defined outside the tree definition of the
compiler, which makes them very modular by nature [1].

There already exist RAGs implementations in other lan-
guages. There is the full blown compiler construction lan-
guage JastAdd, extending Java with abstract syntax tree con-
structions, aspect oriented programming and reference at-
tribute grammars [2]. If one is simply interested in the ability
to attribute data structures in a modular way, there are two
notable implementations available, one in Java [3] and one
in Scala [4].

However, all of these implementations are written in stat-
ically typed languages. This paper presents an implementa-
tion of modular and backward compatible reference attribute
grammars in pure Python that attributes any spanning tree
at run time. With fewer other external libraries implemented,
all a user of this library needs to do in order to attribute a
data structure, is to write plain Python code adhering to the
library’s specification.

Course paper, EDAN70, Lund University, Sweden
January 19, 2019. ACM ISBN . . . $15.00
https://doi.org/

Briefly the problemsmentioned above are solved via Python’s
dynamic features. In Python, a class can be assigned new
fields at run time, meaning that as long as the data structure
exposes its nodes the library can assign new fields to them.
Along with algorithms already defined in the related work.
Combining these constructions, this is all one needs to define
reference attribute grammars.

Since the library is written in Python, one would expect
that usability and clarity to trump performance. Therefore
the focus of evaluation will be on how easy and clear the
library is to use. The number of lines of code needed to pro-
duce a tree and attribute it is also measured and compared
to JastAdd. That is, the authors of the paper will construct a
handful of programs whose sole purpose is to attribute a tree
and nothing more. These programs will be used to evaluate
our metrics.

It was found that the number of lines of code necessary
to implement the reference attribute grammar was similar
in both JastAdd and the Python library. However Python
needed considerably more lines of code to actually imple-
ment the tree data structures. More on this will be elaborated
upon in the section Evaluation.

2 Motivating Example
We will take an example, MinTree, which was implemented
in JastAdd before, as illustration for this project. In the
MinTree problem, an abstract syntax tree (AST) composed
of node classes Program, Pair and Leaf are given. The
class Program represents the root node of AST and the ab-
stract class Node with two concrete subclasses, Pair and
Leaf, forms the recursive tree structure. We would like to
define a so called local min and a global min attribute. The
local min is defined in each Pair as the smallest value of its
children. Global min is defined as the smallest value defined
in the whole tree. We will use RAGs to compute these values.

The main idea of JastAdd and Python solutions are the
same. We firstly introduce a synthesized attribute for the
Node, localMin, which represents the minimum value of the
Node’s subtree. After synthesizing the information upwards
in the tree, an inherited attribute, globalMin, is secondly
introduced. Therefore, the equation of all nodes’ globalMin
is defined by an ancestor in AST, which is the Program node.
Through inheriting the globalMin of Program node, the

1

https://doi.org/

Course paper, EDAN70, Lund University, Sweden Christoffer Olsson and Liang Ce

minimum value of the AST is passed to all other nodes. The
details are shown in Figure 2. .

Solution.png

Figure 1. MinTree solution.

The following is the comparison of JastAdd and Python li-
brary. Part of the codes of Abstract Syntax Tree-specification,
attribute specifications, driver codes and relevant explana-
tions are listed below.

Abstract grammar in JastAdd:
Program : : = Node ;
abs t rac t Node ;
P a i r : Node : : = L e f t : Node R igh t : Node ;
Lea f : Node : : = <Number : int > ;
Part of abstract grammar in Python library:
C l a s s Program :
def _ _ i n i t _ _ (s e l f , c h i l d) :

...
d e f g e t _ c h i l d r e n (s e l f) :
r e t u r n s e l f . c h i l d

For the abstract grammar, the tree built with JastAdd is sim-
pler and clearer, since JastAdd has special syntax to define
ASTs. JastAdd also analyzes the tree directly and identifies
the parent and children of each node. In the Python library
however, one needs to create classes for each node, and then
also define their children and parents. The function return-
ing node’s child, getchildren(), also has to be defined for each
node class.

Part of attribute specifications in JastAdd:

inh in t Node . g loba lMin () = 0 ;
eq Program . getNode () . g l oba lMin ()
= getNode () . l o c a lM in () ;
syn in t Node . l o c a lM in () ;
eq Node . l o c a lM in () = 0 ;
eq Lea f . l o c a lM in () = getNumber () ;
eq P a i r . l o c a lM in () =
min (g e t L e f t () . l o c a lM in () , g e t R i g h t () . l o c a lM in ())) ;

Part of attribute specification in Python library:

inh (Node , " g l oba lm in ")
eq (Program , ' g loba lm in ' ,
lambda n : n . node . l o c a lm in ())
syn (Node , " l o c a lm in ")
eq (Node , " l o c a lm in " , lambda n : 0)
eq (Leaf , ' l o c a lm in ' , lambda n : n . v a l u e)
eq (Pa i r , ' l o c a lm in ' , lambda n :
min (n . l e f t . l o c a lm in () , n . r i g h t . l o c a lm in ()))

The attribute specifications for JastAdd and Python are quite
similar. When defining attributes in JastAdd, each attribute
is declared with a type. This is not necessary in Pytohn, as
the language is dynamically typed.

Driver code in Python library:

Weaver (MinTree)
i n s t a n c e = Program (P a i r (L ea f (1)
, P a i r (L ea f (2) , L ea f (3))))
Weaver . i n f e r _ p a r e n t s (i n s t a n c e)

Due to the fact that JastAdd weaves at compile time, no extra
driver code is required for JastAdd. However, there is a big
difference in Python. We need to use weaver as a constructor
before we really implement the tree and give it access to the
attribute classes we defined above. Then we have to create
the instance with defining each class and the corresponding
variable. The inferparents() function is a support function
for inherited attributes, binding parent nodes to respective
child nodes.

3 Implementation
At the current moment, the library supports synthesized and
inherited attributes. For readers who are familiar with Jas-
tAdd, these work in a very similar way to how attributes in
JastAdd work. However, the Python library does not support
directed inheritance, which means that one can not tell an
equation to only be accessible from certain children.

2

RAG in Python Course paper, EDAN70, Lund University, Sweden

As stated earlier, the library is implemented in pure python.
With "setattr()" and "getattr()" functions which are built in
Python functions. With these one can create and manipulate
class fields at run time. Therefore, due to Python’s dynamic
nature, both attribute calculation and assignment happen
at run time, as opposed to JastAdd, where only calculation
happens at run time.

In addition to these highly mutable instances, higher or-
der functions, as well as the ability to manipulate classes
in the same way as one can manipulate class instances, are
exploited. As a result, fields of a class can be changed with-
out creating an instance of it. Also, functions can be defined
in some class that simply assume properties of its children.
This works properly thanks to higher order functions.

Synthesized attributes are straight forward to implement.
One simply passes the name of the class, the name of the
attribute one wants to create and a reference to any Python
function that is unevaluated. As a matter of fact, anything
callable can be used as an attribute, including Python lambda
expressions.

Inherited attributes are more complicated to implement.
One defines an inherited attribute in a node. An inherited
attribute simply needs a home class and a name. Then one
defines the equation itself in another class. Later, when an
instance of the tree that is to be attributed is created, one has
to call a function that binds all parents using the getchildren
function. When one then evaluates an inherited attribute,
the library traverses the tree. It starts with the node instance
where the attribute was invoked and then searches for any
parent that contains an equation with the same name as the
invoked attribute. When it finds one it returns the attribute
reference to the starting node, meaning that as far as the user
of the library is concerned, the function might as well have
resided inside the node that contains the inherited attribute.

4 Evaluation
The number of lines of code to use the library was measured.
That is the number of lines to specify the attribute gram-
mar, as well as the number of lines to specify the abstract
grammar. The library has no functionality to automatically
construct abstract grammars and therefore that has to be
done manually in the Python library. Even though this is not
a feature of the library it could help the end user to assess
which library he should use.

All of these results were compared to the same problems
in JastAdd. The results are found in Table 1. The Min Tree
example is the same one as in the introduction. The other
two examples Calc and State Machine Name Analysis is also

Python JastAdd
Abs. Gramm. Attr. Abs. Gramm. Attr.

Min Tree 21 10 4 12
Calc 41 14 7 8
State Machine
Name analysis 25 17 5 12

Table 1. Lines of Code

from the compiler course EDAN65.

In order to make these measurements the tool CLOC was
used [5]. This is a Linux tool that simply counts the number
of lines in a text file. It is tailored to work with programming
languages.

A decision to not measure execution speed was also made.
This was done due to a lack of time in the project. Although
it would be interesting to measure the execution speed, there
is no reason to believe that it would be faster than JastAdd
is. This is due to the fact that JastAdd does it weaving at
compile time, as opposed to at run time. Moreover native
Python is in general slower than Java code.

5 Related work
In a way this project was conceived as the dynamic variant
of JastAdd. Therefore virtually all comparisons, discussion
and design was done with JastAdd in mind. The goal was
more or less to simply mimic JastAdd, but in a Pythonic way
[2].

The biggest difference between the Python library and
JastAdd, is that JastAdd is static by nature. This can be il-
lustrated in Figure 2. That is, JastAdd takes files that the

Figure 2. JastAdd Weaving.

user defines and outputs normal Java files that a Java com-
piler then can compile. This is different in contrast with the
Python implementation which can be depicted as in Figure
3. The python implementation does everything at run time.
That is all is done using the python interpreter. One simply
imports the RAG library, defines the RAG grammar, as well
as some tree data structure and then runs this as a normal
Python program.

Since the Python library is basically a dynamic JastAdd
clone it is relevant to discuss which features that are imple-
mented at this time. JastAdd is a vast library with a wide

3

Course paper, EDAN70, Lund University, Sweden Christoffer Olsson and Liang Ce

Figure 3. Python Weaving.

set of features that the reader best can explore for oneself [2].

The subset of features that are currently implemented are
the following.

1. Synthesized Attributes
2. Undirected Inherited Attributes
3. Parameterized Attributes
4. Caching
5. Parent Inference
6. Attribution of any tree like data structure
7. Modularization - RAG grammar can be split into sev-

eral files
Even though how these features are executed inside the
computer varies between the two libraries, the aim of this
project is to make them conceptually similar.

6 Conclusion and Further Work
The Python RAG library gives the end user the ability to
attribute any tree like data structure in Python. JastAdd has
shown that this is an incredibly useful feature, especially
when designing compilers. Even though JastAdd provides
a full set of tools, no RAG has been written in a dynamic
language such as Python. This way it can be interesting for
an end user to use the Python library if the very same user
has tree like data structures in the Python language, that he
wants to attribute.

This also brings us to what the next step for the library
is. At this moment a small but useful sub set of JastAdd’s
features are implemented. A logical conclusions would be to
simply implement the rest of the features that JastAdd has,
startingwith themost urgents ones.Which these are depends
on the use case of the end user. However the authors can

think of a couple of features that would be much appreciated.

In JastAdd it is possible to define ASTs in an .ast file. This
was what made the specification of the AST classes in the
evaluation section so concise in JastAdd. That would be a
nice feature to have in the Python Library as well, since that
would make the library more useful for end users that want
to start new projects in Python.

Other than that JastAdd has more sophisticated attribute
features, such as circular attriutes, non terminal attributes,
collection attributes and so on [2]. These are all very neces-
sary for a RAG library and the Python RAG library would
benefit very much from having these as well.

Regarding the results, the Python library needed a similar
amount of lines to implement the RAG grammar. Usually
one gives Python praise for its ability to be a very concise
and clear language. Therefore it was pivotal that the syntax
of the RAG library followed this as well. Since we can’t ex-
pect Python to be faster than Java, we should at least aim to
make the code easy to read and write. This is an issue that
is always in the eye of the beholder, but at least the number
of lines needed is very similar. Therefore the Python library
might actually be useful for already existing Python projects.

Also as a concluding remark, this library would benefit
from a lot more bug testing. Currently the test coverage is
pretty weak and would this library actually be used in real
projects, the end users have to be certain that it does not
contain devastating bugs.

Luckily, this library is open source under a very liberal
license. The library is also currently very small in it imple-
mentation, around 100 lines of code. So any wanted features
should be easy to implement at this current state of the
project.

Acknowledgments
A special thanks to our project supervisor Niklas Fors. Also
a special thanks to the JastAdd team, as this project would
not have existed without the library.

References
[1] G. Hedin, An Introductory Tutorial on JastAdd Attribute Grammars. In:

Generative and Transformational Techniques in Software Engineering
III. GTTSE 2009. Lecture Notes in Computer Science, vol 6491. Springer.

[2] "JastAdd.org", Jastadd.org, 2018. [Online]. Available:
http://jastadd.org/web/. [Accessed: 15- Nov- 2018].

[3] Niklas Fors, Gustav Cedersjö, and Görel Hedin. JavaRAG: a Java library
for reference attribute grammars. In Proceedings of the 14th Interna-
tional Conference on Modularity (MODULARITY 2015). ACM, 2015, pp.
55-67.

4

RAG in Python Course paper, EDAN70, Lund University, Sweden

[4] Sloane, A.M., Kats, L.C. and Visser, E. A pure embedding of attribute
grammars. Science of Computer Programming, 2013, 78(10), pp.1752-
1769.

[5] "CLOC – Count Lines of Code", Cloc.sourceforge.net, 2018. [Online].
Available: http://cloc.sourceforge.net/. [Accessed: 21- Dec- 2018].

5

	Abstract
	1 Introduction
	2 Motivating Example
	3 Implementation
	4 Evaluation
	5 Related work
	6 Conclusion and Further Work
	Acknowledgments
	References

